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Abstract: Lymphomas exhibit considerable genomic complexity and variability, often resulting in differential responses to treatment 

and variable clinical outcomes. Mutational signatures—distinct patterns of somatic mutations caused by endogenous or exogenous 

processes—offer critical insights into the underlying mechanisms of lymphomagenesis. These signatures, derived from whole-genome 

or exome sequencing data, not only reflect the history of DNA damage and repair but also identify actionable pathways that may be 

amenable to targeted therapies. For instance, the presence of aberrant somatic hypermutation or activation-induced cytidine deaminase 

(AID)-related signatures is frequently observed in B-cell lymphomas and can influence response to immunochemotherapy or 

checkpoint inhibitors. Clonality assessments further enhance personalized medicine approaches by determining the evolutionary 

relationships and dominance hierarchies of tumor subclones. Understanding whether certain driver mutations are clonal (present in all 

tumor cells) or subclonal (restricted to subsets) can guide the selection and sequencing of targeted therapies. Clonal mutations in 

pathways such as B-cell receptor signaling, NF-κB, or JAK/STAT may predict robust responses to specific inhibitors, whereas 

subclonal alterations may require combination regimens or surveillance strategies. Integration of mutational signatures and clonal 

architecture is especially crucial for identifying early events in tumorigenesis versus late-arising resistance mutations. Advancements 

in high-throughput sequencing and computational modeling are enabling more precise reconstruction of lymphoma evolution and 

therapeutic vulnerabilities. Incorporating these molecular metrics into clinical decision-making may improve prognostication, reduce 

overtreatment, and enable dynamic adaptation of treatment regimens. This review highlights the synergistic utility of mutational 

signatures and clonality assessments in tailoring precision therapies and overcoming resistance in lymphoma care. 
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1. INTRODUCTION 
1.1 Background on Lymphomas and Clinical Challenges  

Lymphomas are a heterogeneous group of hematologic 

malignancies arising from the clonal proliferation of 

lymphocytes, primarily affecting lymph nodes and lymphoid 

tissues. They are broadly classified into Hodgkin lymphoma 

(HL) and non-Hodgkin lymphoma (NHL), each with multiple 

subtypes varying in cellular origin, molecular features, and 

clinical behavior. NHL comprises over 90% of cases and is 

further subdivided into B-cell, T-cell, and natural killer (NK) 

cell lymphomas [1]. Despite advances in diagnostic tools and 

targeted therapies, treatment outcomes remain suboptimal in 

several subtypes, particularly aggressive and relapsed forms. 

One of the major clinical challenges in lymphoma 

management lies in its biological complexity and variable 

response to treatment. For example, while some subtypes such 

as diffuse large B-cell lymphoma (DLBCL) respond favorably 

to immunochemotherapy, others like mantle cell lymphoma 

exhibit intrinsic resistance and high relapse rates [2]. 

Additionally, many patients present with advanced-stage 

disease, further complicating therapeutic strategies. Standard 

treatments, including R-CHOP and autologous stem cell 

transplantation, have improved survival but are not 

universally effective, especially in refractory disease [3]. 

Further complicating the landscape is the limited predictive 

power of conventional biomarkers. Histopathological 

evaluation and flow cytometry often fail to capture the full 

spectrum of molecular diversity within tumors [4]. In the era 

of precision medicine, this lack of granularity hinders the 

ability to stratify patients effectively and personalize 

treatments. Consequently, there is a pressing need for deeper 

molecular characterization to understand disease mechanisms 

and optimize therapeutic decisions. This necessity 

underscores the relevance of novel approaches that can dissect 

cellular-level variations and unveil hidden subpopulations 

driving progression and resistance [5]. Recognizing and 

targeting these underlying complexities could significantly 

enhance prognostication, therapy design, and ultimately, 

patient outcomes. 

1.2 Importance of Tumor Heterogeneity in Therapy 

Resistance  

Tumor heterogeneity refers to the existence of genetically, 

epigenetically, and phenotypically distinct subpopulations of 

cancer cells within a single tumor. In lymphomas, both 

interpatient and intratumoral heterogeneity are recognized as 

key factors influencing disease trajectory and treatment 

resistance. Interpatient heterogeneity accounts for variable 

clinical outcomes across individuals with the same 

histological subtype, while intratumoral heterogeneity 
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underlies differential responses within the same tumor 

microenvironment [6]. 

This heterogeneity poses a major obstacle to effective therapy, 

as minor subclones resistant to treatment can survive initial 

interventions and drive disease relapse. For instance, 

subclonal mutations in genes regulating B-cell receptor 

signaling or apoptosis can confer survival advantages, 

promoting therapeutic evasion [7]. Such dynamics are 

particularly problematic in aggressive lymphomas like 

DLBCL and follicular lymphoma, where resistant clones often 

emerge under therapeutic pressure, limiting long-term 

remission rates. 

The tumor microenvironment also contributes to 

heterogeneity by providing supportive niches for certain 

subpopulations. Interactions with immune cells, stromal 

elements, and cytokine gradients can induce adaptive 

phenotypes, allowing malignant cells to persist despite 

cytotoxic therapy [8]. These influences not only promote 

resistance but also complicate the development of universally 

effective treatment regimens. 

Moreover, conventional bulk sequencing approaches fail to 

resolve these intricate patterns, as they average signals across 

diverse cell populations. As a result, rare but clinically 

significant clones may remain undetected, delaying 

recognition of emerging resistance mechanisms [9]. 

Understanding and mapping this complexity are thus critical 

for developing adaptive treatment strategies. Targeting tumor 

heterogeneity could enable dynamic therapy adjustments that 

preempt resistance and improve survival. In recent years, the 

focus has shifted toward high-resolution tools that allow 

dissection of these subclonal structures and their evolutionary 

trajectories within the tumor ecosystem [10]. 

1.3 Emergence of Single-Cell Genomics in Cancer Biology  

Single-cell genomics has emerged as a transformative 

technology in cancer research, offering unprecedented 

resolution to study the cellular and molecular architecture of 

tumors. By enabling the analysis of DNA, RNA, and 

epigenetic modifications at the individual cell level, this 

approach overcomes the limitations of traditional bulk 

sequencing and reveals the full extent of tumor heterogeneity 

[11]. In lymphomas, where clonal evolution and dynamic 

microenvironmental interactions shape disease progression, 

single-cell profiling provides critical insights into lineage 

hierarchies, therapy-resistant clones, and functional diversity 

among malignant cells. 

Technological innovations such as single-cell RNA 

sequencing (scRNA-seq) and single-cell ATAC-seq now 

allow researchers to dissect gene expression patterns, 

chromatin accessibility, and mutational landscapes with 

exceptional granularity [12]. These methods have already 

uncovered distinct transcriptional states associated with 

resistance, immune evasion, and proliferation, even within 

immunophenotypically similar lymphoma cells. Furthermore, 

integrating multi-omics data at the single-cell level facilitates 

the identification of biomarkers predictive of therapy 

response, helping to stratify patients more accurately and 

personalize treatment plans [13]. 

Single-cell genomics thus represents a pivotal advancement in 

the era of precision oncology, particularly for lymphomas 

characterized by spatial, temporal, and functional diversity. It 

holds promise not only for better understanding disease 

biology but also for guiding the design of next-generation 

therapies [14]. 

 

A schematic summarizing lymphoma subclonal diversity, 

sampling approaches, and single-cell sequencing pipelines 

leading to data integration and therapeutic insights. 

2. UNDERSTANDING TUMOR 

HETEROGENEITY IN LYMPHOMAS  

2.1 Genetic and Epigenetic Diversity in Lymphoid Tumors  

Genetic and epigenetic heterogeneity forms the molecular 

basis of diverse clinical behaviors observed in lymphoid 

malignancies. Unlike solid tumors, lymphomas often 

demonstrate widespread dissemination at diagnosis, making it 

difficult to pinpoint a single dominant mutation or lesion. This 

is further complicated by branched evolutionary trajectories, 

where multiple subclones accumulate distinct genetic 

alterations over time [5]. Commonly mutated genes in 

lymphoid tumors include TP53, EZH2, MYD88, and BCL2, 

but the pattern and combinations vary significantly between 

patients and across timepoints. 
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Somatic hypermutation and class switch recombination—

processes intrinsic to normal B-cell development—introduce 

additional variability that can foster lymphomagenesis when 

deregulated [6]. These processes can result in a broad 

spectrum of mutations, some of which are drivers of 

malignant transformation, while others represent passenger 

events. Additionally, structural variants such as chromosomal 

translocations, notably t(14;18) in follicular lymphoma, 

further contribute to intertumoral genomic complexity [7]. 

In parallel, epigenetic alterations—heritable changes in gene 

expression that occur without changes to the DNA 

sequence—play an equally important role. Aberrant DNA 

methylation, histone modifications, and altered chromatin 

remodeling have been implicated in transcriptional 

reprogramming and lineage plasticity in lymphomas [8]. For 

example, mutations in epigenetic regulators such as CREBBP 

and KMT2D have been associated with immune evasion and 

therapy resistance in B-cell lymphomas. 

Importantly, genetic and epigenetic diversity is not merely a 

reflection of stochastic variation but often represents adaptive 

responses to environmental and therapeutic pressures [9]. 

Tumor cells may acquire or select for advantageous mutations 

that confer survival benefits under chemotherapy or 

immunotherapy. This dynamic process leads to clonal 

expansion of resistant populations, fueling relapse. 

Dissecting these molecular layers is crucial to understanding 

lymphoma pathogenesis, identifying biomarkers of response, 

and designing effective combination therapies. Recent 

integrative studies suggest that epigenetic reprogramming can 

precede genetic divergence, hinting at the primacy of 

regulatory plasticity in driving phenotypic diversity [10]. 

2.2 Functional and Phenotypic Intratumoral Diversity  

Beyond genotypic variability, lymphoid tumors exhibit 

remarkable functional and phenotypic heterogeneity at the 

cellular level. This refers to the coexistence of malignant cells 

with distinct proliferative capacities, survival pathways, and 

immunophenotypes within the same tumor mass. In diffuse 

large B-cell lymphoma (DLBCL), for instance, tumor cells 

may differ in B-cell receptor signaling intensity, metabolic 

profile, and response to microenvironmental stimuli, even 

when harboring similar genetic mutations [11]. 

This functional heterogeneity can be attributed in part to the 

hierarchical organization of malignant clones. Some 

subpopulations may behave like lymphoma-initiating cells 

with self-renewal and multilineage potential, whereas others 

display more differentiated phenotypes [12]. Moreover, 

varying expression of surface markers such as CD19, CD20, 

and CD38, along with intracellular signaling proteins like NF-

κB and BCL-6, further delineate discrete subclones with 

divergent behaviors [13]. 

A significant contributor to phenotypic diversity is the tumor 

microenvironment. Cytokines, stromal interactions, hypoxia, 

and immune infiltration create selective niches that support 

specific cellular states. For example, interactions with 

follicular dendritic cells in the lymph node may preserve a 

quiescent state in certain lymphoma clones, while others 

exposed to inflammatory cytokines may exhibit enhanced 

proliferation and resistance [14]. 

Single-cell RNA sequencing studies have confirmed that 

transcriptional states associated with stress responses, 

proliferation, or immune modulation often coexist within the 

same tumor sample. These states may be reversible, indicating 

that phenotype is not strictly determined by genotype but is 

shaped by dynamic microenvironmental feedback [15]. Such 

plasticity poses significant challenges for therapeutic 

targeting, as interventions directed at a dominant clone may 

fail to eliminate less abundant, yet therapy-resistant, 

subclones. 

Furthermore, therapy-induced reprogramming can alter the 

phenotypic landscape of tumors. Exposure to 

chemotherapeutic agents may not only select for pre-existing 

resistant clones but also induce dedifferentiation or 

phenotypic switching, giving rise to new cellular states [16]. 

As a result, tumors evolve into a more heterogeneous and 

therapy-refractory state following treatment. 

Understanding the functional spectrum of lymphoma cells at 

diagnosis and during therapy is critical for identifying robust 

therapeutic targets. It also underscores the need for adaptive 

treatment strategies capable of addressing cellular diversity, 

minimizing clonal escape, and preventing disease recurrence 

[17]. 

2.3 Limitations of Bulk Sequencing in Capturing 

Heterogeneity  

Conventional bulk sequencing has played a vital role in 

cataloging mutations and gene expression profiles in 

lymphomas. However, its inherent averaging effect across cell 

populations masks intratumoral heterogeneity, providing only 

a snapshot of dominant clones. This limits the capacity to 

identify rare but clinically significant subpopulations that may 

contribute to disease progression or therapy resistance [18]. 

In lymphoid malignancies characterized by cellular diversity 

and dynamic clonal evolution, the inability to resolve 

subclonal architecture restricts the interpretation of genomic 

data. For instance, two subclones with opposing 

transcriptional signatures may cancel each other’s signal in 

bulk RNA sequencing, leading to misleading conclusions 

regarding gene expression patterns [19]. Additionally, 

temporal sampling—especially post-treatment—may not 

capture the emergence of new or minor resistant populations 

that drive relapse. 

Bulk sequencing also falls short in assessing clonal dynamics 

in the tumor microenvironment. Immune cells, stromal 

components, and malignant cells are often intermingled in 

biopsy specimens, and bulk analyses cannot reliably 
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distinguish their contributions [20]. Even with computational 

deconvolution, these approaches lack the precision and 

resolution offered by single-cell platforms. 

Another drawback is the inability to detect cell-state 

transitions or lineage plasticity, which are critical to 

understanding phenotypic switching and treatment adaptation. 

By contrast, single-cell technologies enable direct observation 

of such processes, allowing more accurate modeling of 

disease trajectories [21]. 

While bulk sequencing remains a valuable tool for identifying 

shared mutations, its limitations necessitate complementary 

strategies like single-cell genomics to fully capture the 

complexity of lymphoid tumors [22]. 

2.4 Clinical Impact of Undetected Clonal Subpopulations  

Undetected clonal subpopulations pose a significant clinical 

threat in lymphoma management. These minor clones may 

harbor mutations or epigenetic profiles that confer resistance 

to frontline therapies, allowing them to survive initial 

treatment and drive relapse. Because they are often below the 

detection threshold of bulk sequencing, clinicians may 

underestimate the risk of disease progression [23]. 

In DLBCL and other aggressive lymphomas, resistant 

subclones have been shown to expand under therapeutic 

pressure, replacing the dominant clone at relapse. This clonal 

evolution can result in altered phenotypes that no longer 

respond to previously effective treatments, necessitating 

second-line strategies with diminished efficacy [24]. 

Moreover, these subpopulations can modulate the immune 

microenvironment, suppressing cytotoxic responses and 

fostering immune escape. For example, minor clones may 

upregulate immune checkpoint molecules like PD-L1, 

reducing T-cell-mediated clearance [25]. 

Early detection of these subpopulations could allow clinicians 

to implement preemptive interventions or design combination 

therapies that target both dominant and minor clones. Without 

such insights, treatment remains reactive rather than 

proactive, contributing to poorer long-term outcomes. As 

precision oncology advances, integrating high-resolution tools 

capable of capturing clonal complexity at diagnosis and 

during follow-up will be pivotal for improving patient 

stratification and therapeutic success [26]. 

Table 1. Comparative Features of Bulk vs. Single-Cell 

Sequencing in Lymphoma Studies 

Feature Bulk Sequencing 
Single-Cell 

Sequencing 

Resolution 
Population-

averaged 

Individual cell-

level 

Feature Bulk Sequencing 
Single-Cell 

Sequencing 

Detection of rare 

clones 
Limited High 

Cell-state transition 

analysis 
Not possible Possible 

Immune and stromal 

deconvolution 

Requires 

computational 

modeling 

Direct 

measurement 

Clonal evolution 

tracking 
Indirect 

High-resolution 

lineage tracing 

Cost and 

computational 

complexity 

Lower Higher 

Clinical 

applicability 

(current state) 

Widely used 
Emerging but 

rapidly growing 

 

3. SINGLE-CELL GENOMICS 

TECHNOLOGIES: TOOLS AND 

METHODOLOGIES 

3.1 Single-Cell RNA Sequencing (scRNA-seq)  

Single-cell RNA sequencing (scRNA-seq) has emerged as a 

pivotal technology in cancer biology, enabling researchers to 

profile the transcriptomes of individual cells and resolve the 

heterogeneity masked by bulk approaches. In lymphomas, 

where malignant clones are interspersed with non-malignant 

immune and stromal cells, scRNA-seq allows precise 

identification and functional characterization of distinct 

cellular populations [11]. 

The process begins with dissociation of tumor tissue into 

single-cell suspensions, followed by isolation and barcoding 

of individual cells. Reverse transcription and amplification 

steps convert cellular mRNA into cDNA, which is then 

sequenced to generate transcriptomic data for each cell [12]. 

The resulting datasets contain gene expression matrices with 

thousands of features per cell, which can be analyzed to infer 

cellular states, lineage relationships, and transcriptional 

programs. 

One of the most powerful applications of scRNA-seq in 

lymphoma is its ability to detect rare subpopulations that may 

evade conventional therapies. For instance, studies have 

uncovered transcriptionally quiescent clones that resist 

chemotherapy and later drive relapse [13]. Additionally, 
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immune landscape profiling has revealed diverse populations 

of T cells, macrophages, and natural killer cells within tumor 

samples, offering insights into immune evasion and 

checkpoint inhibitor responsiveness [14]. 

Unlike bulk RNA sequencing, scRNA-seq enables 

reconstruction of gene expression trajectories using 

pseudotime analysis, which models the progression of cellular 

differentiation or reprogramming. This is particularly relevant 

in lymphomas with plastic cellular phenotypes, such as those 

undergoing transformation from indolent to aggressive states 

[15]. 

Moreover, integration of scRNA-seq with T-cell receptor 

(TCR) or B-cell receptor (BCR) sequencing allows clonotype 

tracking and functional mapping of lymphocyte subsets. 

These combined modalities provide a comprehensive picture 

of tumor-immune dynamics in the lymphoma 

microenvironment [16]. 

Despite its transformative potential, scRNA-seq is not without 

limitations. High dropout rates, technical noise, and batch 

effects can confound data interpretation. Nevertheless, 

ongoing advancements in library preparation, computational 

pipelines, and normalization methods continue to enhance 

data quality and analytical resolution [17]. As scRNA-seq 

becomes more accessible, its integration into clinical 

workflows may refine patient stratification, therapy selection, 

and minimal residual disease monitoring in lymphomas. 

3.2 Single-Cell ATAC-seq and Epigenomic Profiling  

While scRNA-seq captures gene expression patterns, it does 

not directly reflect regulatory mechanisms controlling 

transcription. To bridge this gap, single-cell Assay for 

Transposase-Accessible Chromatin using sequencing 

(scATAC-seq) has been developed to map chromatin 

accessibility at single-cell resolution. This technique provides 

insights into the epigenetic landscape and regulatory elements 

that drive cell identity and state transitions in lymphomas 

[18]. 

scATAC-seq works by using a hyperactive Tn5 transposase to 

insert sequencing adapters into open chromatin regions. These 

accessible regions, often corresponding to promoters, 

enhancers, and transcription factor binding sites, are 

sequenced to generate cell-by-region matrices [19]. This data 

can be used to identify regulatory programs specific to 

malignant subclones or immune infiltrates. 

In lymphomas, scATAC-seq has helped delineate differences 

in chromatin accessibility across malignant and non-malignant 

B cells, revealing subtype-specific regulatory signatures and 

enhancer usage. For example, distinct accessibility profiles in 

germinal center-derived versus activated B-cell-like DLBCLs 

suggest divergent epigenetic regulation [20]. Moreover, 

integration of scATAC-seq with scRNA-seq has allowed 

simultaneous assessment of transcriptional and regulatory 

heterogeneity within the same tumor ecosystem [21]. 

Beyond tumor profiling, scATAC-seq offers potential for 

understanding resistance mechanisms. Epigenetic changes 

may precede transcriptional reprogramming, positioning 

chromatin accessibility as an early indicator of therapeutic 

adaptation. This epigenomic insight is particularly valuable in 

cases where genetic mutations are absent, but phenotypic 

plasticity persists [22]. 

Despite its advantages, scATAC-seq faces technical 

challenges such as low signal-to-noise ratios and sparsity of 

data, making interpretation complex. However, novel 

computational tools for peak calling, motif analysis, and 

trajectory reconstruction are rapidly evolving, enhancing its 

utility in dissecting lymphoma biology [23]. 

3.3 Multi-omics Integration at the Single-Cell Level  

To fully understand the multifaceted nature of lymphoid 

tumors, integrating multiple layers of single-cell data—such 

as transcriptomics, epigenomics, and proteomics—is essential. 

Multi-omics single-cell platforms now enable simultaneous 

capture of different molecular modalities from the same cell, 

offering an unparalleled view of tumor heterogeneity and 

clonal architecture [24]. 

Approaches such as SHARE-seq, Paired-seq, and SNARE-seq 

combine scRNA-seq with scATAC-seq, allowing researchers 

to link chromatin accessibility to gene expression in 

individual cells. These integrative technologies have been 

instrumental in identifying regulatory networks driving 

malignant transformation, immune evasion, and therapy 

resistance in lymphoma subtypes [25]. By overlaying 

transcriptional programs with cis-regulatory landscapes, 

researchers can pinpoint master regulators and candidate 

therapeutic targets unique to specific subclones. 

Moreover, the integration of single-cell proteomics—using 

methods like CITE-seq or REAP-seq—adds another layer of 

granularity. These approaches pair surface protein 

quantification with RNA profiles, enabling refined cellular 

annotation and lineage tracing, particularly in phenotypically 

plastic tumors [26]. For instance, CITE-seq has revealed 

immunophenotypic transitions in DLBCL subclones 

following chemotherapy, offering insight into tumor 

adaptation and immune escape mechanisms. 

One critical benefit of single-cell multi-omics is its ability to 

resolve ambiguous cell states that cannot be fully 

characterized using transcriptomic data alone. 

Transcriptionally similar cells may differ epigenetically or 

proteomically, influencing their behavior and therapeutic 

response [27]. 

However, multi-omics datasets pose significant analytical 

challenges, including high dimensionality, integration bias, 

and increased computational demands. New algorithms based 

on canonical correlation analysis, mutual nearest neighbors, 

and deep learning are now being developed to address these 
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complexities and enable robust biological inference from 

high-throughput single-cell studies [28]. 

 

Figure 2 Multi-Omics Integration in Lymphomas 

3.4 Challenges in Single-Cell Data Processing and Analysis  

Despite the transformative capabilities of single-cell 

technologies, data processing and interpretation remain 

challenging. One of the foremost issues is technical noise, 

which arises from low input material, amplification bias, and 

dropout events. These factors result in sparsity—where a large 

fraction of gene expression values are zero—and can obscure 

meaningful biological signals if not properly corrected [29]. 

Batch effects represent another major obstacle. Differences in 

sample processing times, reagent lots, or sequencing runs can 

introduce artificial variation. Without proper normalization, 

these artifacts may be misinterpreted as biological differences. 

Several batch correction algorithms, such as Harmony, 

ComBat, and Seurat’s integration pipeline, have been 

developed to address this issue, but each comes with trade-

offs in sensitivity and interpretability [30]. 

Cell-type annotation in complex tissues like lymphomas is 

also non-trivial. Automated clustering methods such as 

Louvain or Leiden can group cells based on transcriptomic 

similarity, but the resulting clusters often require expert 

curation and validation using known markers. 

Misclassification is especially problematic in tumors with 

high plasticity or transitional cell states [31]. 

Computational scalability is a further limitation, particularly 

for multi-omics datasets. Analyzing hundreds of thousands of 

cells with integrated modalities demands substantial 

processing power, memory, and time. Cloud-based solutions 

and GPU-accelerated frameworks are increasingly adopted, 

but accessibility remains uneven across research institutions 

[32]. 

Finally, interpretation of biological relevance from data-

driven clusters or trajectories can be challenging. Many 

analytical pipelines yield results that are statistically robust 

but biologically ambiguous without validation. Integration 

with external datasets, such as reference atlases or patient 

outcomes, is often necessary to derive actionable insights 

[33]. 

Addressing these challenges will require a combination of 

methodological improvements, cross-disciplinary 

collaboration, and community-driven standards for 

benchmarking, validation, and data sharing in single-cell 

lymphoma research. 

 

Figure 3 Schematic of scRNA-seq and single-cell ATAC-seq 

analysis pipelines 

A flow diagram showing parallel tissue dissociation, single-

cell capture, barcoding, sequencing, preprocessing, clustering, 

and downstream biological interpretation steps. 

4. INSIGHTS GAINED FROM SINGLE-

CELL ANALYSES IN LYMPHOMAS  

4.1 Identification of Rare Clonal Subtypes Driving Relapse  

Relapse in lymphoma is frequently attributed to minor clonal 

populations that survive frontline therapy and expand under 

selective pressure. These rare subtypes often exhibit distinct 

genomic, transcriptomic, or epigenomic features that confer 
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intrinsic resistance. Single-cell technologies have proven 

invaluable for detecting such clones, which are typically 

masked in bulk analyses due to their low abundance [15]. 

Studies using scRNA-seq in relapsed diffuse large B-cell 

lymphoma (DLBCL) have revealed small populations with 

stem-like characteristics, including quiescence and drug efflux 

capacity, which persist after chemotherapy [16]. These cells 

often lack conventional biomarkers and are transcriptionally 

distinct, displaying elevated expression of stress response and 

DNA repair genes. Such features enable survival under 

cytotoxic conditions, making them likely initiators of relapse. 

Additionally, rare subclones may harbor specific genetic 

mutations or epigenetic marks that provide survival 

advantages. For instance, scATAC-seq profiling has 

uncovered enhancer reprogramming in minor clones resistant 

to BCL2 inhibitors in follicular lymphoma, suggesting early 

chromatin remodeling events as resistance drivers [17]. These 

resistant populations frequently occupy unique niches within 

the tumor microenvironment, where interactions with stromal 

cells or immune regulators further support their persistence. 

The ability to track clonal hierarchies at single-cell resolution 

has revealed that relapse is not necessarily driven by the 

dominant diagnostic clone but often by a previously 

undetected minor lineage [18]. This finding underscores the 

importance of preemptive identification and therapeutic 

targeting of rare malignant populations at diagnosis or during 

minimal residual disease monitoring. 

Moreover, combining single-cell transcriptomics with lineage 

tracing and mutational profiling allows for temporal tracking 

of subclonal behavior from diagnosis through relapse [19]. 

Such integrative approaches have led to the discovery of 

transitional clones that initially appear benign but later acquire 

aggressive features. 

Understanding the biology of these rare subtypes can inform 

adaptive treatment strategies that eliminate potential sources 

of recurrence. Future clinical implementation may include 

real-time single-cell surveillance to detect emerging resistant 

clones and guide treatment intensification or modification 

before overt relapse occurs [20]. 

4.2 Mapping Tumor Evolutionary Trajectories and Clonal 

Dynamics  

Tumor evolution in lymphomas follows non-linear and often 

branched patterns, driven by the accumulation of genetic, 

epigenetic, and environmental changes. Single-cell 

technologies offer a powerful lens for reconstructing these 

evolutionary trajectories by capturing the temporal and spatial 

heterogeneity within malignant populations [21]. 

Using scRNA-seq and scATAC-seq, researchers can infer 

pseudotime trajectories that model transitions from early to 

advanced cellular states. In mantle cell lymphoma, for 

example, such analyses have revealed progression from 

proliferative to immune-evading subpopulations, with 

transcriptional programs reflecting increasing therapy 

resistance over time [22]. These models provide insight into 

the sequence of regulatory events underlying clonal expansion 

and transformation. 

Phylogenetic reconstructions based on mutational data from 

single-cell DNA sequencing also allow for mapping of clonal 

lineages. These trees often demonstrate early diversification 

and parallel evolution, challenging the notion of linear disease 

progression [23]. Importantly, some subclones undergo 

convergent evolution, independently acquiring similar 

resistance-conferring features, which emphasizes the 

importance of understanding clonal fitness landscapes. 

Longitudinal sampling in patients has shown that treatment 

pressures reshape clonal composition. In follicular lymphoma, 

chemotherapy induces selective bottlenecks where only 

specific clones survive and dominate the post-treatment 

population [24]. Such bottlenecks can obscure the presence of 

minor, therapy-adapted subclones that re-emerge at relapse. 

Single-cell lineage tracing tools, including mitochondrial 

barcode tracking and CRISPR-based fate mapping, have 

added further resolution to dynamic clonal studies [25]. These 

tools enable visualization of cell fate decisions, lineage 

plasticity, and the influence of microenvironmental cues on 

clonal behavior. 

Moreover, spatially resolved single-cell approaches, such as 

spatial transcriptomics and multiplexed immunofluorescence, 

allow for mapping of clonal architecture across tissue 

compartments. These methods have revealed regional 

heterogeneity within lymph nodes, where aggressive clones 

preferentially localize to hypoxic or immune-privileged niches 

[26]. 

Ultimately, understanding the evolutionary dynamics of 

lymphoma at the single-cell level will improve 

prognostication and therapeutic planning. Predicting which 

clones are likely to dominate or evolve under specific 

treatments can enable precision intervention strategies, 

preventing disease progression through proactive targeting of 

high-risk trajectories [27]. 
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Figure 4 Tumor Evolution 

4.3 Decoding the Tumor Microenvironment Interactions  

The tumor microenvironment (TME) in lymphomas is a 

complex ecosystem comprising T cells, macrophages, stromal 

fibroblasts, dendritic cells, and extracellular matrix 

components. These non-malignant cells dynamically interact 

with malignant clones, shaping disease behavior, immune 

evasion, and therapeutic response. Single-cell profiling has 

revolutionized our understanding of these interactions by 

deconvoluting the cellular diversity and functional states 

within the TME [28]. 

scRNA-seq has uncovered discrete immune cell subsets 

within lymphoma tissues, including exhausted cytotoxic T 

cells, immunosuppressive regulatory T cells (Tregs), and 

tumor-associated macrophages with M2-like phenotypes [29]. 

These populations often localize in close proximity to 

malignant cells and contribute to immune tolerance through 

cytokine secretion, checkpoint expression, or antigen 

presentation deficits. 

Moreover, malignant lymphoma cells themselves can 

modulate the TME by expressing chemokines and ligands that 

recruit suppressive cells or inhibit effector cell function. For 

instance, upregulation of PD-L1 and HLA-G in certain 

subclones correlates with T cell exclusion and poor prognosis 

[30]. 

Single-cell analyses have also shown that stromal cells within 

the TME are not passive scaffolds but actively support 

lymphoma survival through integrin-mediated signaling, 

angiogenic factor secretion, and metabolic cooperation. These 

interactions create protective niches that shield malignant 

cells from therapeutic insult [31]. 

Spatial single-cell methods, such as imaging mass cytometry 

and spatial transcriptomics, have further confirmed that 

cellular organization within the TME is non-random and 

functionally relevant. Certain immune-evading clusters are 

preferentially located at tumor-stroma boundaries, suggesting 

spatial coordination of resistance mechanisms [32]. 

Understanding the crosstalk between lymphoma cells and 

their microenvironment at high resolution offers opportunities 

for combinatorial therapies. Disrupting supportive interactions 

or reprogramming suppressive immune subsets could restore 

anti-tumor immunity and sensitize tumors to standard 

treatments [33]. 

4.4 Predictive Biomarkers for Immunotherapy and 

Chemoresistance  

The heterogeneity of lymphomas complicates the 

identification of robust biomarkers predictive of treatment 

response. Single-cell technologies, by resolving functional 

states and molecular signatures at high resolution, offer a new 

paradigm for biomarker discovery in both immunotherapy and 

chemotherapy contexts [34]. 

In the immunotherapy space, scRNA-seq has enabled 

profiling of exhausted versus active T-cell states within 

tumors. Expression of exhaustion markers such as PD-1, 

LAG-3, and TIM-3 correlates with poor responsiveness to 

checkpoint inhibitors. However, these markers are 

heterogeneously expressed and may coexist with proliferative 

or memory signatures, necessitating nuanced interpretation 

[35]. 

Additionally, malignant subclones exhibiting high expression 

of immune checkpoint ligands (e.g., PD-L1, CD47) have been 

associated with immunotherapy resistance. Single-cell 

profiling allows for simultaneous evaluation of both immune 

and tumor compartments, offering a holistic view of immune 

escape mechanisms [36]. This dual profiling may guide 

selection of patients likely to benefit from immune-based 

therapies. 

In chemotherapy, certain transcriptional programs detected by 

scRNA-seq—including those governing cell cycle arrest, 

DNA repair, and oxidative stress responses—have been linked 

to resistance. These programs often emerge in rare 

subpopulations that expand post-treatment [37]. For example, 

resistance to R-CHOP has been associated with enrichment of 

NF-κB-driven transcriptional states and metabolic 

reprogramming in relapsed DLBCL cases. 

Moreover, epigenomic profiling via scATAC-seq can identify 

accessible chromatin regions associated with drug resistance, 

including enhancers of anti-apoptotic genes or transporters. 

These findings offer potential biomarkers that are not apparent 

at the mRNA level [38]. 

Incorporating these single-cell biomarkers into clinical 

practice could enable stratified therapy, real-time monitoring, 

and dynamic treatment adjustments. As validation studies 
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expand, such approaches may redefine predictive modeling in 

lymphoma care, reducing overtreatment and improving 

therapeutic outcomes [39]. 

Table 2. Single-cell studies in major lymphoma subtypes 

and their key findings 

Lymphoma 

Subtype 
Technology Used Key Findings 

DLBCL scRNA-seq 
Identification of stem-like 

resistant subclones [16] 

Follicular 

Lymphoma 
scATAC-seq 

Enhancer reprogramming 

linked to BCL2 inhibitor 

resistance [17] 

Mantle Cell 

Lymphoma 

Multi-omics 

(scRNA + ATAC) 

Evolution from 

proliferative to immune-

evading states [22] 

T-cell 

Lymphomas 
CITE-seq 

Immune checkpoint 

profiling of T-cell 

phenotypes [35] 

Hodgkin 

Lymphoma 

Spatial 

Transcriptomics 

Localization of immune 

suppressive niches at 

tumor-stroma boundaries 

[32] 

 

 

Figure 5 UMAP or t-SNE plot of lymphoma single-cell 

clusters with annotated subtypes 

A visualization displaying discrete clusters of malignant and 

non-malignant cells in a lymphoma tissue sample, annotated 

with B-cell subtypes, immune infiltrates, and therapy-resistant 

clones. 

5. PREDICTING AND MONITORING 

THERAPEUTIC RESISTANCE  

5.1 Resistance Mechanisms in Hodgkin and Non-Hodgkin 

Lymphomas  

Therapeutic resistance remains a significant barrier in the 

treatment of both Hodgkin lymphoma (HL) and non-Hodgkin 

lymphoma (NHL), often leading to relapse and poor long-

term survival. While initial response rates can be high, 

particularly with combination regimens like ABVD or R-

CHOP, a subset of patients develops resistance that is poorly 

understood using conventional diagnostic tools [19]. Single-

cell studies have begun to elucidate the underlying 

mechanisms contributing to this resistance by capturing 

functional and molecular heterogeneity at unprecedented 

resolution. 

In Hodgkin lymphoma, a distinguishing feature is the scarcity 

of malignant Reed-Sternberg cells amidst a rich inflammatory 

milieu. These tumor cells frequently express PD-L1 and other 

immune checkpoint ligands, allowing them to evade immune 

surveillance [20]. scRNA-seq has revealed that these cells 

exhibit high plasticity and upregulation of stress-response 

pathways that may contribute to their resilience under 

cytotoxic stress [21]. Moreover, changes in their interaction 

with surrounding immune cells have been shown to dampen 

cytotoxic T-cell activity and promote immune tolerance. 

In contrast, NHL encompasses a more diverse set of diseases 

with distinct resistance profiles. In DLBCL, resistant clones 

often emerge through activation of NF-κB signaling, B-cell 

receptor (BCR) pathway amplification, and upregulation of 

anti-apoptotic genes such as BCL2 and MCL1 [22]. These 

features may preexist in minor subclones or be acquired 

following treatment exposure. Additionally, epigenetic 

remodeling—particularly involving enhancer 

reprogramming—has been linked to lineage plasticity and 

drug escape in follicular and mantle cell lymphomas [23]. 

Resistance can also be microenvironmentally driven. Tumor-

associated macrophages and stromal cells have been shown to 

secrete cytokines like IL-6 and TNF-α, promoting survival 

pathways in malignant cells even during therapy [24]. This 

paracrine support complicates therapeutic targeting and 

highlights the need for strategies that disrupt cellular 

crosstalk. 

Collectively, these insights underscore the multifactorial 

nature of resistance in lymphomas. A deeper understanding 

through single-cell technologies may guide the development 

of rational combination therapies capable of overcoming both 

cell-intrinsic and microenvironmental resistance mechanisms 

[25]. 
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5.2 Single-Cell Tracing of Resistant Cell States During 

Treatment  

Single-cell sequencing technologies have enabled dynamic 

tracing of resistant cell states as they emerge during therapy. 

Unlike bulk analyses, which provide only an averaged 

snapshot, single-cell resolution captures the diversity of 

transcriptional and regulatory responses within heterogeneous 

tumors. This granularity is particularly valuable for 

understanding how therapy reshapes clonal architecture and 

promotes resistant phenotypes [26]. 

In DLBCL, longitudinal scRNA-seq profiling has shown that 

chemotherapy induces shifts in cellular composition, favoring 

the expansion of stress-tolerant and quiescent populations 

[27]. These surviving cells often display high expression of 

antioxidant genes, unfolded protein response (UPR) elements, 

and chromatin remodelers. Such features not only promote 

survival under oxidative or genotoxic stress but may also 

enable reactivation and proliferation after treatment cessation. 

Some studies have combined scRNA-seq with mitochondrial 

mutation mapping to trace cell lineages across treatment 

timepoints. This integration has demonstrated that resistant 

clones can either preexist as minor subpopulations or arise de 

novo through transcriptional reprogramming [28]. Notably, 

resistant cells often show reduced antigen presentation and 

immune checkpoint engagement, facilitating immune escape 

even under immunotherapy. 

In Hodgkin lymphoma, where the tumor mass is largely 

composed of reactive immune cells, single-cell tracking has 

revealed dynamic remodeling of the immune compartment in 

response to checkpoint inhibitors. A shift from cytotoxic to 

exhausted T-cell phenotypes occurs over treatment cycles, 

corresponding with diminishing therapeutic efficacy [29]. 

Simultaneously, malignant Reed-Sternberg cells adopt 

transcriptional programs enriched in JAK-STAT signaling, 

contributing to immune resistance and cell survival. 

Advanced pseudotime and RNA velocity analyses have 

further elucidated the trajectory of resistant cell development. 

In some lymphomas, malignant cells follow bifurcating 

pathways—one leading to apoptosis and clearance, and the 

other toward quiescence and adaptation [30]. This dichotomy 

helps explain mixed responses observed clinically and 

highlights the importance of capturing early divergence 

events. 

These insights open opportunities for therapeutic intervention 

before full resistance develops. For instance, targeting stress-

adaptive pathways or re-sensitizing quiescent clones through 

epigenetic drugs may prevent clonal expansion. The use of 

single-cell tracing in real-time, especially during induction 

and consolidation phases, could revolutionize resistance 

prediction and guide timely treatment adjustments [31]. 

 

5.3 Longitudinal Single-Cell Profiling for Early Detection 

of Resistance  

Early detection of treatment resistance is crucial for 

preventing disease progression and optimizing therapeutic 

strategies. Longitudinal single-cell profiling offers a unique 

window into evolving tumor ecosystems, allowing the 

identification of early resistance markers long before clinical 

relapse becomes evident [32]. 

By sampling peripheral blood, bone marrow, or lymph node 

tissue at multiple treatment stages, clinicians can observe 

changes in clonal composition and transcriptional states at 

high resolution. This approach has revealed early expansions 

of subpopulations characterized by stress-response genes, 

apoptotic suppression, and immune evasion markers [33]. 

These features often precede measurable changes in tumor 

size or biomarkers and can serve as early indicators of 

therapeutic failure. 

For example, in patients treated with CAR-T therapy, scRNA-

seq of circulating tumor cells identified transcriptionally 

distinct relapse-initiating clones that emerged during the 

initial response phase. These clones exhibited altered surface 

antigen expression and reduced interferon signaling, 

predicting treatment escape weeks before radiological relapse 

[34]. 

Moreover, integration of longitudinal single-cell data with 

machine learning classifiers has improved prediction accuracy 

for relapse risk and resistance trajectories. These predictive 

models can inform dynamic risk stratification, allowing for 

earlier therapeutic escalation or modification in high-risk 

patients [35]. 

Importantly, the use of minimally invasive sampling 

techniques, such as liquid biopsies coupled with scRNA-seq, 

is expanding the feasibility of serial monitoring in clinical 

settings. As technical and computational methods evolve, 

longitudinal single-cell profiling may become a cornerstone of 

personalized lymphoma care, enabling preemptive responses 

to emerging resistance. 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 14–Issue 06, 19 – 37, 2025, ISSN:-2319–8656 

DOI:10.7753/IJCATR1406.1002 

www.ijcat.com  29 

 

Figure 6 Predictive Modeling 

5.4 Implications for Adaptive Therapy Design  

The insights gained from single-cell profiling of lymphoma 

resistance have profound implications for the development of 

adaptive therapy frameworks. Traditional therapeutic 

regimens are largely static, assuming uniform tumor response 

and fixed clonal landscapes. However, resistance frequently 

emerges due to dynamic clonal adaptation and selection 

pressures exerted by treatment [36]. 

Adaptive therapy aims to modulate treatment based on real-

time monitoring of tumor evolution, with the goal of 

maintaining disease control while minimizing resistance 

emergence. Single-cell technologies enable high-resolution 

tracking of subclonal shifts, allowing clinicians to detect the 

early rise of resistant phenotypes and adjust therapy 

accordingly [37]. 

For instance, detecting the enrichment of quiescent or stress-

adapted clones may prompt the addition of differentiation 

agents or metabolic inhibitors. Similarly, the emergence of 

immune-evasive subclones might trigger the initiation of 

checkpoint blockade or cytokine modulation. These 

interventions, guided by single-cell insights, can suppress 

clonal dominance and prolong therapeutic efficacy. 

Furthermore, temporal de-escalation of therapy based on 

reduced clonal diversity could reduce toxicity without 

compromising disease control. As longitudinal single-cell 

profiling becomes more integrated into clinical decision-

making, adaptive therapy designs are likely to replace rigid 

protocols, offering more personalized and evolution-informed 

lymphoma treatment paradigms [38]. 

 

Figure 7 Longitudinal single-cell sampling and resistance 

progression in treated lymphoma patients 

A conceptual timeline diagram showing serial biopsies across 

treatment cycles with UMAP clusters revealing emergence 

and expansion of resistant subclones over time, supported by 

transcriptional and epigenomic trajectory mapping. 

6. COMPUTATIONAL FRAMEWORKS 

AND AI IN SINGLE-CELL DATA 

INTERPRETATION  

6.1 Machine Learning in Dimensionality Reduction and 

Cell Type Annotation  

Single-cell datasets are inherently high-dimensional, 

consisting of thousands of features across tens of thousands of 

cells. Machine learning techniques, particularly for 

dimensionality reduction and cell type annotation, are critical 

in making these datasets interpretable. Traditional methods 

like Principal Component Analysis (PCA) and t-Distributed 

Stochastic Neighbor Embedding (t-SNE) have been widely 

used to project high-dimensional data into lower-dimensional 

spaces for visualization and clustering [24]. 

More recently, Uniform Manifold Approximation and 

Projection (UMAP) has become the preferred method for 

capturing the global structure of data while preserving local 

relationships. UMAP provides faster computation and better 

preservation of continuum relationships between cell states 

compared to t-SNE [25]. These projections help uncover 

cellular hierarchies and subtle phenotypic transitions in 

lymphoma tissues, including identification of precursor or 

transitional states not evident through supervised analysis. 
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Deep learning models, such as autoencoders and variational 

autoencoders (VAEs), are now being used to enhance feature 

extraction from noisy, sparse single-cell data. These models 

can denoise and compress data without losing biologically 

relevant information, enabling more accurate downstream 

analyses [26]. Convolutional neural networks (CNNs) and 

graph neural networks (GNNs) have also shown promise in 

mapping spatial transcriptomic data for cell-type inference in 

tissue architecture contexts. 

For automated annotation, supervised machine learning 

classifiers like support vector machines (SVM), random 

forests, and ensemble models have been employed to assign 

cell identities based on labeled training data [27]. These tools 

can rapidly classify thousands of cells, reducing manual 

curation and improving reproducibility. Tools like SingleR 

and Garnett are widely adopted in the single-cell community 

for reference-based annotation. 

Machine learning continues to play a central role in 

transforming high-throughput single-cell data into actionable 

insights. As algorithmic sophistication grows, these methods 

will become even more integral to real-time clinical 

diagnostics and cellular taxonomy in lymphomas [28]. 

6.2 Clonal Inference Algorithms for Lymphoma Evolution 

Studies  

Clonal inference is a foundational task in single-cell analysis, 

particularly in lymphomas, where the understanding of 

subclonal dynamics directly informs therapeutic decisions. 

Reconstructing the evolutionary history of tumors requires 

distinguishing between genetically or epigenetically related 

cell populations and modeling their divergence over time. 

Computational algorithms have been developed to infer clonal 

structure from various single-cell modalities, including DNA, 

RNA, and chromatin data [29]. 

Phylogenetic approaches, such as SCITE (Single Cell 

Inference of Tumor Evolution) and PhISCS, use mutational 

data from single-cell DNA sequencing to reconstruct lineage 

trees by mapping shared and private mutations [30]. These 

methods help visualize clonal hierarchies and estimate the 

order of mutation acquisition. In lymphomas, this has been 

particularly useful in understanding treatment-induced 

bottlenecks and relapse initiation points. 

For transcriptomic data, algorithms like Monocle, Slingshot, 

and PAGA infer pseudotemporal trajectories that represent 

differentiation paths or phenotypic transitions. These 

trajectories often reflect clonal evolution in the absence of 

direct mutation data and have been used to track the 

emergence of resistant states in follicular and DLBCL 

subtypes [31]. 

Integrated tools such as CloneAlign and Cardelino bridge 

transcriptomic and genotypic data to assign cells to specific 

clones while accounting for technical noise. These tools have 

enabled researchers to associate gene expression programs 

with specific subclonal identities, enhancing the biological 

interpretability of resistance mechanisms [32]. 

When applied to scATAC-seq, tools like ArchR and cisTopic 

enable clustering of chromatin accessibility profiles and 

identification of regulatory divergence between clones. These 

methods capture enhancer dynamics and transcription factor 

activity that often precede phenotypic shifts. 

As single-cell technologies generate increasingly multimodal 

datasets, clonal inference algorithms are evolving to support 

multi-omics integration. This allows for simultaneous tracking 

of genomic, transcriptomic, and epigenomic evolution—

offering a holistic view of lymphoma progression [33]. 

 

Figure 8 Clonal Inference Algorithms 

6.3 Predictive Modeling of Treatment Response from 

Single-Cell Profiles  

Predicting treatment response remains one of the most 

clinically impactful goals of single-cell analytics. Machine 

learning models trained on single-cell transcriptomic and 

epigenomic profiles have shown growing potential in 

forecasting therapeutic outcomes in lymphomas. These 

models can detect predictive cellular states, transcriptional 

programs, and resistance signatures even before clinical 

progression is apparent [34]. 

Supervised learning approaches, including logistic regression, 

gradient-boosted trees, and deep neural networks, have been 

used to classify patients into responders and non-responders 

based on pre-treatment single-cell data. Such models have 

incorporated features like gene module scores, transcription 

factor activity, and pathway enrichment to increase 

interpretability and biological relevance [35]. 

For example, in CAR-T therapy, scRNA-seq profiling has 

identified T-cell exhaustion markers and cytokine profiles 

predictive of durable response. When integrated into machine 
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learning pipelines, these features have improved stratification 

accuracy over clinical variables alone [36]. Similarly, 

expression of interferon response genes in malignant cells has 

been linked to resistance to immunotherapy and 

chemotherapy in follicular lymphoma. 

Multimodal approaches that combine scRNA-seq, scATAC-

seq, and spatial data further enhance predictive power. 

Algorithms such as MOFA+ and DeepMAPS enable feature 

fusion and latent space modeling, capturing interdependencies 

between omics layers [37]. 

Importantly, the interpretability of predictive models is critical 

for clinical acceptance. Recent frameworks integrate SHAP 

(SHapley Additive exPlanations) values and attention 

mechanisms to identify key drivers of prediction, facilitating 

transparency and biological validation [38]. 

As clinical datasets grow and model performance improves, 

predictive analytics from single-cell data will become 

indispensable in guiding therapy decisions and tailoring 

treatment to individual lymphoma patients. 

6.4 Integrating Real-Time Analytics into Clinical 

Workflows  

Bringing single-cell analytics into real-time clinical 

workflows requires streamlined integration of wet-lab 

processing, computational pipelines, and decision-making 

frameworks. Automated platforms are now being developed 

to perform sample processing, sequencing, and cloud-based 

analytics within clinically actionable timelines [39]. 

For instance, cloud-based systems utilizing scalable machine 

learning frameworks can process single-cell RNA and ATAC 

datasets within hours of biopsy acquisition. Dashboards 

powered by visualization libraries like Plotly or Streamlit 

present UMAP plots, resistance scores, and clonal hierarchies 

to clinicians in interpretable formats [40]. 

Furthermore, APIs and electronic health record (EHR) 

integration enable cross-platform interoperability, allowing 

physicians to overlay single-cell insights with clinical history, 

lab data, and imaging results. Such real-time feedback loops 

can support adaptive therapy design, early intervention, and 

biomarker-driven clinical trials. 

While regulatory, computational, and ethical challenges 

remain, the fusion of single-cell science and clinical decision-

making is becoming increasingly tangible. It signals a shift 

toward predictive, data-rich, and personalized oncology care 

in lymphoma treatment [41]. 

 

 

 

Table 3. Comparison of Computational Tools for Clonal 

Inference and Resistance Prediction 

Tool 

Name 

Application 

Domain 

Input 

Modalit

y 

Strengths Limitation 

SCITE 

Clonal tree 

reconstructi

on 

Single-

cell 

DNA 

High 

mutation 

accuracy 

Requires high 

coverage 

Monocle 
Pseudotime 

trajectory 

Single-

cell 

RNA 

Models 

lineage 

transitions 

Limited 

clonal 

resolution 

CloneAlig

n 

Genotype-

to-

phenotype 

map 

DNA + 

RNA 

Links 

expression 

to clone 

identity 

Sensitive to 

dropout 

ArchR 
Epigenomic 

clustering 

Single-

cell 

ATAC 

Integrates 

chromatin 

and gene 

scores 

High RAM 

requirements 

DeepMAP

S 

Multimodal 

prediction 

RNA + 

ATAC 

+ spatial 

Strong 

performan

ce in 

resistance 

models 

Complex 

implementati

on 

MOFA+ 
Multi-omics 

integration 

Multi-

omics 

Captures 

latent 

regulatory 

factors 

Assumes 

linearity in 

factors 

 

7. CLINICAL TRANSLATION AND 

PRECISION ONCOLOGY 

APPLICATIONS 

7.1 Current Clinical Trials Leveraging Single-Cell 

Technologies  

Single-cell technologies are increasingly being incorporated 

into clinical trial frameworks to enhance response prediction, 

monitor disease progression, and refine treatment strategies in 

lymphomas. Several ongoing studies are integrating single-

cell RNA sequencing (scRNA-seq), single-cell ATAC-seq 

(scATAC-seq), and spatial transcriptomics as part of 

exploratory endpoints to uncover biomarkers of efficacy and 

resistance [28]. 

For instance, clinical trial NCT04896062 is exploring the use 

of single-cell transcriptomic profiling in patients with 
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relapsed/refractory diffuse large B-cell lymphoma (DLBCL) 

undergoing CAR-T therapy. The trial aims to correlate pre-

infusion T-cell phenotypes with treatment outcomes using 

scRNA-seq, enabling identification of signatures predictive of 

durable responses [29]. Another study, NCT04460248, 

focuses on single-cell epigenomic analysis of follicular 

lymphoma biopsies to investigate the chromatin accessibility 

changes associated with therapy adaptation. 

In Hodgkin lymphoma, a pilot trial at the Dana-Farber Cancer 

Institute is utilizing spatially resolved single-cell technologies 

to understand how Reed-Sternberg cells interact with immune 

infiltrates during checkpoint inhibitor therapy. The insights 

gained from these spatial data are expected to improve 

stratification and therapeutic selection for immunorefractory 

patients [30]. 

Moreover, single-cell data from these trials are feeding into 

collaborative consortiums such as the Human Tumor Atlas 

Network (HTAN), which aims to generate comprehensive 

multi-omics atlases across various cancer types, including 

lymphomas. These atlases provide reference frameworks for 

interpreting patient-specific data and developing generalized 

predictive models [31]. 

Importantly, several trials now mandate longitudinal sample 

collection for serial single-cell profiling. This temporal design 

enables tracking of clonal dynamics and identification of 

emerging resistance markers, facilitating real-time treatment 

adjustment and adaptive trial design [32]. As these trials 

progress, they are expected to establish robust pipelines for 

integrating single-cell outputs into regulatory and therapeutic 

decision-making processes. 

7.2 Personalized Treatment Design Based on Clonal 

Composition  

Personalized treatment approaches in lymphomas are shifting 

from mutation-centric strategies to those informed by cellular 

states, clonal architecture, and microenvironmental context—

insights uniquely afforded by single-cell technologies. By 

identifying resistant subclones, therapy-sensitive populations, 

and immunosuppressive elements at the time of diagnosis, 

clinicians can now formulate individualized treatment 

regimens that target the full spectrum of tumor complexity 

[33]. 

In practice, personalized design begins with biopsy-based 

single-cell sequencing to delineate the transcriptional and 

epigenetic profiles of malignant and non-malignant cells. 

Clonal composition is assessed using computational tools that 

map lineage hierarchies and define high-risk subpopulations 

[34]. These subclones are then characterized for druggable 

features, such as overexpressed survival pathways, immune 

checkpoint ligands, or metabolic dependencies. 

For example, patients with DLBCL harboring NF-κB-active 

resistant clones may receive up-front inclusion of IκB kinase 

(IKK) inhibitors alongside standard R-CHOP. Alternatively, 

those with a clonal dominance of PD-L1–expressing 

lymphoma cells may benefit from early integration of 

checkpoint blockade therapy [35]. Importantly, such strategies 

are based not only on the presence of specific mutations but 

also on dynamic cell-state features and transcriptional 

programs. 

Furthermore, some treatment algorithms now utilize decision-

support systems that integrate single-cell data with clinical 

parameters to recommend therapy options. These tools 

continuously learn from updated datasets, improving 

personalization accuracy over time [36]. 

As more data become available from clinical trials and patient 

registries, clonal composition–guided therapy selection is 

likely to become a routine component of lymphoma care, 

particularly in refractory or high-risk patients. 

 

Figure 9 Personalized Treatment Design 

7.3 Challenges in Clinical Adoption and Regulatory 

Considerations  

Despite promising advances, several barriers hinder the 

widespread clinical adoption of single-cell technologies in 

lymphoma management. One major challenge is the lack of 

standardized protocols for tissue dissociation, sequencing, and 

data preprocessing, leading to variability across institutions 

and studies [37]. These inconsistencies limit the 

reproducibility and comparability of results, making it 

difficult to derive universal clinical guidelines. 

Another issue is the interpretation of complex, high-

dimensional datasets. While computational tools exist to 

process and analyze single-cell outputs, their application often 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 14–Issue 06, 19 – 37, 2025, ISSN:-2319–8656 

DOI:10.7753/IJCATR1406.1002 

www.ijcat.com  33 

requires specialized bioinformatics expertise not readily 

available in routine clinical settings [38]. This challenge is 

compounded by the current lack of integration between 

single-cell platforms and electronic health record (EHR) 

systems, limiting seamless decision-making. 

Cost and turnaround time also remain significant constraints. 

Although technologies are becoming more accessible, the 

infrastructure required for real-time processing—including 

high-throughput sequencing and computational resources—is 

still prohibitive for many healthcare institutions [39]. 

Moreover, regulatory frameworks for the clinical validation of 

single-cell assays are still evolving. Regulatory bodies such as 

the FDA and EMA currently classify these technologies as 

research-use only, with limited pathways for diagnostic 

approval. 

To overcome these barriers, efforts are underway to establish 

standardized pipelines, accredited laboratories, and validated 

clinical-grade single-cell assays. In parallel, multi-institutional 

initiatives are developing benchmark datasets and reference 

atlases to facilitate regulatory harmonization and risk 

assessment [40]. 

Addressing these challenges will be crucial for transitioning 

single-cell profiling from experimental use into certified 

diagnostic and therapeutic tools in lymphoma care. 

 

Figure 10 Pipeline from Biopsy to Single-Cell-Informed 

Personalized Treatment Decision 

(A schematic flowchart showing clinical biopsy collection, 

tissue dissociation, sequencing, machine learning–based 

clonal mapping, therapeutic target identification, and 

integration into patient-specific treatment planning tools.) 

8. FUTURE PERSPECTIVES AND 

RESEARCH DIRECTIONS  

8.1 Expanding Beyond Transcriptomics: Proteomics and 

Metabolomics in Single Cells  

While transcriptomics has dominated single-cell research due 

to its relatively mature methodologies and analytical 

frameworks, proteomics and metabolomics are rapidly 

emerging as complementary layers to further decode cellular 

behavior in lymphomas. Single-cell proteomics enables the 

quantification of surface and intracellular proteins, providing 

a direct readout of functional states not always inferred from 

RNA expression alone [32]. For example, surface markers 

such as CD19, CD20, and PD-L1 often serve as therapeutic 

targets and are critical for defining cell identity in 

immunophenotypic classification. 

Technologies like mass cytometry (CyTOF) and 

oligonucleotide-tagged antibody platforms (e.g., CITE-seq, 

REAP-seq) have expanded the capacity to profile dozens to 

hundreds of proteins in thousands of individual cells [33]. 

These approaches have been used to characterize tumor-

infiltrating lymphocytes and malignant B cells, identifying 

signaling adaptations that contribute to immune escape or 

drug resistance. 

In parallel, single-cell metabolomics—although still in its 

infancy—has begun to reveal metabolic heterogeneity in 

cancer. Techniques such as mass spectrometry imaging and 

nanoDESI allow spatially resolved detection of metabolites, 

providing insight into nutrient uptake, redox states, and 

bioenergetic profiles at the single-cell level [34]. This is 

particularly relevant in lymphoma, where metabolic rewiring 

plays a role in supporting rapid proliferation and therapy 

resistance. 

The integration of transcriptomic, proteomic, and 

metabolomic data allows for multi-dimensional profiling of 

lymphoma ecosystems. This holistic view captures not only 

the potential (RNA) but also the activity (protein) and 

function (metabolites) of each cell. As technology advances, 

these multi-omics approaches will likely become central to 

understanding functional diversity, therapeutic vulnerabilities, 

and adaptive responses in lymphoid malignancies [35]. 

8.2 Spatial Single-Cell Genomics for Tumor Architecture 

Insights  

Understanding the spatial context of cellular interactions is 

essential for interpreting the behavior of malignant and non-

malignant cells within the lymphoma microenvironment. 

Spatial single-cell genomics merges gene expression profiling 

with tissue localization, allowing researchers to preserve 

architectural information while interrogating cell identity and 

function [36]. 

Technologies such as spatial transcriptomics (10x Genomics 

Visium), multiplexed error-robust fluorescence in situ 
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hybridization (MERFISH), and Slide-seq enable high-

resolution mapping of transcriptomic features across tissue 

sections. These tools have been applied to lymphomas to 

uncover how malignant clones are distributed relative to 

immune cell niches and stromal structures [37]. For example, 

spatial transcriptomics in Hodgkin lymphoma has shown that 

Reed-Sternberg cells often cluster in regions with diminished 

T-cell infiltration, supporting spatially organized immune 

evasion. 

Moreover, spatial profiling has revealed gradients of gene 

expression associated with hypoxia, cytokine gradients, and 

clonal zonation. These features often correlate with treatment 

resistance or immune modulation, underscoring the relevance 

of location-specific signaling [38]. In follicular lymphoma, for 

instance, the spatial exclusion of cytotoxic T cells from 

germinal centers has been linked to suboptimal 

immunotherapy response. 

The integration of spatial data with conventional single-cell 

sequencing and imaging technologies enhances our 

understanding of how microenvironmental architecture 

supports or suppresses disease progression. These insights are 

crucial for designing therapies that not only target cellular 

subtypes but also disrupt the spatial dependencies that sustain 

them [39]. 

 

Figure 11 Spatial Genomics 

8.3 Ethical and Data-Sharing Considerations in Large-

Scale Single-Cell Studies  

As single-cell studies expand in scale and scope, ethical 

considerations surrounding data privacy, informed consent, 

and equitable access to data have gained increasing 

importance. Single-cell sequencing often generates high-

dimensional, personally identifiable information, particularly 

when integrated with clinical metadata, imaging, and genomic 

sequencing [40]. Ensuring that patients understand how their 

data will be used, stored, and potentially reanalyzed in future 

studies is essential for maintaining ethical standards. 

Consent procedures must now account for open-ended data 

sharing, longitudinal re-contacting for follow-up studies, and 

potential re-identification risks posed by multi-omics data. 

Institutional Review Boards (IRBs) and data governance 

committees are being urged to develop new frameworks 

tailored specifically to the ethical demands of high-resolution 

single-cell datasets [41]. 

On the data-sharing front, the need for open-access 

repositories that support cross-study comparison and meta-

analysis is critical. Platforms like the Human Cell Atlas 

(HCA), Cancer Research Data Commons (CRDC), and Single 

Cell Portal provide valuable infrastructure for storing, 

accessing, and annotating large-scale datasets [42]. However, 

challenges remain in harmonizing formats, ensuring 

interoperability, and addressing disparities in data 

contribution from underrepresented populations. 

Furthermore, researchers and institutions must balance open 

science with the protection of intellectual property, 

particularly when findings are linked to clinical applications 

or biomarker development [44]. As single-cell approaches 

become more embedded in translational research, continuous 

dialogue between scientists, clinicians, ethicists, and 

policymakers will be essential to ensure that these 

technologies are used responsibly and inclusively [43]. 

9. CONCLUSION 

9.1 Summary of Key Findings and Conceptual Advances  

This review has explored the transformative role of single-cell 

technologies in unraveling the complexity of lymphomas. By 

moving beyond population-averaged analyses, single-cell 

profiling has enabled a detailed dissection of tumor 

heterogeneity, clonal evolution, and microenvironmental 

dynamics. One of the most significant conceptual advances 

lies in the ability to identify rare subclonal populations that 

contribute to relapse and treatment resistance. These insights 

have redefined our understanding of intratumoral diversity, 

emphasizing that therapeutic failure is often driven not by 

dominant clones but by resilient, transcriptionally distinct 

minor populations. 

Advances in single-cell RNA sequencing, ATAC-seq, and 

multi-omics integration have also provided new frameworks 

for modeling tumor progression and cell-state transitions. 

These modalities allow for real-time tracking of therapy-

induced changes, offering predictive insight into emerging 

resistance before it becomes clinically evident. Spatial single-

cell technologies further contextualize these findings by 

mapping cellular interactions and niche-dependent behavior 

within the tumor microenvironment. 

Machine learning and bioinformatics tools have played a 

crucial role in managing and interpreting the vast complexity 
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of single-cell data. From dimensionality reduction to clonal 

inference and treatment prediction, computational innovations 

have expanded the utility of single-cell platforms in 

translational research. 

Importantly, several clinical trials are now incorporating 

single-cell endpoints, signaling a shift from research novelty 

to clinical relevance. Despite logistical and regulatory 

challenges, the field is moving toward personalized 

lymphoma care informed by high-resolution molecular 

insights. Collectively, these findings establish single-cell 

approaches as central to future diagnostic, prognostic, and 

therapeutic strategies in hematologic oncology. 

9.2 Call for Integrative and Clinically Embedded Single-

Cell Research  

To fully realize the clinical potential of single-cell 

technologies in lymphoma care, there is a pressing need for 

more integrative and clinically embedded research 

frameworks. While experimental and computational tools 

have matured considerably, their translation into standard 

oncology workflows remains limited. Bridging this gap will 

require collaborative models that bring together clinicians, 

researchers, data scientists, and regulatory experts within 

shared ecosystems. 

One critical priority is the development of clinically validated 

single-cell assays and interpretation platforms. This includes 

creating standardized protocols for tissue processing, 

sequencing, and data annotation that are compatible with 

clinical timelines. Equally important is the incorporation of 

bioinformatics tools into electronic health records and 

decision-support systems, enabling real-time application of 

single-cell insights to patient management. 

Integrative research must also address biological diversity and 

population-level disparities. Many current datasets are biased 

toward specific subtypes or demographics, limiting the 

generalizability of findings. Embedding single-cell 

approaches within multicenter clinical trials and international 

consortiums can promote data inclusivity and accelerate 

biomarker discovery across diverse populations. 

Furthermore, training programs must be expanded to equip 

clinicians and translational researchers with the skills needed 

to interpret and apply single-cell data. This cultural shift in 

clinical oncology will be instrumental in ensuring that 

technological advances translate into meaningful patient 

outcomes. 

Ultimately, the future of lymphoma treatment lies in the 

convergence of high-resolution molecular profiling and 

personalized care. Clinically embedded single-cell research 

represents a pivotal step toward this goal, offering a roadmap 

for adaptive, precision-guided oncology in the years ahead. 
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