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Abstract: Early detection of monkeypox is thus crucial to containing its spread and reducing public health risks. Proper 

identification of monkeypox strain may be difficult owing to its close similarities with other pox virus strains, a requirement 

thus for innovative solutions for accurate and timely detection. This research seeks to create A system for the early detection 

of monkeypox disease using the strong deep learning methods based on the use of the state-of-the-art Generative Adversarial 

Network (GAN) and VGG19 model. The framework presented here uses the GAN model in creating the augmented data 

samples for the creation of this, addressing the lack of data. The VGG19 model is used for the diagnosis of these augmented 

High-accuracy data samples and monkeypox robustness detection. Due to the integration of the present model, such diagnostic 

mistakes can be minimized and the sensitivity and specificity of the system are enhanced. The experiments conducted based 

on publicly available medical datasets illustrate that GAN-VGG19 combination will provide a greater improvement in 

classification performance and accuracy rate as high as 97%. Thus, this model posits the possibility of deep learning approaches 

towards propelling early and accurate diagnosis of monkeypox for prompt interventions with improved public health impacts. 

Keywords: Monkeypox Detection, Deep Learning, Generative Adversarial Network (GAN), VGG19, Data Augmentation, 

Convolutional Neural Networks (CNNs). 

1. INTRODUCTION 

Monkeypox is a disease caused by infection with the 

monkeypox virus, a member of the Orthopoxvirus genus 

of viruses along with smallpox and cowpox. Monkeypox 

became A significant global public health issue following 

the eradication of smallpox in 1980 and the cessation of 

the smallpox vaccine, especially in Central and West 

Africa. But the recent instance of the disease in non-

endemic areas, which occurred in May 2022, revealed the 

virulence of the virus to infect on a large scale outside its 

ecological niche [1]. Its rise in incidence beyond Africa is 

facilitated by zoonotic spillovers, migration, and 

transmission from human to human, warranting the 

implementation of strong diagnostic approaches to 

regulate its transmission [2]. The pandemic of COVID-19 

has put an increased load on the fast and effective 

identification of viruses to avert epidemics because there 

is a very high likelihood of transmission escalation in the 

event of delays in identification and quarantine [3]. 

Monkeypox is also comparatively difficult to diagnose 

because of its symptomatic resemblance with other 

poxvirus diseases, such as smallpox, chickenpox, and 

measles [4]. 

PCR and blood testing are currently the most powerful 

methods of diagnosis for diseases. These, however, need 

special laboratory facilities and personnel, hence are not 

easy to introduce in low-resource settings. This requires 

the development of both automated and scalable 

diagnostic devices.[5]. Deep learning is increasingly 

becoming popular over the past couple of years for 

medical image analysis. It has shown good performance in 

classification of diseases skin disorders [6]. Most 

scientists classify skin lesions with Convolutional Neural 

Networks. Such networks work best with a large quantity 

of well-labeled data—rare diseases like monkeypox do not 

have [7]. Other scientists have tried using pre-trained 

models like MobileNetV2 ResNet50, and InceptionV3 to 

improve monkeypox classification accuracy. Such a 

method called transfer learning helps, but lack of data 

persists as a problem [8]. One of the biggest problems in 

deep learning model training to detect monkeypox is that 

there aren't many publicly available datasets. This results 

in AI models that perform poorly on new data [9]. 

To solve this issue, Generative Adversarial Networks 

(GANs) have been used extensively to augment medical 

images to generate high-quality synthetic data and 

enhance model performance and address class imbalance 

[10]. GAN-augmentation has specifically shown 

effectiveness in improving classification accuracy as it can 

produce samples with diverse diversity that mimic real 

images [11]. A new paradigm is suggested that combines 

GAN-based data augmentation and the VGG19 deep 

learning model for classifying monkeypox. Synthetic 

images of monkeypox are created to solve the data 

insufficiency problem, and the model's ability to 

generalize across different cases is enhanced. The VGG19 

architecture, featuring a deep hierarchical structure and 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 14–Issue 04, 114 – 122, 2025, ISSN:-2319–8656 

DOI:10.7753/IJCATR1404.1009 

www.ijcat.com  115 

 

high-quality feature extraction ability is used for high-

precision monkeypox lesion classification. To further 

enhance model explainability, the explainable AI methods 

such as Local Interpretable Model-Agnostic Explanations 

(LIME) are presented where the healthcare professionals 

can comprehend and trust the diagnostic outcome 

generated by the AI. 

The literature demonstrates that deep learning models 

coupled with data augmentation techniques enhance 

diagnostic capacity for uncommon diseases with less 

model bias and enhanced sensitivity [7]. In addition, use 

of explainable AI methods is essential in medical use as it 

provides transparency and allows clinicians to validate AI-

generated decisions prior to making final diagnoses [8]. 

As global awareness of monkeypox grows, AI solutions 

are the answer to enhanced surveillance, enhanced 

diagnostic capability, and prevention of future outbreaks 

[9]. 

By integrating cutting-edge deep learning methods with 

synthetic data augmentation, this research is aimed at the 

design of a practical, scalable, and explainable AI-driven 

diagnostic system for the Early identification of 

monkeypox. Using GAN-generated Image analysis using 

deep learning models not only solves the problem of 

scarce data but also improves the accuracy of 

classification, and therefore it is an interesting solution for 

practical uses. Furthermore, with future progress in 

medical diagnosis using AI, future research can work on 

model robustness, multimodal fusion of data, and building 

publicly available large datasets in an effort to enable 

wider clinical application. Finally, this research is 

reflective of the potential that AI holds in revolutionizing 

infectious disease diagnosis and presents a call for 

ongoing innovation to assist in the fight against future 

global health threats [10]. 

2. LITERATURE REVIEW 

Advancements in artificial intelligence (AI) and deep 

learning have significantly impacted disease diagnosis, 

and infectious diseases such as Monkeypox specifically. 

Deep learning and machine learning methods have been 

used to enhance accuracy and reliability of Monkeypox 

detection. Despite this, dataset paucity, overfitting, and 

computational capacity constraints still exist and need to 

be overcome by innovation. 

Sitaula (2022) compared and tuned thirteen pre-trained 

deep models for detecting Monkeypox. The best-

performing model, Xception-DenseNet169, achieved an 

accuracy of 87.13%. However, the small dataset size and 

the limited memory capacity of the pre-trained model were 

key performance bottlenecks, hence a need for more 

larger-sized and diversified datasets [1].Bengesi (2023) 

sentiment analyzed tweets about Monkeypox using 

machine learning models like SVM and TextBlob 

annotation. SVM was 93.48% correct, but the sample was 

Twitter data only and a one-year time frame, with 

consequent generalizability problems. That would suggest 

application of data from various sources such as clinical 

reports and news media would improve accuracy in 

sentiment analysis [2]. 

Yasmin et al. (2023) suggested PoxNet22, the transfer 

learning model that was fine-tuned to forecast 

Monkeypox. The model was accurate, and remembered at 

100%, but the findings show overfitting since it was not 

validated externally using real data from sources outside 

of it. External validation is a significant threat in the use 

of medical AI and should be tried on heterogeneous sets 

of patients [3]. Ahsan et al. (2023) employed transfer 

learning with six deep models with Local Interpretable 

Model-Agnostic Explanations (LIME) added for 

explanation. Models produced 93%-99% accuracy, but 

with very small dataset sizes and without regularization. 

Although LIME enhanced transparency of the models, 

explainability for high-risk clinical AI is still an area of 

research [4]. 

Olusegun et al. (2023) conducted emotion classification of 

tweets on Monkeypox using CNN, LSTM, BiLSTM, and 

CNN-LSTM models. CNN worked best at 96%. 

Imbalance in classes required oversampling, and reliance 

on Twitter data restricted its applicability on multiple 

platforms. Future studies Can explore the fusion of 

multimodal data of text and vision data for more 

comprehensive disease surveillance [5].Kundu et al. 

(2024) examined federated deep learning-based image-

based detection of Monkeypox with images augmented 

using CycleGAN. MobileNetV2, Vision Transformer 

(ViT), and ResNet50 were compared. Computational 

power and some requirements of real-life medical imaging 

purposes were emphasized in the paper. Federated 

learning is privacy-sensitive advantages at a cost of 

optimization-efficient large-scale deployment techniques 

[6]. 

A model for Explainable Monkeypox classification by 

Raha (2024) from an attention-based MobileNetV2 

through LIME was proposed. The model faced difficulty 

in timely diagnosis because Monkeypox disease gets 

overlapped with other types of skin infections. This 

necessitates the use of advanced feature extraction 

techniques that can distinguish Monkeypox from visually 

related diseases such as chickenpox and measles [7]. 

Emaki (2024) proposed an Artificial Neural Network 

(ANN) optimized by the adaptive Artificial Bee Colony 

(aABC) algorithm to predict Monkeypox from clinical 

symptoms. The model's accuracy was 71%, which is less 

than deep learning models as well as the random forest 

algorithm. This means that hybrid AI approaches need to 

be integrated, which use deep learning and traditional 

machine learning techniques for enhanced prediction [8]. 

Ma (2024) proposed a Triplet Attention Swin-Unet and 

Multiscale Expansion Convolution (MECTASwin-Unet) 

segmentation algorithm on a commercial dataset. The 

model achieved 90.4%-pixel accuracy and 80.3% mean 

intersection over union (mIoU). There were limited public 

datasets that limited comparisons, and standard 

benchmarks in Monkeypox image segmentation research 

were owing [9]. Karaddi et al. (2024) have introduced 

Softflatten-Net, a CNN network to overcome vanishing of 

gradients and overfitting. Softflatten-Net tackled binary 

(97.25% accuracy) and multi-class classification but was 

affected by class imbalance while moving to multi-class 

cases. Class imbalance through the use of weighted loss 

functions or data augmentation is still a prevalent area of 

interest [10]. Saleh et al. (2024) proposed Swin-PSO-

SVM, which is a combination of Swin Transformer, 

Particle Swarm Optimization, and Support Vector 

Machine. It performed very well in terms of accuracy 

(95.56% on MSLD dataset and 96.43% on MSID dataset) 

but consumed a lot of computational power. Optimizing 

deep learning models for edge devices can make them 
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more cost-effective in resource-limited clinical 

environments [11]. 

The tested researchers affirm the efficacy Machine 

learning and deep learning for the detection of Monkeypox 

but identify constraints of datasets, computational 

expense, and overfitting as the main challenges. 

Increasing diversity to the datasets, enhancing 

generalizability, and algorithmic adaptability for the 

resource constraint needs to be the future research 

emphasis. Explainability and robustness are also matters 

of major concern for facilitating trust and usage in the 

healthcare context. 

3. PROPOSED METHODOLOGY 

The proposed Approach shown in Fig.1, it’s about the 

Early and proper monkeypox detection remains a 

challenge as monkeypox lesion differentiation is difficult 

from other dermatological conditions with limited 

availability of annotated datasets. Our approach to 

overcome such challenges is to introduce A hybrid deep 

learning approach in which Generative Adversarial 

Networks (GANs) are used for generating synthetic data 

augmentation and VGG19 is used for extracting features 

and classification. GANs generate great synthesized 

images to bridge the sparsity used for feature extraction 

problem, and VGG19, a deep convolutional neural 

network pre-trained model, gets valuable hierarchical 

features for correct classification. Explainable AI method 

Local Interpretable Model-agnostic Explanations (LIME) 

provide increased interpretability of the model for 

guaranteeing transparency of the decision-making 

process. The intended framework has five primary steps: 

collection and preprocessing of the dataset, data 

enhancement with GAN, feature learning using VGG19, 

explainability using LIME and Classification. All the steps 

have been framed so that they are used to increase the 

classification accuracy, enhance model generalization, and 

minimize overfitting for producing a better AI-based 

monkeypox diagnostic technique. 

 

FIGURE 1. PROPOSED ARCHITECTURE WITH GAN AND VGG19 

 

3.1 Data Augmentation Through 

Generative Adversarial Networks (Gans) 

GANs have two rival neural networks, which are 

Discriminator and the Generator. The Generator takes an 

input latent random noise vector from some distribution 

like uniform or Gaussian and transforms it into a generated 

image. The Generator learns to replicate the distribution 

of real monkeypox images and generate realistic 

synthesized samples that mimic real images in every 

aspect. Discriminator, however, it is a binary classifier that 

determines whether the image is real or generated and 

provides feedback to the generator for the further 

improvement. The training is adversarial, where the 

Generator tries to generate images that will mislead the 

Discriminator and the generator tries to improve its power 

of distinguishing real images from the generated images 

back and forth. The adversarial process forces the 

generator to continuously enhance its ability to produce 

more realistic images. Co-training both the networks 

forces the model to repeatedly improve its power of 

generating high-quality data, balancing the set, and 

minimizing classification bias. The Discriminator 

assumes the responsibility of reviewing the quality of the 

generated images and then adjusts the corresponding 

Generator. After multiple iterations, the generator is 

capable of producing images that become increasingly 

realistic and closely resemble real cases. The process 

actually enhances the performance of the model 

classification since it introduces more training samples 

enhancing the generalization. With the use of GANs in the 

developed method, the system can process imbalanced or 

sparse data in a more efficient way, generating a more 

accurate classification outcome [6]. 

3.2 Transfer Learning for Feature 

Extraction 

The VGG19 deep network is applied for feature learning 

and classification due its great ability to capture sapatial 
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patterns and subtle textural features in medical images. 

Transfer learning is applied for better model performance 

and reduced training time by pre-training VGG19 with 

ImageNet weights. Since ImageNet images have already 

learned generalizable features, fine-tuning the last layers 

on the monkeypox dataset allows the model to learn 

domain-specific patterns without requiring a large dataset. 

The lower layers, which are responsible for extracting 

low-level image features such as edges and textures, are 

frozen to retain pre-trained knowledge, and the higher 

layers are fine-tuned to enhance feature learning for 

monkeypox lesion detection [8]. 

3.3 Classifying Images with a Deep 

Learning Model 

Feature extraction in VGG19 entails learning structural 

features using convolutional layers to segregate 

monkeypox lesions. Convolutional layers are applied to 

extract low-level (edge) and high-level (texture, shape) 

features using kernels and sigmoid activation for non- 

linearity. Max pooling layers are used to compress spatial 

dimensions and act as counter-measures against 

overfitting, along with dropout layers too. Fully connected 

layers utilize the extracted features and blend them with 

weights for final classification and sigmoid-activated 

output to differentiate between Monkeypox and Non-

Monkeypox. The pre-trained ImageNet VGG19 is fine-

tuned over the task, leveraging its deep network to 

facilitate feature learning. Cross-entropy loss, adaptive 

learning rate, and batch normalization during model 

optimization induce stability, while Local Interpretable 

Model-Agnostic Explanations (LIME) ensure 

interpretability by demonstrating key features causing 

predictions, and this simplifies clinicians' jobs during AI-

driven diagnosis [8]. 

4. EXPERIMENTAL RESULTS AND 

ANALYSIS 

4.1 Dataset Description 

A skin lesion dataset was used in the experiment of this 

work, consisting of two classes: Monkeypox and Non-

Monkeypox (other skin conditions such as chickenpox, 

measles, and images of normal skin). The dataset was 

gathered from various open-source medical databases in 

an effort to establish diversity for better classification. All 

images are digital color photos focused on involved skin 

regions, resized to the same resolution, and in RGB color 

format of three colors. The dataset was divided into a 

training set and a test set in an 80:20 ratio, with an 

additional validation set taken from the original dataset 

without data augmentation. To achieve better data 

representation and better generalization of the model, The 

dataset was augmented using GANs to generate synthetic 

images that closely resembled real medical samples. The 

large data set significantly increased the training samples, 

and the feature representation was bettered. Feature 

extraction and classification were done using VGG19, 

where the fully connected layers of VGG19 were used in 

distinguishing Monkeypox from Non-Monkeypox cases. 

The complementarity of GAN-based augmentation and 

VGG19 feature extraction enabled the strong resilience of 

the model for classification, graphical representation of 

distribution in datasets, data samples post-augmentation, 

and compound growth in datasets being included in the 

work. 

 4.2 Performance Metrics 

Monkeypox classification performance is assessed using 

the following key metrics: accuracy, recall, F1-score, and 

the ROC curve. Accuracy tests for general correctness, 

while recall checks whether the model correctly spots true 

monkeypox cases and refrains from false negatives. 

Specificity corrects for right identification of non-infected 

cases, refraining from false positives. F1-score is a trade-

off between precision and recall, therefore wherever both 

false negatives and false positives are significant, it 

becomes significantly important. ROC-AUC evaluates the 

model's discriminative ability. All these parameters 

together provide a comprehensive evaluation, and the 

model is calculated using the formula below, as 

demonstrated through the equations. 

  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                         (1)   

                                                                                              

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                       (2)        

                                                                                     

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝑇𝑁
                                                              (3)        

                                                                                                     

  𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                   (4)          

4.3 Analysis of the Result 

Deep learning structures have become central to medical 

image classification, particularly in infectious disease 

diagnosis like Monkeypox. Among the various deep 

learning structures, VGG19 is one of the popular 

convolutional neural networks (CNN) known for its depth 

and capability in feature extraction. However, its default 

use can be susceptible to generalization and accuracy 

while handling complex medical data. To address these 

shortcomings, this work evaluates the performance of 

VGG19 in Monkeypox detection and explores 

augmentation by data using Generative Adversarial 

Networks (GAN). The proposed approach is expected to 

improve classifier metrics such as accuracy, precision, 

recall, and F1 score, coupled with enhanced disease 

detection and minimized false classifications. 
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2 (A) ROC CURVE 

                                                                                          2(B) PERFORMANCE OF PRECISION, RECALL, 

F1-SCORE FOR EACH CLASS 

 

2(D) TRAINING AND VALIDATION LOSS CURVE 

2(C) TRAINING AND VALIDATION 

 ACCURACY CURVE 

 

FIGURE 2. PERFORMANCE INDICATORS OF VGG19

ROC curve for model performance measurement in terms 

of Monkeypox and Non-Monkeypox cases is shown in 

Figure 5(a). False Positive Rate (FPR) is considered as x-

coordinate and True Positive Rate (TPR) as y-coordinate. 

Blue line, Monkeypox model detection power, measures 

0.78 AUC, while red line, Non-Monkeypox case model 

detection power, measures 0.76 AUC. The dash-diagonal 

is for a random classifier (AUC = 0.5) so that the model is 

not random, even though the performance will probably 

be increased by using good feature selection, 

hyperparameters, or data augmentation. Figure 2(b) The 

bar graph is such that the model's performance is always 

good for Monkeypox and Non-Monkeypox samples, with 

Accuracy, Precision, Recall, and F1-Score all being 

always above 95%. High scores in all measures suggest 

strong and stable classification with little bias to either 

class or the other. It also suggests that the model classifies 

well in Monkeypox and generalizes equally, hence 
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deployable in real-world applications. Figure 2(c) 

indicates the training and validation accuracy of a deep 

model over 50 epochs, with training accuracy as the blue 

line and validation accuracy as the red dashed line. Both 

are both rising sharply in the initial stage, with training 

accuracy leveling out in reaching nearly 100% and 

validation accuracy fluctuating slightly, which is 

characteristic of potential overfitting. Generalization can 

be improved through fine-tuning methods such as early 

stopping or regularization. Validation and training loss 

over 50 epochs, and both losses beginning higher than 1.0 

and decreasing, is illustrated by Figure 2(d). The sharp 

drop in the initial 10 epochs shows fast learning, and loss 

is approaching almost zero at epoch 50. The fact that both 

training and validation loss are converging near one 

another suggests that there is little overfitting, which 

attests that the model is a great generalizer and reduces 

error well. 

 

FIGURE 3. COMPARISON OF THE PROPOSED MODEL WITH EXISTING MODELS. 

As indicated in Figure 3, the performance of the deep 

learning classifier model for the Non-Monkeypox and 

Monkeypox classification using four performance 

indicators: Accuracy, Precision, Recall, and F1-Score. The 

model exhibits high performance greater than average for 

both classes, where all indicators are above 95%. 

Accuracy gives the overall accuracy of the model globally, 

while Precision gives the proportion of true positive cases 

of Monkeypox out of all positives. Recall captures the 

model's ability to catch true Monkeypox cases with 

minimal false negatives. F1-Score as the harmonic mean 

of Precision and Recall captures symmetric performance 

at classification. When the metric values are equal across 

the two classes of diseases, the model is perfectly tuned 

without a strong bias toward one class or the other. This 

general good performance reflects the model's strength 

and its potential application in actual medical diagnosis for 

early detection and precise Monkeypox diagnosis. 

 

TABLE 1. OBTAINED SCORE OF THE THREE METRICS 

Metrics Monkeypox Non-Monkeypox 

Precision 0.98 0.96 

Recall 0.97 0.99 

F1-score 0.98 0.96 

 

TABLE 2. COMPARISON BETWEEN THE PROPOSED MODEL AND EXISTING MODELS. 

Model Accuracy Precision Recall F1-score 

 Existing Model 

Modified VGG19 93% 0.94 0.94 0.94 

Modified MobileNetV2  99% 0.98 0.99 0.99 

Proposed Model 

GAN with VGG19 97% 0.98 0.97 0.98 

The curve's graph presents a comparative analysis of 

model performance, with focus on the impact of GAN-

based augmentation on classification accuracy. The 

analysis is based on the models listed in Table 1, with their 

baseline models, i.e., Modified VGG19 and Modified 

MobileNetV2, achieved 93% and 99% accuracy, 
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respectively. The proposed model, which includes GAN 

and VGG19, achieved 97% accuracy. 

From the graph, we can observe that Modified 

MobileNetV2 possesses the highest accuracy among 

existing models, which serves as evidence of its strong 

feature extraction capability. However, it can be noted that 

the GAN model developed with VGG19 The model shows 

a significant improvement over Modified VGG19, which 

proves that GAN-based augmentation enhances the 

learning process by enhancing data generalization and 

feature diversity. 

The curve trend of the graph shows that while simple deep 

learning models perform sufficiently, introducing GAN-

synthesized synthetic data enhances feature representation 

and reduces overfitting and improves classification 

accuracy to the maximum. This enhancement renders the 

proposed GAN with VGG19 model a suitable alternative 

with robust generalization capacity for monkeypox 

detection. 

5. CONCLUSION 

The developed system for detecting monkeypox using 

images of skin lesion utilized advanced pre-trained 

models. There was also an explanation tool known as 

LIME that could show the important features in the 

images, such as lesion size and texture, which the model 

used in making its predictions. This method is light-weight 

and compatible with small datasets and therefore 

applicable to resource-restricted areas. However, 

challenges encountered in the work include having a small 

dataset, no clinical testing, and sometimes errors, when 

features of monkeypox were similar to other diseases, 

such as chickenpox Nonetheless, this work demonstrates 

that combining AI with explainable tools can produce the 

best and dependable healthcare solutions.  
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