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Abstract: This paper explores a novel framework for deploying self-optimizing AI agents designed to enforce real-time security 

policies across dynamic broadband infrastructures. Given the rise of zero-touch networks, increasing traffic heterogeneity, and 

growing cyber threats, conventional reactive security methods are no longer sufficient. We propose an architecture that combines 

reinforcement learning (RL), federated observability, and edge-native threat detection. The paper introduces a scalable agent-based 

model with proactive anomaly detection and self-adjustment capabilities. Key contributions include a hybrid decision loop, a risk-

weighted policy optimizer, and an adaptive trust index. The proposed solution is validated through simulations and real-world telecom 

KPIs. The results demonstrate enhanced mean time to detect (MTTD), reduced false positives, and improved threat response 

efficiency. 

 

Keywords: AI agents, self-optimization, broadband infrastructure, real-time security, federated learning, network observability, 

reinforcement learning, edge AI, anomaly detection, zero-trust, threat intelligence, telecom KPIs 

1. INTRODUCTION 
1.1 Background: Dynamic Threats in Next-Gen 

Broadband 

The proliferation of high-speed broadband networks 

including 5G, fiber-to-the-home (FTTH), hybrid fiber-

coaxial (HFC), and satellite-based internet has 

catalyzed digital transformation across industries. This 

evolution has simultaneously introduced new security 

vulnerabilities due to the unprecedented volume, 

velocity, and variety of network traffic. Emerging 

broadband ecosystems now demand real-time 

responsiveness, particularly in multi-access edge 

computing (MEC) environments, where latency-

sensitive services operate at the network edge (Zhang et 

al., 2023). 

Broadband infrastructure has also become more 

software-defined, disaggregated, and virtualized. These 

changes, while enabling scalability and flexibility, 

create a broader attack surface. Threat vectors such as 

distributed denial-of-service (DDoS) attacks, lateral 

movement exploits, and adversarial AI injections now 

target both centralized and edge infrastructure (Kumar 

& Sharma, 2022). Conventional network operations 

center (NOC)-based security, reliant on human 

oversight and rule-based systems, struggles to scale 

under such dynamic threat conditions. The future of 

broadband security requires decentralized, intelligent 

agents that can operate autonomously at the edge with 

minimal latency. 

1.2 Problem Statement: Latency and Scalability 

Limits of NOC-Based Security 

Traditional NOC-based security architectures were built 

for static threat models and centralized control. 

However, as broadband networks expand, the core-to-

edge latency incurred by centralized decision-making 

mechanisms has become a bottleneck. For instance, 

anomaly detection and mitigation that require telemetry 

aggregation at the core can delay responses to threats at 

the edge by several milliseconds an unacceptable delay 

for mission-critical applications such as autonomous 

vehicle telemetry or industrial IoT (Hussain et al., 

2023). 

Furthermore, the manual configuration and policy 

enforcement processes managed by human operators in 

NOCs are inherently non-scalable. The volume of 

network events in a dynamic 5G infrastructure exceeds 

human cognitive limits. This results in delayed threat 

detection, increased false positive rates, and missed 

zero-day exploits. There is an urgent need for an 

architectural shift that integrates AI-native agents 

capable of autonomous policy enforcement and real-

time adaptation. 

1.3 Research Gap: Absence of Self-Improving 

Agents in Edge-Dominant Networks 

Despite the growing body of research in AI-driven 

cybersecurity and federated learning, there remains a 

significant gap in the implementation of self-optimizing 

AI agents that can learn from local data, share insights 

federatively, and evolve their policies over time. Most 

existing models treat AI as a supplementary analytical 

layer rather than a decision-making entity capable of 

enforcing network policies independently (Alshahrani 

& Qureshi, 2022). 

Additionally, existing approaches often ignore the 

heterogeneity and volatility of edge environments. 

Policies optimized for one access point or user type 

may not generalize across geographic or usage 

variations. Hence, a framework that enables adaptive, 

location-specific, and trust-aware self-optimization 

remains largely unexplored in the broadband 

infrastructure space. 

 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 14–Issue 06, 51 – 82, 2025, ISSN:-2319–8656 

DOI:10.7753/IJCATR1406.1004 

www.ijcat.com  52 

1.4 Objectives and Contributions 

The primary objective of this research is to develop and 

validate a self-optimizing AI agent architecture tailored 

for real-time security enforcement in dynamic 

broadband infrastructures. This system is designed to 

address key latency and adaptability challenges posed 

by modern, high-throughput networks. One major goal 

is to minimize the Mean Time to Detect (MTTD) 

anomalies by employing a hybrid reinforcement 

learning (RL) model that continuously adapts to shifting 

traffic patterns and threat behaviors at the network 

edge. 

Additionally, the system seeks to automate trust 

calibration among agents through the implementation of 

an Adaptive Trust Score (ATS) function. This trust 

function dynamically evaluates each agent's behavior by 

assigning scores based on its detection accuracy and 

decision consistency over time, weighted by the 

relevance and recency of its observed evidence. This 

ensures that more reliable agents are prioritized in 

federated learning cycles, while underperforming or 

potentially compromised agents are progressively 

excluded from security-critical operations. 

Where represents time-weighted evidence confidence, 

and the evidence score for agent at time . 

• Integrate explainability (XAI) mechanisms 

using SHAP values to interpret agent 

decisions. 

• Enable federated retraining loops using edge 

telemetry without compromising user privacy. 

The key contributions include: 

1. A modular architecture for real-time, edge-

native security enforcement. 

2. A trust-aware, RL-enhanced decision model 

with self-adjustment capabilities. 

3. Empirical validation on real-world datasets 

and synthetic broadband threat simulations. 

1.5 Scope and Limitations 

This study focuses primarily on broadband 

infrastructures with edge computing support, such as 

fiber-optic gateways, 5G radio access networks (RAN), 

and DOCSIS 4.0 cable nodes. While the architecture 

can be extended to hybrid cloud environments, the 

current scope is limited to on-premise and near-edge 

deployments where latency and security are critical. 

Limitations of the study include: Despite the strengths 

of the proposed approach, several limitations are 

recognized in this study. First, the framework is 

developed under the assumption of semi-cooperative 

edge environments, meaning that all participating 

agents are presumed to behave honestly and without 

malicious intent. As such, malicious edge nodes or 

adversarial participants are considered beyond the scope 

of the current implementation and require separate 

mitigation strategies in future iterations. Second, the 

model training process relies heavily on labeled datasets 

such as CIC-IDS2018 and UNSW-NB15. This 

dependence may limit the framework’s generalizability 

to real-world traffic conditions where labeled data is 

either scarce or unavailable. Third, evaluation 

constraints arise from the lack of access to live telecom-

grade datasets containing classified threat intelligence, 

which restricts validation of the model under 

production-level operating conditions. 

The subsequent chapters will present the architectural 

blueprint, algorithmic components, experimental 

configuration, and performance metrics used to validate 

the proposed system under controlled but realistic 

simulation environments. 

2. LITERATURE REVIEW 

2.1 Overview of AI-Driven Security in Broadband 

Networks 

Over the past decade, broadband infrastructures have 

evolved from monolithic, centrally managed networks 

into distributed, software-defined ecosystems that 

support heterogeneous access technologies including 

5G, DOCSIS, FTTH, and mmWave. As this 

transformation unfolds, so too has the attack surface 

expanded, leading to a rapid surge in network-layer and 

application-layer threats (Zhao et al., 2023). 

Security in broadband networks now necessitates real-

time detection, automated remediation, and explainable 

decisions. Traditional Intrusion Detection Systems 

(IDS) such as Snort and Suricata although highly 

effective in static environments, are incapable of 

adaptive responses or context-aware threat 

interpretation when deployed across dynamic 

broadband edge networks (Sittig & Werthmann, 2021). 

This challenge has motivated the integration of artificial 

intelligence techniques, primarily supervised learning 

and anomaly detection models, to augment detection 

capabilities. 

However, a significant shortcoming lies in the lack of 

self-improving logic. While machine learning (ML) 

models can flag irregularities, they often depend on 

static thresholds or centralized retraining. Autonomous 

policy enforcement, especially one executed by edge-

resident agents capable of retraining locally is largely 

absent from the literature. 

2.2 Multi-Agent Systems in Network Security 

Multi-agent systems (MAS) have emerged as a 

powerful architectural paradigm for enabling 

decentralized and scalable security enforcement in 

modern network infrastructures. In MAS-based 

architectures, individual agents are deployed across 

distributed nodes such as customer premises equipment 

(CPE), base stations, or optical line terminals where 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 14–Issue 06, 51 – 82, 2025, ISSN:-2319–8656 

DOI:10.7753/IJCATR1406.1004 

www.ijcat.com  53 

they operate semi-independently while contributing to a 

collective defense strategy. These agents observe local 

traffic conditions, detect potential anomalies, and 

collaborate to update global policies without 

centralizing sensitive data. The MAS paradigm is 

particularly well-suited for broadband environments, 

where edge diversity, latency constraints, and data 

privacy must all be simultaneously addressed (Zhou et 

al., 2022). 

 

2.2.1 Federated Learning and Autonomous Agents 

A key enabler for coordination among agents is 

federated learning (FL), which allows them to train 

models on local data and share only encrypted model 

updates such as gradients or weights thus preserving 

user privacy and minimizing bandwidth consumption. 

This mechanism enables global model convergence 

while keeping sensitive edge data decentralized. Agents 

typically participate in a federated averaging scheme, 

where the central aggregator computes a weighted 

average of the received updates based on local dataset 

sizes. The process is represented mathematically by 

Equation 2.1: 

 

Here, denotes the local model weights from client 

iii at time t,  is the number of data samples at client i, 

and   is the total number of samples across all 

clients. 

While federated learning offers strong guarantees for 

data privacy and system scalability, its application 

within broadband infrastructure remains relatively 

immature. Most current implementations of MAS and 

FL are restricted to controlled simulation environments, 

such as laboratory-scale networks or smart grid 

testbeds. As a result, practical deployments in real-

world broadband settings where agents must deal with 

high throughput, non-IID traffic, and intermittent 

connectivity remain limited. Moreover, existing MAS 

frameworks often assume reliable communication 

channels and uniform data distributions, both of which 

are rarely present in heterogeneous broadband 

networks. 

 

2.2.2 Trust in Agent Cooperation 

Trust is a foundational concern in multi-agent 

collaboration, especially when agents contribute 

updates that influence shared model parameters. In 

adversarial settings, untrusted or compromised agents 

may attempt model poisoning, by injecting malicious 

gradients into the federated learning process. To address 

this, several trust-aware federated learning schemes 

have been proposed. These schemes assign a trust score 

to each agent based on historical behavior, contribution 

quality, and consistency with the global model (Feng et 

al., 2022). Agents with persistently low trust scores are 

excluded from aggregation, effectively mitigating risks 

of poisoning and collusion. 

Despite this progress, trust calibration in most MAS 

frameworks is externally managed that is, trust 

evaluation is performed by a centralized orchestrator or 

based on fixed thresholds that are not dynamically 

learned. Agents themselves typically lack the capacity 

to autonomously adjust their behavior in response to 

trust feedback. For instance, an agent that receives a 

low trust score is often quarantined or ignored rather 

than retrained or self-corrected. This represents a 

significant limitation in current implementations, where 

self-adaptive trust modulation in which agents 

autonomously fine-tune their decision policies and 

participation strategies based on trust evolution remains 

largely unexplored. 

Furthermore, trust scoring mechanisms are not yet 

standardized and often lack interoperability across 

different network domains or administrative zones. In 

broadband infrastructures characterized by vendor 

diversity and multi-stakeholder governance, this 

absence of trust portability impedes seamless agent 

cooperation across federated boundaries. 

2.3 Reinforcement Learning in Security Contexts 

Reinforcement Learning (RL) has become an 

increasingly relevant paradigm in the development of 

intelligent, adaptive security frameworks. In RL, agents 

interact with an environment and learn to take actions 

that maximize cumulative rewards. The environment 

provides feedback in the form of positive or negative 

rewards, allowing the agent to iteratively refine its 

policy. This trial-and-error approach is particularly 

suited for intrusion response (IR) tasks where threat 

patterns are dynamic and non-deterministic. 

In the context of broadband infrastructure, RL has been 

applied to various security challenges such as denial-of-

service (DoS) attack mitigation, dynamic routing 

adjustments, and network slicing under adversarial load 

conditions (Khan et al., 2022). For example, agents can 

learn to reroute suspicious traffic away from congested 

or vulnerable nodes, or dynamically throttle bandwidth 

for suspicious flows while minimizing impact on 

legitimate users. 

However, a major challenge in applying RL to mission-

critical telecom environments is its reliance on 

extensive exploration, which can be unsafe. During 

early training phases or policy updates, RL agents may 

take suboptimal or even harmful actions, such as 

unintentionally blocking legitimate services or 

triggering unnecessary flow reconfigurations. 

Additionally, convergence times can be prohibitively 

long, especially when the state-action space is large or 

non-stationary common characteristics of modern 

broadband traffic landscapes. 
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To address these challenges, researchers have proposed 

Safe Reinforcement Learning (SRL) methods, which 

restrict exploration to a predefined "safe zone" of 

actions. Likewise, Deep Q-Networks (DQN) with 

bounded exploration parameters have been adopted to 

balance the trade-off between learning effectiveness and 

operational risk. These models rely on value-function 

approximations via deep neural networks and utilize 

techniques such as experience replay and target network 

freezing to improve stability (Mnih et al., 2015). 

Despite these advancements, integration of RL with 

federated learning (FL) in security contexts remains 

rare. Most RL implementations assume centralized data 

access and control, whereas federated settings impose 

strict constraints on data movement and require robust 

trust evaluation across distributed agents. A cohesive 

framework that unifies RL, FL, and explainability for 

security tasks in broadband networks is still an open 

research frontier. 

Algorithm 2.1: Safe RL-based Threat Response 

(Pseudocode) 

def safe_policy(env, gamma, trust_threshold): 

    Q = init_Q(env) 

    for episode in range(max_episodes): 

        state = env.reset() 

        while not env.done(): 

            if agent_trust_score(state) < 

trust_threshold: 

                action = safe_action() 

            else: 

                action = 

epsilon_greedy(Q[state]) 

            next_state, reward = 

env.step(action) 

            Q[state][action] += alpha * (reward 

+ gamma * max(Q[next_state]) - 

Q[state][action]) 

            state = next_state 

    return Q 

 

This algorithm demonstrates a bounded exploration 

strategy, where the agent’s trust score influences the 

action policy. If trust is low, the agent defaults to a 

predefined safe action instead of exploring potentially 

harmful behaviors. Such an approach enhances safety 

and aligns with trust-aware federated agent design 

goals. 

 

2.4 Edge Computing and Security Enforcement 

The evolution of telecom networks toward edge-centric 

computing paradigms has brought both new 

opportunities and significant challenges for AI-based 

security mechanisms. In broadband infrastructures, 

edge nodes such as home routers, 5G base stations, and 

optical line terminals (OLTs) have become the first line 

of defense against cyber threats. These nodes are 

geographically distributed and must operate with 

minimal latency to maintain Quality of Service (QoS) 

for latency-sensitive applications such as video 

conferencing, online gaming, and telemedicine. 

 

2.4.1 Edge AI and Resource Constraints 

Deploying AI models at the edge provides considerable 

advantages in reducing detection latency and preserving 

user privacy, as local processing minimizes the need to 

send raw data to a central server. However, edge 

devices typically suffer from limited computational, 

memory, and power resources. Running complex 

machine learning models especially those involving 

deep neural networks on such constrained hardware can 

lead to unacceptable delays or device instability. 

To overcome these limitations, recent studies advocate 

for model compression techniques, including 

quantization, pruning, and knowledge distillation. These 

approaches reduce the computational footprint of AI 

models while preserving their accuracy (Lee et al., 

2023). Furthermore, inference engines optimized for 

edge devices, such as TensorRT, ONNX Runtime, and 

TF Lite, allow for real-time execution of lightweight 

models with minimal performance overhead. 

Despite these optimizations, trade-offs between model 

complexity and inference speed remain. Lightweight 

models may not capture the full richness of traffic 

features, leading to higher false positives or detection 

blind spots. Therefore, continuous model tuning, 

possibly via federated personalization layers, is 

essential to maintain effectiveness under real-world 

edge conditions. 

 

2.4.2 Zero-Touch Security Models 

The concept of Zero-Touch Provisioning (ZTP) has 

become foundational in automating network 

management tasks. ZTP enables network devices to be 

configured and deployed with minimal human 

intervention, thus reducing operational costs and human 

error. Building on this paradigm, Zero-Touch Security 

(ZTS) aims to automate the configuration, enforcement, 

and adaptation of security policies across distributed 

infrastructures. 

In theory, ZTS-enabled AI agents would be capable of 

autonomous initialization, self-monitoring, dynamic 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 14–Issue 06, 51 – 82, 2025, ISSN:-2319–8656 

DOI:10.7753/IJCATR1406.1004 

www.ijcat.com  55 

policy updating, and self-healing in response to detected 

anomalies all without human input. Such agents would 

monitor their operating context continuously, update 

their security models based on learned patterns, and 

coordinate actions with peer nodes through secure APIs. 

However, the current state of the literature reveals a 

lack of robust, real-time implementations of ZTS in 

broadband environments (Ibrahim & Ghazali, 2022). 

Most proposed models either oversimplify the network 

topology or ignore adversarial factors such as spoofing, 

poisoning, or model drift. Moreover, integration with 

centralized policy orchestration engines is rarely 

addressed, leaving ZTS models fragmented and 

insufficient for end-to-end telecom deployments. 

To realize the full potential of ZTS, future research 

must bridge the gap between autonomous agent 

behavior and orchestration-layer compliance, 

particularly in federated and heterogeneous 

environments where trust, explainability, and service-

level guarantees are essential. 

2.5 Explainable Artificial Intelligence (XAI) in 

Network Defense 

As artificial intelligence becomes more deeply 

embedded in cybersecurity operations, especially in 

high-stakes domains like broadband infrastructure, the 

demand for explainability has grown substantially. 

Explainable Artificial Intelligence (XAI) refers to 

methods that make the behavior and decision-making 

logic of AI systems transparent, interpretable, and 

verifiable by human users. In the context of broadband 

network security, XAI enables analysts, network 

operators, and regulators to understand, audit, and trust 

automated decisions made by AI agents. 

2.5.1 Importance of Explainability in Broadband 

Security 

In traditional security operations centers (SOCs), 

decisions such as quarantining a node, throttling 

bandwidth, or blocking a session are made by trained 

personnel based on logs, heuristics, and policy rules. 

However, in AI-powered autonomous systems 

particularly those using deep learning these decisions 

may arise from complex, nonlinear interactions across 

hundreds or thousands of learned parameters. Without 

explainability, such decisions become opaque, raising 

concerns about accountability, bias, false positives, and 

regulatory compliance (Lundberg & Lee, 2017). 

Moreover, telecom operators are often required to meet 

stringent transparency and compliance standards under 

frameworks such as the General Data Protection 

Regulation (GDPR) and the emerging EU Artificial 

Intelligence Act. Explainability is therefore not just a 

technical enhancement but a legal and ethical 

requirement for AI integration in network management. 

 

2.5.2 SHAP: A Model-Agnostic Explainer 

One of the most widely adopted XAI methods is 

SHapley Additive exPlanations (SHAP), which is 

grounded in cooperative game theory. SHAP assigns 

each feature a contribution score called a SHAP value 

based on its marginal impact on the model’s prediction. 

The SHAP explanation model can be expressed as: 

 

 

Where:  is the model's prediction for input x,  is 

the base value (expected model output),  is the SHAP 

value for feature i,, and M is the number of features. 

SHAP’s additive nature and local accuracy properties 

make it particularly well-suited for interpreting anomaly 

detection decisions made by AI agents at the network 

edge (Ribeiro et al., 2016). In the context of self-

optimizing broadband security agents, SHAP can help 

identify whether packet entropy, source IP entropy, 

TTL, or protocol frequency was the dominant factor in 

flagging a flow as malicious. 

2.5.3 Integrating SHAP into Autonomous Agents 

To integrate explainability into real-time agents, SHAP 

evaluations are triggered post-inference for flagged 

samples. These SHAP vectors are logged alongside the 

agent’s action and detection confidence, allowing 

operators to inspect the “reasoning trail” behind each 

enforcement decision. 

For example, consider an agent that blocks a session 

between a source and destination IP. A SHAP 

explanation could indicate that unusually high source 

entropy, combined with short packet intervals, 

contributed most strongly to the block decision. Such 

transparency builds trust, aids forensic analysis, and 

provides a basis for user appeals or policy refinement. 

 

Figure 2.1: SHAP Summary Plot of Top Features 

2.5.4 Trade-Offs and Limitations of XAI 

Despite its benefits, XAI introduces several trade-offs 

in edge environments. Running SHAP calculations for 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 14–Issue 06, 51 – 82, 2025, ISSN:-2319–8656 

DOI:10.7753/IJCATR1406.1004 

www.ijcat.com  56 

every inference can increase computational overhead, 

especially on constrained devices. This challenge is 

mitigated using model distillation, where complex 

models are approximated by simpler surrogate models 

(e.g., decision trees) for interpretability. 

Another limitation is that SHAP explanations are only 

as reliable as the model itself. If the underlying model 

has learned biased or erroneous patterns, SHAP will 

faithfully explain those flawed decisions possibly 

misleading human analysts. Therefore, explanation 

mechanisms must be complemented with model 

validation and human-in-the-loop oversight to ensure 

reliability. 

Additionally, while SHAP is model-agnostic, its 

precision and efficiency vary with model type. Tree-

based models like XGBoost and Random Forest benefit 

from fast SHAP variants, while deep learning models 

require kernel SHAP, which is computationally 

intensive (Molnar, 2022). 

2.5.5 Towards Explainable Federated Security 

A future direction for XAI in broadband security is 

federated explainability, where individual edge agents 

produce local explanations that are aggregated into 

global patterns. This can highlight system-wide attack 

campaigns, uncover feature drift, or detect cross-node 

policy inconsistencies. 

For instance, if multiple agents in different geographic 

zones attribute anomalies to rising TCP SYN packet 

ratios, this may indicate a distributed SYN flood attack. 

Such insights can be used not only for automated 

mitigation but also for updating global threat 

intelligence databases. 

 

Figure 2.1: SHAP Visualization of Anomalous Packet 

Detection 

 

Explainable decisions are especially vital when agents 

autonomously block traffic or quarantine endpoints. Yet 

most AI-enabled telecom tools provide limited post-hoc 

interpretability, and almost none include agent-side 

explainability at the point of enforcement. 

2.6 Comparative Table of Reviewed Systems 

To systematically evaluate the existing body of 

literature on AI-driven security in broadband and 

networked environments, this section presents a 

comparative analysis of prominent systems and 

frameworks. The comparison spans five key 

dimensions: 

1. AI Model Type – The core machine learning or 

reasoning technique employed (e.g., supervised 

learning, deep reinforcement learning, federated 

learning). 

2. Deployment Context – The practical domain or 

environment in which the system is intended to 

operate (e.g., edge devices, ISP core, software-

defined networks). 

3. Self-Optimization Capability – Whether the system 

includes learning mechanisms that enable 

autonomous improvement over time. 

4. Explainability Support (XAI) – The level of 

transparency provided for decisions, including 

support for interpretability tools like SHAP or 

LIME. 

5. Trust Mechanism – Whether the system 

incorporates agent trust scoring, adversarial 

filtering, or reputation systems. 

Table 2.1: Comparative Analysis of Related AI-

Based Network Security Systems 

Deployment 

Context 

Self-

Optimization 

XAI 

Support 
Trust Mechanism 

ISP Core No Partial None 

Edge Devices No No Basic Filtering 

SDN 

Controller 
Yes No None 

Mobile Edge Partial No 
Dynamic Trust 

Scores 

5G Core No No None 

Edge + 

Aggregator 
Yes Full 

Adaptive Trust 

Modulation 

 

Discussion and Analysis 

The comparative table clearly demonstrates a lack of 

comprehensive, self-improving, and explainable 

security frameworks tailored for broadband edge 

environments. Most prior systems either rely on static 

supervised models or lack key architectural components 

such as trust calibration and real-time explainability. 
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For example, the work by Zhao et al. (2023) applies 

convolutional neural networks (CNNs) with random 

forests (RF) for traffic classification in ISP cores, but it 

lacks adaptability and explainability, making it 

unsuitable for dynamic environments. Similarly, while 

Khan et al. (2022) introduced reinforcement learning in 

software-defined networks (SDNs), their model does 

not support federated learning or explainability features, 

limiting its scalability and auditability. 

The study by Zhou et al. (2022) incorporates federated 

learning using FedAvg, yet it lacks any optimization 

feedback loop or interpretability support, meaning its 

agents are not capable of autonomous policy refinement 

or human-traceable decisions. Feng et al. (2022) made 

progress by integrating a dynamic trust mechanism into 

federated learning, but their model still does not fully 

support explainability or self-optimization. 

In contrast, the proposed Federated Self-Optimizing 

Enforcement Model (FSEM) offers a unified framework 

that incorporates reinforcement learning, federated 

learning, SHAP-based explainability, and dynamic trust 

scoring. This holistic integration supports the adaptive, 

auditable, and privacy-preserving needs of modern 

broadband infrastructures. 

2.7 Summary and Implications 

The literature review underscores a critical opportunity 

to integrate self-optimizing capabilities, federated 

learning, and trust-aware decision-making into a unified 

AI agent model for broadband security. Despite several 

promising advances, no existing framework offers a 

modular, explainable, and federated enforcement agent 

tailored to the high-throughput, low-latency 

requirements of modern broadband networks. 

Our work builds on this foundation and proposes a new 

architecture where edge agents dynamically recalibrate 

trust, optimize their security policies via reinforcement 

learning, and collaborate without compromising data 

sovereignty marking a step forward in the realization of 

intelligent, scalable broadband security enforcement. 

 

3. SYSTEM ARCHITECTURE AND DESIGN 

3.1 Architectural Overview 

The proposed system is built on a multilayered, 

distributed architecture specifically designed to support 

real-time security enforcement in complex and dynamic 

broadband infrastructures. The architecture is 

engineered to meet the stringent latency, scalability, and 

privacy requirements of edge-centric environments such 

as 5G radio access networks (RAN), fiber-optic 

gateways, DOCSIS nodes, and multi-access edge 

computing (MEC) platforms. To achieve these goals, 

the system is divided into three core layers: the Edge 

Agent Layer, the Federated Aggregator Layer, and the 

Trust-Orchestration Layer. Each layer is designed to 

operate with functional independence while maintaining 

high inter-layer interoperability through secure APIs, 

telemetry pipelines, and orchestrated control logic. 

At the foundation lies the Edge Agent Layer, which is 

deployed directly at broadband endpoints such as 

customer premises equipment (CPE), optical line 

terminals (OLTs), or edge routers. This layer hosts 

lightweight, self-optimizing AI agents that continuously 

monitor network traffic, perform on-device inference 

using quantized machine learning models, and enforce 

security policies in real time. These agents operate in a 

resource-constrained environment and are optimized for 

low memory and CPU footprints using frameworks like 

TensorFlow Lite and ONNX Runtime. The edge agents 

are also capable of initiating federated learning updates 

and generating SHAP-based interpretability logs, 

making them both autonomous and auditable. 

Above the edge layer is the Federated Aggregator 

Layer, which acts as the global coordination point for 

security intelligence and policy distribution. This layer 

aggregates model updates from distributed agents using 

secure federated learning protocols such as Federated 

Averaging (FedAvg) and applies drift detection 

techniques to ensure model consistency across 

heterogeneous environments. The aggregator performs 

weighted model aggregation based on agent trust 

scores, detects concept drift using statistical divergence 

measures (e.g., Jensen–Shannon divergence), and 

distributes updated models back to edge agents. This 

layer may be hosted in a central data center, a regional 

edge cloud, or a logically distributed controller 

depending on the deployment scale and latency 

constraints. 

Complementing the above layers is the Trust-

Orchestration Layer, which governs identity 

management, policy enforcement privileges, and trust 

calibration mechanisms. It evaluates the behavior of 

each agent using the Adaptive Trust Score (ATS) 

function and issues time-bound access tokens based on 

performance, consistency, and reliability metrics. 

Agents with declining trust levels may be quarantined 

or excluded from model aggregation, thus safeguarding 

the system from poisoned updates or compromised 

nodes. This layer also interfaces with the security 

operations dashboard, offering real-time analytics, 

visualizations, and explainability feedback via SHAP 

outputs and alert streams. 

Together, these three layers create a modular, resilient, 

and explainable security framework capable of 

operating autonomously at the network edge while 

retaining centralized oversight and coordination. The 

architecture supports dynamic policy adaptation, trust-

aware learning, and zero-touch security enforcement 

critical features for securing modern broadband 

infrastructures in an AI-native era. 
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Figure 3.1: System Architecture Diagram 

This architecture ensures local responsiveness while 

preserving global awareness a necessity in telecom-

grade broadband infrastructures (Zhao et al., 2023). 

3.2 Edge Agent Layer 

3.2.1 Feature Extraction and Packet Profiling 

The Edge Agent Layer forms the foundational 

intelligence of the system by embedding AI agents 

directly at broadband ingress points such as customer 

gateways, base stations, and DOCSIS modems. These 

agents continuously monitor network traffic and extract 

structured features from raw packets to drive their real-

time inference and anomaly detection models. 

To accomplish this, agents utilize packet sniffing 

frameworks like Scapy, Suricata, or Zeek, which are 

integrated into their local processing stack. The 

extracted features represent multiple dimensions of 

packet-level and flow-level behaviors. Core features 

include: 

• Packet Entropy: Measures the randomness in a 

sequence of observed header fields (e.g., source 

IPs, ports). 

• Flow Duration: Captures the elapsed time between 

the first and last packet of a flow session. 

• Source/Destination IP Frequency: Monitors the 

distribution of communicating endpoints. 

• Protocol Mix Ratios: Evaluates the balance of TCP, 

UDP, ICMP, and application-layer protocols. 

• Inter-Packet Timing: Measures time differences 

between successive packets to reveal burst patterns 

or slow exfiltration. 

Among these, entropy-based metrics are critical in 

identifying statistically anomalous behavior. The most 

fundamental metric used is Shannon entropy, a measure 

from information theory that quantifies the 

unpredictability of a dataset. For a discrete random 

variable X with possible values x1,x2,...,xn, and 

probability distribution , the Shannon entropy 

 is calculated as: 

 

This equation captures the information diversity in 

packet features such as the variety of source IPs or the 

dispersion of packet sizes. A high entropy value 

indicates high variability or randomness, often 

associated with botnet coordination, DDoS attacks, or 

peer-to-peer traffic. Conversely, low entropy may 

suggest repeated or scripted traffic patterns, as seen in 

brute-force attacks or scripted scanning tools. 

For instance, during a low-and-slow data exfiltration 

attempt, an attacker may spread out payloads over time 

and vary source ports to evade detection. Such subtle 

behavioral changes can be difficult to flag using rule-

based systems but are detectable through entropy shifts. 

Edge agents use this entropy data not only as a feature 

for classification but also to trigger trust score 

recalibration or locally enforce micro-policies (e.g., 

temporary throttling or redirection for inspection). 

In high-performance deployments, entropy calculations 

are conducted over sliding windows e.g., per-second or 

per-1000-packet batches to maintain responsiveness 

without excessive computational overhead. The 

extracted features are then vectorized and normalized, 

forming the input to the agent’s lightweight inference 

engine. These agents may also flag high-entropy flows 

for SHAP-based explainability generation, thereby 

allowing subsequent human validation and policy 

tuning. 

In summary, feature extraction and entropy profiling are 

central to enabling the context-aware intelligence of 

edge agents. These metrics provide a real-time 

statistical foundation for anomaly detection, trust 

modulation, and cooperative policy enforcement across 

the broadband infrastructure. 

3.2.2 Lightweight Inference Engine 

The lightweight inference engine embedded within each 

edge agent is the critical execution point for real-time 

threat classification and local policy enforcement. 

Given the resource constraints of edge platforms such 

as customer premises equipment (CPE), 5G baseband 

units (BBUs), and optical line terminals (OLTs) the 

inference engine is optimized for speed, accuracy, and 

low memory footprint. 

To meet these demands, the system deploys quantized 

machine learning models that have been compressed 

using post-training quantization techniques (e.g., int8 

precision). These models are exported to formats 

compatible with ONNX Runtime, TensorFlow Lite, or 

PyTorch Mobile, which support efficient execution on 

ARM-based processors and embedded GPUs 

commonly found in telecom-grade edge devices. 

Each model is pre-trained in a federated learning setup, 

where agents initially learn a global security model 
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derived from labeled datasets such as CIC-IDS2018 or 

UNSW-NB15. Once deployed, the models continue to 

evolve via reinforcement learning loops, allowing them 

to adapt to local traffic variations and newly emerging 

threats. The model weights are updated periodically 

through secure aggregation protocols (as described in 

the Federated Aggregator Layer), ensuring that agents 

improve collectively while preserving data privacy. 

At runtime, the agent performs real-time feature 

extraction (see Section 3.2.1), which outputs a 

normalized feature vector representing characteristics of 

the current flow. This vector is passed into the inference 

engine, which outputs a prediction score in the range 

[0,1], indicating the confidence that the flow is 

malicious. 

The inference logic can be represented in pseudocode as 

follows: 

def predict_and_enforce(features): 

    model = load_onnx_model() 

    prediction = model.predict(features) 

    if prediction > 0.95: 

        enforce_policy('BLOCK')        # High 

confidence malicious 

    elif 0.7 < prediction <= 0.95: 

        enforce_policy('LIMIT')        # 

Suspicious, rate-limit flow 

    else: 

        pass                           # 

Benign, allow traffic 

 

This tiered decision system ensures graduated 

enforcement based on confidence thresholds, balancing 

false positive minimization with security 

responsiveness. Flows with high prediction scores 

(>0.95) are immediately blocked, while moderately 

suspicious flows are subjected to bandwidth throttling 

or deep packet inspection. Benign traffic is forwarded 

as usual, minimizing disruption. 

The local nature of this decision-making engine means 

that agents do not need to query the central orchestrator 

for policy approvals, thereby reducing latency and 

avoiding core network congestion. Furthermore, the 

design is resilient to orchestrator failure or connectivity 

drops, as the agents are capable of autonomous 

inference and enforcement. 

To prevent model staleness, the system includes 

mechanisms for: 

• Local retraining using reinforcement learning 

rewards (e.g., feedback from blocked vs. verified 

malicious flows), 

• Model drift detection using divergence metrics, 

• Triggered updates via orchestrator push 

notifications. 

Additionally, prediction outputs are paired with SHAP-

based feature attributions (if explainability is enabled), 

allowing the agent to log its decision rationale for later 

auditing or override by human analysts. 

In essence, the lightweight inference engine transforms 

each edge node into a semi-autonomous, intelligent 

sentinel, capable of classifying and responding to 

threats with minimal delay and without sacrificing 

system scalability or transparency. 

3.3 Federated Aggregator Layer 

The Federated Aggregator Layer serves as the 

intelligence fusion point for all self-optimizing agents 

operating in the broadband infrastructure. Rather than 

centralizing raw data, which poses privacy and 

bandwidth risks, this layer operates on a federated 

learning paradigm where agents contribute encrypted 

model updates to collaboratively improve a global 

detection model. This architecture ensures that learning 

is scalable, privacy-preserving, and adaptive to 

heterogeneous edge environments. 

3.3.1 Federated Model Synchronization 

To aggregate knowledge from distributed edge agents 

without exposing sensitive telemetry data, the system 

implements a Federated Averaging (FedAvg) algorithm. 

Each agent computes local model weight updates using 

its own traffic data and periodically submits encrypted 

weight deltas to the central aggregator. The aggregator 

then combines these updates using a weighted average 

based on the volume of local data each agent has 

processed. 

The global model update at time t+1 is defined by the 

following equation: 

 

Where:  is the model weight vector from agent iii at 

time t,  is the number of samples seen by agent iii, 

n=  is the total number of samples seen across all 

agents. 

This strategy ensures that updates from high-traffic 

nodes carry proportionally more influence, enhancing 

convergence speed and generalization. However, to 

maintain confidentiality and prevent model inversion 

attacks, all updates are encrypted using homomorphic 

encryption schemes such as the Paillier cryptosystem 

before transmission. This allows the aggregator to 
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perform summation operations on encrypted values 

without decrypting them (Bonawitz et al., 2017). 

Moreover, to prevent poisoning attacks, where a 

malicious agent could inject skewed gradients into the 

update pool, trust scores (see Section 4.4) are factored 

into the update process. Agents with trust below a 

dynamic threshold are temporarily excluded from the 

aggregation cycle and flagged for further evaluation. 

3.3.2 Drift and Outlier Detection 

Over time, network conditions and threat patterns 

naturally evolve, leading to concept drift where the 

statistical distribution of data changes, rendering older 

models less effective. To monitor and mitigate drift, the 

aggregator employs a Jensen–Shannon divergence 

(JSD) mechanism, which measures the similarity 

between the current global model’s prediction 

distribution and historical benchmarks. 

The JSD between two probability distributions P and Q 

is computed as: 

   

Here: 

•  denotes the Kullback–Leibler divergence, 

which quantifies the information lost when one 

distribution is used to approximate another. 

• M is the pointwise average of distributions P and 

Q. 

In this context, PPP might represent the prediction 

probabilities of the current model and Q those from a 

prior model state. A high JSD score (e.g., >0.15) signals 

a model drift event, which may be triggered by new 

attack vectors, changes in user behavior, or shifts in 

protocol usage. 

When drift is detected, the aggregator initiates one or 

more of the following: 

• Global revalidation: Testing the current model on a 

holdout dataset to assess degradation. 

• Targeted retraining: Reweighting or requesting 

additional samples from agents with divergent 

behavior. 

• Agent pruning: Temporarily sidelining agents 

whose updates consistently deviate from the norm, 

especially if paired with low trust scores. 

This proactive monitoring ensures that the federated 

system remains robust, adaptive, and aligned with the 

security landscape across diverse broadband regions. 

Additionally, these drift events are logged and 

visualized on the orchestration dashboard, providing 

real-time alerts to network operators and enabling 

human-in-the-loop oversight when necessary. 

3.4 Trust-Orchestration Layer 

In a distributed security environment where multiple 

autonomous agents contribute to model updates and 

enforce policies independently, trust becomes an 

indispensable dimension of operational integrity. The 

Trust-Orchestration Layer is designed to oversee agent 

credibility, regulate access control, and ensure the 

integrity of federated learning cycles by continuously 

evaluating the behavior of participating nodes. This 

layer also serves as a bridge between statistical model 

performance and access governance, preventing 

adversarial or faulty agents from degrading the system’s 

reliability. 

3.4.1 Adaptive Trust Score (ATS) 

To quantify trust dynamically, each agent is assigned an 

Adaptive Trust Score (ATS) that evolves based on its 

historical performance in detection tasks. This score is 

designed to weigh recent behavior more heavily than 

older data, thereby allowing the system to adapt to both 

improvements and deteriorations in an agent’s 

reliability over time. The formula for computing the 

ATS of agent iii at time t is defined as: 

 

Where:  is the evaluation metric at time step k for 

agent i, which could be derived from performance 

indicators such as detection precision, false positive 

rate, or mean response latency.  is a temporal decay 

factor, often chosen as an exponentially decreasing 

sequence (e.g.,  with 0<γ<1), giving more 

weight to recent performance. 

This formulation allows the system to self-calibrate 

trust based on observable behavior rather than static 

credentials or manual configuration. Agents with 

consistently high precision and low false alarm rates 

accumulate high trust scores, whereas agents with 

erratic or malicious behaviors see their scores decay 

rapidly. 

The ATS value serves multiple critical roles: 

• In model aggregation: Agents with low ATS are 

either down-weighted or excluded from federated 

averaging to prevent model poisoning or noise. 

• In peer coordination: Agents with similar trust 

levels are more likely to exchange updates, 

promoting robustness through homophily. 

• In access control: ATS is used to determine 

whether an agent qualifies for a privilege token to 

participate in policy enforcement and 

communication. 

3.4.2 Token-Based Security and Isolation 

Building upon the ATS, the Trust-Orchestration Layer 

enforces access restrictions through a token-based 

security model. Inspired by OAuth 2.0 standards, the 

system issues short-lived, cryptographically signed 
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tokens to agents whose trust scores exceed a defined 

threshold θ. These tokens encode permission scopes 

such as: 

• read – Ability to receive federated model updates, 

• write – Ability to upload model gradients or 

observations, 

• enforce – Ability to execute real-time policy 

decisions on local traffic. 

If an agent’s trust score drops below the threshold θ, the 

orchestrator refuses to renew its token and flags the 

agent for quarantine. During quarantine, the agent can 

still perform passive traffic monitoring and local 

inference but is restricted from contributing to model 

updates or enforcing network policies. 

The token issuance process may be represented by the 

following API call: 

POST /token/issue 

{ 

  "agent_id": "AGENT123", 

  "trust_score": 0.87 

} 

In response, the orchestrator issues a time-limited 

access token with embedded trust metadata and scope 

definitions. Tokens are signed and validated using JWT 

(JSON Web Token) standards and rotated periodically 

to prevent replay attacks or long-term token leakage. 

This trust-based access control ensures that the system 

remains resilient to rogue agents, sybil attacks, and 

model corruption, while maintaining flexibility for 

agent rehabilitation through trust recalibration. 

 

In summary, the Trust-Orchestration Layer integrates 

continuous behavior evaluation with cryptographic 

access governance, forming a secure and adaptive 

foundation for federated intelligence in broadband 

infrastructures. It elevates the agent network from a 

collection of autonomous classifiers to a trust-regulated 

federation capable of collaborative, reliable, and 

explainable security enforcement. 

3.5 Technology Stack and Integration 

The implementation of the proposed self-optimizing AI 

agent framework relies on a carefully selected set of 

technologies designed to support modularity, 

interoperability, and scalability across geographically 

distributed broadband environments. Each component is 

chosen to meet the demands of low-latency processing, 

high availability, and telecom-grade service-level 

agreements (SLAs). 

• ONOS SDN Controller: The Open Network 

Operating System (ONOS) provides software-

defined networking capabilities that enable 

dynamic, programmable flow control across the 

network. ONOS is used here to facilitate policy-

based routing, enabling real-time redirection, 

throttling, or blocking of malicious traffic as 

instructed by edge agents. Its northbound APIs 

allow integration with AI-driven security modules, 

while its southbound protocols (OpenFlow, gNMI) 

offer direct control over network infrastructure. 

• gRPC & Kafka Streams: gRPC, a high-

performance remote procedure call framework, is 

used for lightweight, low-latency communication 

between agents and the federated orchestrator. 

Meanwhile, Apache Kafka Streams powers the 

real-time telemetry pipeline, enabling efficient 

collection, transformation, and distribution of 

traffic statistics, SHAP logs, and agent trust scores. 

Kafka ensures event durability, partitioning, and 

horizontal scalability. 

• TensorFlow Lite / PyTorch Mobile: These edge-

optimized machine learning runtimes host the AI 

inference models deployed on edge devices. 

TensorFlow Lite supports post-training 

quantization and interpreter APIs, while PyTorch 

Mobile offers just-in-time (JIT) model compilation 

for low-resource inference. These libraries ensure 

that agents can run real-time predictions without 

relying on GPU or cloud compute resources. 

• Docker / K3s: Containerization via Docker enables 

modular deployment of AI agents, each bundled 

with its model, inference logic, and telemetry 

clients. K3s, a lightweight Kubernetes distribution, 

orchestrates these containers on the edge, 

supporting service discovery, lifecycle 

management, and resource isolation. This 

combination supports fast scaling and rollback 

capabilities during updates. 

• Prometheus & Grafana: To ensure observability, 

the system uses Prometheus to scrape metrics such 

as detection latency, trust score evolution, and 

inference throughput. These metrics are visualized 

through Grafana dashboards, providing both real-

time and historical insights. Alerts can be 

configured for outlier behavior, model drift 

detection, or agent performance degradation. 

Together, this stack ensures that each layer of the 

framework is operationally efficient, horizontally 

scalable, and vendor-agnostic, allowing integration into 

a variety of broadband network operator environments. 

3.6 System Benefits 

The hybrid architecture proposed in this framework 

delivers a range of operational and strategic benefits, 

addressing key pain points in broadband cybersecurity 

while aligning with modern principles of explainable, 

federated, and ethical AI deployment. 

1. Edge-Local Decision-Making: By placing 

lightweight inference engines directly on edge 
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nodes, the system significantly reduces Mean Time 

to Detect (MTTD) anomalies and shortens the 

response time for policy enforcement. This is 

particularly critical for latency-sensitive 

applications such as VoIP, video conferencing, and 

industrial IoT, where delay in mitigation can cause 

user-perceived degradation or safety risks. 

2. Federated Learning: The use of federated learning 

protocols ensures that agents can learn 

collaboratively without exposing raw network 

traffic data. This privacy-preserving approach 

allows the system to converge on high-quality 

detection models while complying with data 

governance standards such as GDPR, HIPAA, and 

telecom-specific lawful intercept frameworks. 

3. Trust Adaptation: Through the Adaptive Trust 

Score (ATS) mechanism, the system ensures that 

learning and enforcement are driven by agents 

whose behavior is consistent, reliable, and 

verifiable. Agents evolve autonomously, and trust 

recalibration prevents system drift or corruption 

due to underperforming or adversarial nodes. This 

contributes to resilient learning loops and improves 

overall model robustness. 

4. Explainability and Compliance: By embedding 

SHAP-based interpretability modules into the 

inference workflow, each decision made by an 

agent whether to block, throttle, or allow a packet 

flow is accompanied by a clear explanation. This 

supports human-in-the-loop validation, regulatory 

audits, and AI ethics compliance, as mandated by 

emerging legislation like the EU AI Act and NIST 

AI RMF. 

In summary, the architecture balances the need for 

autonomous, scalable security intelligence with the 

critical demands for transparency, adaptability, and 

legal accountability. It establishes a deployable 

foundation for securing next-generation broadband 

networks against evolving threat landscapes. 

4. ALGORITHMS AND METHODS 

4.1 Overview of Self-Optimization Approach 

This chapter outlines the core algorithms and 

mathematical models that empower self-optimizing AI 

agents to operate autonomously in broadband 

environments. The system is designed to be adaptive, 

explainable, and resilient under uncertain and evolving 

traffic conditions. Each agent integrates reinforcement 

learning (RL) with anomaly detection and federated 

trust scoring mechanisms to make decentralized 

security decisions. 

The framework adheres to modern principles of edge 

AI, allowing agents to continuously learn from local 

data while sharing secure updates for global 

optimization (Hussain, Lal, & Prasad, 2023). The 

architectural intelligence is decomposed into three key 

pillars: risk-aware policy optimization, anomaly scoring 

with explainability, and trust-weighted decision sharing. 

4.2 Reinforcement Learning-Based Policy 

Optimization 

Reinforcement Learning (RL) plays a central role in 

enabling edge agents to autonomously adapt their 

policy decisions based on environmental feedback. 

Unlike rule-based systems that rely on static thresholds, 

RL allows agents to dynamically optimize security 

actions in the face of changing network behavior, 

adversarial tactics, and operational constraints. This 

section details how each agent formulates its decision 

problem using a Markov Decision Process (MDP) and 

learns optimal policies through cumulative reward 

maximization. 

 

4.2.1 Environment Modeling and State Representation 

Each edge agent operates within its local network 

context and models this context as a Markov Decision 

Process (MDP), formally defined as a tuple (S,A,P,R,γ), 

where: 

• S: A finite set of states representing current 

network conditions. 

• A: A finite set of actions the agent can take. 

• P: The state transition probability function P(s' | s, 

a) which may be unknown and learned implicitly. 

• R: The reward function that quantifies the value of 

taking action a in state s. 

• γ: The discount factor, representing the agent's 

emphasis on immediate versus future rewards. 

The state space St for each agent at time t is a feature 

vector derived from real-time telemetry and statistical 

profiling. Key components include: 

• Packet Entropy: Measures unpredictability in 

header fields and flow behavior, indicating 

anomalies or coordinated attacks. 

• Recent SHAP Anomaly Scores: Captures 

interpretability metrics from the model’s previous 

inferences, providing a semantically rich feedback 

signal. 

• Local Action Effectiveness: Quantified using 

metrics such as precision and recall, tracking the 

accuracy of previous actions. 

• Agent Trust Score: Reflects the agent's behavioral 

consistency and is derived from the Adaptive Trust 

Score (ATS) function. 

The action space At includes the following discrete 

options: 

• ALLOW: Pass the flow as benign. 

• THROTTLE: Reduce bandwidth allocated to the 

flow. 

• BLOCK: Drop packets and optionally blacklist the 

source. 

• REQUEST_RETRAINING: Flag the flow as 

uncertain and request model recalibration from the 

orchestrator. 
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These actions are intended to balance security 

sensitivity with network performance, ensuring service 

continuity while mitigating threats. 

4.2.2 Reward Function 

To guide policy learning, the agent receives a reward 

based on the outcome of its selected action. The reward 

function is carefully designed to incorporate both 

accuracy and latency, the two most critical performance 

indicators in telecom security enforcement. It is defined 

as: 

 

Where: : True Positive Rate at time t, indicating 

the proportion of actual threats correctly identified. 

: False Positive Rate, penalizing actions that 

mistakenly block or throttle legitimate traffic. : 

Latency incurred in policy execution, capturing both 

detection delay and enforcement overhead. α,β,γ: 

Tunable weight coefficients reflecting operational 

priorities and SLA requirements. For example, a 

latency-sensitive service may assign a higher value to γ, 

whereas a high-security enterprise deployment may 

prioritize α. 

This composite reward function encourages the agent to 

maximize detection effectiveness while minimizing 

disruption and resource cost. It also allows flexible 

tuning across deployment scenarios for instance, 

prioritizing user experience in residential broadband or 

operational continuity in industrial IoT. 

Agents optimize their policy π(s) using RL algorithms 

such as Deep Q-Networks (DQN), Proximal Policy 

Optimization (PPO), or Soft Actor-Critic (SAC), 

depending on the complexity of the deployment. 

Experience replay and trust-aware exploration strategies 

are also incorporated to ensure safe learning, where 

agents explore new strategies without compromising 

ongoing service. 

In deployments with federated learning, locally 

optimized policies are periodically distilled and merged 

using model averaging at the orchestrator, forming a 

globally refined security policy that benefits from 

collective edge observations. 

4.2.3 Q-Learning Update Mechanism 

To enable each edge agent to learn optimal policies in a 

distributed and uncertain broadband environment, the 

system employs Deep Q-Networks (DQN) a widely 

adopted form of value-based reinforcement learning. 

The core idea behind Q-learning is to learn a Q-

function, Q(s,a) which estimates the expected 

cumulative reward for taking action a in state s, and 

following the optimal policy thereafter. 

The update rule for Q-values follows the classical 

Bellman equation, and is expressed as: 

 

Where: η is the learning rate, which controls how 

quickly the Q-values are updated based on new 

information. γ is the discount factor, determining the 

agent’s preference for immediate versus long-term 

rewards. A value close to 1 favors long-term reward 

maximization. r is the reward received after executing 

action a in state s. s′ is the next state, resulting from the 

action.  is the estimated value of the best 

future action at the next state. 

This formulation allows agents to learn optimal 

behavior over time, even in dynamic and partially 

observable environments like broadband edge networks. 

Stabilizing Training with DQN Enhancements 

While basic Q-learning is powerful, its direct 

application to high-dimensional state spaces (e.g., 

entropy vectors, SHAP scores, trust levels) is unstable. 

To address this, DQN introduces several architectural 

enhancements: 

1. Deep Neural Networks for Function 

Approximation 

Instead of using a Q-table (which is infeasible for 

large or continuous state spaces), a neural network 

is trained to approximate the Q-function: 

 

where θ are the network weights. This allows the agent 

to generalize across unseen states. 

2. Experience Replay 

Each agent maintains a replay buffer, storing tuples 

(s,a,r,s′). During training, the agent samples batches 

randomly from this buffer to decorrelate 

experiences and improve data efficiency. This 

technique reduces overfitting to recent events and 

improves convergence speed. 

3. Fixed Target Networks 

DQN uses a separate target network, Qtarget, with 

parameters θ−, which are updated less frequently. 

The target network stabilizes training by reducing 

oscillations caused by moving targets in the update 

equation. 

The target for Q-learning becomes: 

 

4. Epsilon-Greedy Exploration Strategy 

To balance exploration and exploitation, agents 

employ an epsilon-greedy policy, choosing a 

random action with probability ϵ\epsilonϵ, and the 
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best-known action otherwise. Over time, ϵ\epsilonϵ 

decays, allowing the agent to shift focus from 

exploration to exploitation. 

Contextual Application in Edge Agents 

In broadband security enforcement, this mechanism 

enables agents to learn nuanced action strategies that 

account for both immediate threat mitigation and long-

term policy effectiveness. For example: 

• If blocking suspicious traffic leads to high 

precision and low latency, the Q-value for BLOCK 

in that state increases. 

• If throttling causes frequent false positives, its Q-

value is diminished. 

• If REQUEST_RETRAINING often improves 

future decisions, it becomes favored in uncertain or 

novel states. 

By embedding DQN into the edge agents and allowing 

continuous training from live traffic data, the system 

ensures that policy enforcement is not only reactive but 

also continuously optimized. 

Furthermore, in federated deployments, local Q-

networks can be distilled into global policy 

improvements via parameter averaging or knowledge 

distillation, ensuring coordinated learning across agents. 

4.3 Anomaly Detection with XAI Integration 

Effective anomaly detection in broadband environments 

demands not only precision and responsiveness but also 

transparency and interpretability. Black-box models, 

though accurate, often lack explainability making them 

unsuitable for compliance-bound and operationally 

sensitive systems. To address this, the proposed 

framework integrates eXplainable Artificial Intelligence 

(XAI) directly into the inference pipeline. Specifically, 

it employs SHapley Additive exPlanations (SHAP) for 

model interpretability and Isolation Forests for 

unsupervised pre-screening of anomalies. This dual-

stage design ensures both detection efficiency and 

decision accountability. 

4.3.1 SHAP for Explainability 

SHAP is a game-theoretic approach to explain 

individual model predictions. It assigns an importance 

value (called a SHAP value) to each input feature, 

representing how much that feature contributed to the 

deviation of the model’s output from its baseline 

expectation. 

Mathematically, for a prediction function , the 

SHAP decomposition is expressed as: 

 

Where: : The output of the prediction model for 

input x, : The expected value of the model output 

across the dataset, : The SHAP value for feature iii, 

representing its marginal contribution to the prediction. 

In the proposed framework, SHAP values are calculated 

for each anomalous flow identified by the model. For 

example, if a packet flow is flagged as a potential 

DDoS attack, the SHAP values may highlight that high 

source entropy, frequent destination IP rotation, and 

abnormal inter-packet timing were the top contributing 

factors. 

This interpretability is critical in multiple dimensions: 

• Security Analysts: Gain clear insights into why a 

decision was made, supporting rapid incident 

validation. 

• Compliance Officers: Can audit decisions in 

accordance with legal mandates (e.g., GDPR, NIST 

AI RMF). 

• Model Debugging: Developers can trace back 

inconsistent decisions to model drift, poor feature 

learning, or adversarial behavior. 

To reduce computation, SHAP calculations are 

triggered only for decisions with high predicted threat 

probability (e.g., >0.85) or for policy-enforced actions 

like BLOCK. This makes the explainability system 

scalable and targeted. 

4.3.2 Isolation Forest Pre-Screening 

Before deep model inference and SHAP-based 

explanation are applied, the system uses Isolation 

Forests as a lightweight, unsupervised pre-screening 

mechanism. Isolation Forests are anomaly detection 

algorithms based on the principle that anomalies are 

easier to isolate in a data space due to their rarity and 

deviation from normal patterns. 

The algorithm builds a forest of random trees by 

recursively partitioning the feature space. The anomaly 

score  

 

Where: 

• : The path length of instance x across the trees 

shorter paths suggest anomalies. 

• : The expected path length, averaged 

across all trees in the forest. 

• c(n): A normalizing constant dependent on the 

sample size nnn, typically approximated as: 

 

with H(i) being the ith harmonic number. 
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Flows that exceed a predefined anomaly threshold (e.g., 

A(x)>0.6) are flagged for further evaluation by the deep 

learning model and SHAP explanation layer. 

Operational Pipeline Integration 

The integrated detection and explanation process 

unfolds in the following stages: 

1. Feature Extraction: Agents extract features from 

packet flows, including entropy, flow duration, 

protocol ratios, etc. 

2. Isolation Forest Screening: The features are passed 

through an Isolation Forest for rapid anomaly 

scoring. 

3. Inference Trigger: If anomaly score A(x) is high, 

the input is passed to the lightweight inference 

engine. 

4. SHAP Evaluation: If the model prediction exceeds 

a threat threshold (e.g., >95%), SHAP values are 

computed to explain the prediction. 

5. Policy Action: Based on the prediction and SHAP 

transparency, the agent enforces ALLOW, 

THROTTLE, BLOCK, or 

REQUEST_RETRAINING. 

This layered detection strategy ensures: 

• Efficiency: Quick pre-screening avoids 

unnecessary deep inference. 

• Interpretability: SHAP values empower human 

operators and policy engines to understand 

decisions. 

• Scalability: Only relevant flows consume compute 

for explanation and mitigation, preserving edge 

resource budgets. 

4.4 Trust Score Adjustment Algorithm 

In a distributed and federated broadband security 

architecture, it is essential to establish mechanisms that 

evaluate and continuously calibrate the reliability and 

credibility of each participating agent. The Trust Score 

Adjustment Algorithm empowers the system to 

distinguish between trustworthy, consistent agents and 

those that are underperforming, misbehaving, or 

potentially compromised. 

4.4.1 Adaptive Trust Score (ATS) 

Each agent maintains a continuously updated Adaptive 

Trust Score (ATS), which quantifies its performance 

based on historical detection accuracy, anomaly 

attribution quality, and policy execution correctness. 

The ATS is calculated using an exponentially weighted 

moving average (EWMA) to prioritize recent 

observations over older data, making it responsive to 

behavioral shifts. 

The trust score for agent iii at time t is given by: 

 

Where: 

•  is the evaluation metric at epoch k for agent iii, 

typically derived from precision, F1 score, or 

policy alignment. 

•  is a temporal decay factor, typically defined as 

λk=γt−k where γ ∈ (0,1) controls how quickly 

historical influence decays. 

Agents with high trust scores are: 

• Allowed full participation in federated model 

training and decision enforcement. 

• Granted high-scope OAuth tokens with privileges 

such as policy execution and model contribution. 

Agents whose ATS drops below a predefined threshold 

θ undergo automated corrective action, which may 

include: 

• Quarantine: The agent is suspended from 

contributing to model updates and cannot enforce 

policies. 

• Passive Mode: The agent operates in observation-

only mode, still collecting telemetry and SHAP 

attributions but without enforcement authority. 

• Retraining Flagging: The orchestrator may initiate 

targeted retraining or investigate possible poisoning 

or sensor faults. 

The ATS mechanism ensures behavior-aware system 

governance, dynamically aligning agent privileges with 

demonstrated competence. 

4.5 Federated Learning with Secure Aggregation 

To protect the integrity and confidentiality of learning 

in a decentralized broadband security network, the 

system adopts a federated learning (FL) framework 

enhanced by homomorphic encryption and personalized 

fine-tuning. This allows agents to collaboratively train 

detection models without sharing raw data, preserving 

both user privacy and organizational autonomy. 

 

4.5.1 Secure Update Sharing 

Each edge agent, after training a local model using its 

observed traffic, computes gradient updates . Rather 

than transmitting these updates in plain form exposing 

them to gradient inversion or inference attacks they are 

encrypted using a homomorphic encryption scheme 

(HE) such as the Paillier cryptosystem or CKKS. 

The encrypted gradient is expressed as: 
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The aggregator, without decrypting individual updates, 

performs additive aggregation directly in the encrypted 

domain: 

 

Where:  is the decryption function, applied only 

after aggregation.  is the combined global gradient 

update applied to the global model. 

This approach, originally formalized by Bonawitz et al. 

(2017), prevents gradient leakage, data reconstruction 

attacks, and update poisoning, while enabling 

collaborative model refinement. Agents with low trust 

scores (as per Section 4.4) are excluded from this 

process or assigned lower aggregation weights. 

4.5.2 Personalization Layer 

After global aggregation, the updated model is 

broadcast back to all participating agents. However, due 

to non-IID data distributions for example, the difference 

in traffic profiles between urban and rural nodes direct 

deployment of the global model can lead to reduced 

local performance. 

To address this, each agent executes a personalization 

phase, during which it fine-tunes the received global 

model using its own local validation set. This ensures 

that the global insights are adapted to local 

characteristics, such as protocol skew, attack 

prevalence, or device density. 

The benefits of this layer include: 

• Improved precision in heterogeneous 

environments. 

• Reduced false positives in edge-specific behavioral 

contexts. 

• Faster convergence during subsequent federated 

learning rounds. 

Fine-tuning can be implemented via transfer learning, 

where only the final layers are retrained, or via learning 

rate decay on the global parameters. This design 

balances global model consistency with local 

specialization, a critical feature for scalable security in 

diverse broadband topologies. 

 

Together, the Trust-Orchestration and Federated 

Learning components create a system that is: 

• Secure by design (via encryption and trust 

filtering), 

• Resilient against insider threats (via dynamic trust 

scores), 

• Scalable and personalized (via federated learning 

with fine-tuning), 

• Aligned with telecom SLA and privacy standards. 

4.6 Algorithm Summary 

To tie together the elements of real-time decision-

making, adaptive learning, and federated collaboration, 

each edge agent executes a main operational loop that 

integrates environment sensing, policy optimization, 

reward evaluation, trust computation, and update 

broadcasting. This loop is designed to be lightweight, 

asynchronous, and resilient making it suitable for 

deployment at the broadband edge with limited 

resources. 

Algorithm 4.1: Main Agent Loop 

def agent_loop(): 

    state = observe()  # Collects entropy, SHAP 

score, past effectiveness, trust 

    action = epsilon_greedy(Q[state])  # 

Selects action using current Q-values 

    reward, next_state = execute(action)  # 

Enforces policy, observes reward 

    Q[state][action] = 

update_Q(Q[state][action], reward, next_state)  

# Q-learning update 

    if compute_trust_score() > threshold: 

        send_model_update()  # Secure 

aggregation via FL 

    else: 

        quarantine()  # Agent isolation or 

passive mode 

 

Explanation of the Loop 

• observe(): Captures a real-time feature vector from 

the traffic stream, including packet-level metrics 

(e.g., entropy, flow duration), SHAP anomaly 

scores, and local performance metrics (e.g., 

precision, recall). The resulting vector defines the 

current state st. 

• epsilon_greedy(Q[state]): Implements a balance 

between exploration and exploitation. With 

probability ϵ, the agent explores random actions; 

otherwise, it selects the action with the highest 

estimated Q-value for the given state. 

• execute(action): Triggers the policy decision (e.g., 

ALLOW, BLOCK, THROTTLE, 

REQUEST_RETRAINING) and records the 

immediate reward and next observed state. The 

reward is computed as detailed in Section 4.2.2, 

incorporating accuracy and latency feedback. 

• update_Q(): Applies the Bellman update using the 

Q-learning equation: 
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• compute_trust_score(): Recalculates the Adaptive 

Trust Score (ATS) based on recent prediction 

outcomes. If the trust score remains above a 

configurable threshold θ, the agent is permitted to 

submit its model updates to the aggregator. 

Otherwise, it is moved into quarantine mode, where 

it no longer contributes to the federated model and 

can be flagged for retraining or investigation. 

This loop supports continuous self-learning, local 

policy enforcement, trust recalibration, and federated 

knowledge sharing, all performed in real-time at the 

edge. It is modular, enabling easy integration of newer 

RL algorithms, trust models, or inference strategies as 

the system evolves. 

 

4.7 Visualizations and Decision Heatmaps 

Effective observability and interpretability are crucial 

for managing large-scale deployments of autonomous 

AI agents in broadband security environments. This 

section outlines key visual outputs that assist analysts in 

monitoring model behavior, verifying trustworthiness, 

and explaining decisions to stakeholders and regulators. 

 

Figure 4.1: SHAP Summary Plot for Feature Attribution 

This summary plot ranks the top features influencing 

anomaly detection across all edge agents. SHAP values 

are computed per instance, and the average impact per 

feature is aggregated across time windows. Commonly 

influential features include: 

• Flow entropy: High variance in IP/port 

combinations is strongly associated with botnets or 

scans. 

• Inter-packet timing: Microbursts or abnormal 

delays indicate covert channels or exfiltration. 

• Protocol variance: Skewed protocol distributions 

(e.g., sudden spikes in UDP traffic) are red flags 

for DDoS or tunneling. 

 

Figure 4.2: Trust Score Heatmap 

This heatmap visualizes the temporal evolution of trust 

scores for all active agents. The color gradient 

represents trust levels from 0 (red) to 1 (green). Rows 

correspond to agent IDs and columns to hourly or daily 

intervals. 

• High-trust agents exhibit consistently strong 

detection performance, stable policy adherence, 

and low false positive rates. 

• Low-trust agents show erratic behavior, missed 

detections, or incorrect enforcement and may 

require retraining or isolation. 

Use case: Network operators or orchestrator systems 

can use the heatmap to: 

• Identify performance degradation in specific 

regions or devices. 

• Trigger targeted updates or maintenance. 

• Benchmark agent reliability over time. 

Together, the agent loop and its visual telemetry form a 

closed feedback system that ensures self-optimization, 

traceability, and resilience in AI-powered broadband 

security enforcement. 

5. IMPLEMENTATION AND EXPERIMENTATION 

5.1 Overview of Experimental Framework 

To validate the performance and reliability of the 

proposed self-optimizing AI agent architecture, we 

implemented a full-stack testbed that mirrors real-world 

broadband infrastructure conditions. The 

experimentation phase was designed to simulate high-

throughput environments, deploy agents at the edge, 

and evaluate them under a range of security events such 

as DDoS, spoofing, and port scanning. The system was 

containerized using Docker and orchestrated with 

lightweight Kubernetes (K3s), allowing flexible 

deployment across multiple nodes. 

Key components include: 

• Emulated broadband edge nodes using Mininet and 

OpenWRT virtual routers 
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• SDN controller (ONOS) to support dynamic flow 

control 

• Kafka for telemetry streaming 

• SHAP and Isolation Forest models for 

explainability and pre-filtering 

• Federated model aggregation using PySyft and 

secure update sharing 

5.2 Experimental Setup 

To validate the performance, adaptability, and real-time 

capabilities of the proposed self-optimizing AI 

framework for broadband security, a hybrid 

experimental testbed was developed. This section 

outlines the architectural layout, software stack, 

communication protocols, and datasets used in training 

and evaluation. The testbed replicates realistic telecom 

edge scenarios to assess detection accuracy, latency, 

and trust calibration under diverse network conditions. 

 

5.2.1 Testbed Architecture 

The testbed architecture consists of four virtual 

machines (VMs) provisioned within a private 

virtualized network environment to simulate a federated 

edge-to-core deployment. Three of these VMs represent 

edge nodes, each running an autonomous AI agent 

equipped with real-time packet sniffing, feature 

extraction, reinforcement learning, and local 

enforcement modules. The fourth VM functions as the 

federated aggregator, hosting the centralized 

components required for secure model coordination and 

orchestration. 

 

Figure 5.1: Testbed Layout for Self-Optimizing AI 

Agent Deployment 

Key architectural elements: 

• Edge Nodes (A, B, C): 

o Run Docker containers with TensorFlow Lite 

and PyTorch Mobile for model inference. 

o Deploy Scapy and Suricata for packet 

inspection and feature extraction. 

o Host local Redis instances for temporary 

caching of telemetry and Q-values. 

• Federated Aggregator: 

o Executes secure aggregation of encrypted 

gradient updates using Paillier cryptography. 

o Implements Jensen–Shannon divergence (JSD) 

for model drift detection. 

o Hosts the Adaptive Trust Score (ATS) engine to 

rank and filter agent contributions. 

Communication Infrastructure: 

• All agent-to-aggregator communication is handled 

using gRPC over TLS 1.3, ensuring low latency 

and end-to-end encryption. 

• Kafka Streams is used for high-throughput 

telemetry transport. Each Kafka topic is serialized 

using Apache Avro, which supports schema 

evolution and compression for bandwidth 

efficiency. 

• A lightweight Prometheus + Grafana stack 

monitors resource utilization, policy trigger counts, 

and trust score dynamics across the testbed. 

This design emulates a real-world broadband 

deployment, where agents are co-located with edge 

devices (e.g., OLTs, home gateways), and a cloud-

based orchestrator governs system-wide intelligence. 

5.2.2 Datasets 

The robustness of any learning-based cybersecurity 

framework relies heavily on the diversity, quality, and 

realism of its training data. For this study, three distinct 

datasets were used, each tailored to simulate different 

attack vectors and operational environments. 

1. CIC-IDS2018 

This dataset, provided by the Canadian Institute for 

Cybersecurity, is a comprehensive resource 

featuring brute-force, DoS, DDoS, botnet, 

infiltration, and web-based attacks. It includes 

labeled bidirectional flows, application-layer 

features, and time-series metrics across multiple 

days. It served as the primary source for supervised 

training and benchmarking of classification 

accuracy (Sharafaldin et al., 2018). 

2. UNSW-NB15 

Developed by the Australian Centre for Cyber 

Security, this dataset includes modern threat classes 

such as backdoors, worms, and shellcode 

injections. It was used to test model generalization 
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beyond CIC-specific attacks and validate cross-

dataset resilience. 

3. Synthetic ISP Logs 

To evaluate performance in more realistic, 

localized broadband environments, a custom 

Python-based traffic generator was developed. This 

tool simulates ISP-grade logs including: 

• Normal customer behaviors (e.g., streaming, 

browsing, IoT chatter) 

• Malicious patterns (e.g., scanning, flood attempts, 

exfiltration) 

• Varying session durations and protocol mixes 

(TCP, UDP, ICMP, GRE) 

Traffic flows were generated with randomized IP 

address pools, source entropy shifts, and inter-packet 

timing irregularities to mimic diverse subscriber 

environments (urban, suburban, rural). This dataset was 

instrumental in training the personalization layers of 

edge agents and validating non-IID adaptability. 

Data Splitting Strategy: 

• Each dataset was divided into 70% training and 

30% testing subsets, stratified to maintain class 

balance and ensure robust performance metrics. 

• The synthetic logs were further split into agent-

specific profiles, allowing evaluation of how well 

the federated model adapts across dissimilar traffic 

contexts. 

Preprocessing Pipeline: 

• Features were normalized using min-max scaling. 

• Label encoding was applied to categorical protocol 

fields. 

• SHAP values were precomputed for select samples 

to build interpretability benchmarks. 

This multilayered experimental setup ensures that the 

self-optimizing agent framework is validated across 

both benchmark datasets and custom-designed, 

broadband-specific traffic, providing empirical 

grounding for its real-world deployment potential. 

 

5.3 Key Performance Indicators (KPIs) 

To evaluate the proposed self-optimizing AI framework 

under realistic broadband threat conditions, a set of 

quantitative Key Performance Indicators (KPIs) was 

tracked. These metrics assess both the technical 

efficiency and security effectiveness of agents and the 

federated learning pipeline. 

Tracked KPIs: 

• Mean Time to Detect (MTTD): 

Measures the average time (in milliseconds) 

between the initial emergence of an anomalous 

behavior in network traffic and the moment the 

agent flags it as suspicious. Lower MTTD indicates 

rapid anomaly recognition, which is critical for 

real-time threat mitigation. 

• Mean Time to Respond (MTTR): 

Captures the duration from anomaly detection to 

the actual execution of a policy (e.g., throttle, 

block). MTTR includes decision latency, 

communication overhead, and policy propagation 

time. Low MTTR is essential for minimizing the 

blast radius of active attacks. 

• True Positive Rate (TPR) and False Positive Rate 

(FPR): 

TPR evaluates the proportion of correctly identified 

malicious flows, while FPR tracks the rate of 

benign flows incorrectly flagged as threats. These 

are computed per agent and averaged across runs to 

assess system-wide detection quality. 

• Policy Execution Latency: 

Measures the time from inference decision to 

policy enforcement (e.g., redirecting a packet, 

dropping a flow), typically in milliseconds. This 

latency must remain under SLA-defined thresholds 

to maintain service performance in broadband 

environments. 

• Model Drift Score: 

Assessed using Kullback–Leibler (KL) divergence 

between prediction distributions over time. High 

divergence values indicate model obsolescence or 

evolving traffic patterns, prompting retraining. 

 

Where PPP is the reference prediction distribution, and 

Q is the current model output distribution over classes. 

• F1-Score for Detection Precision: 

A composite metric balancing precision and 

recall, computed as: 

 

This metric captures the trade-off between avoiding 

false positives and catching true threats, making it ideal 

for imbalanced datasets common in anomaly detection. 

Monitoring and Logging Infrastructure: 

• All KPIs were collected via Prometheus exporters 

embedded in each agent container. 

• Visual dashboards were rendered using Grafana, 

offering real-time observability of metrics like 

MTTD, drift evolution, and trust score fluctuation. 

• Historical logs were centralized into an ELK 

(Elasticsearch–Logstash–Kibana) stack for post-

experiment analysis, enabling root cause tracing 

and comparative evaluation across configurations. 

5.4 Implementation Highlights 

This section summarizes the practical implementation 

aspects of deploying the proposed framework, focusing 
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on modular containerization, secure federated learning 

orchestration, and runtime execution logic. 

5.4.1 Agent Deployment Script 

Each edge agent was encapsulated in a Docker 

container for portability, security, and ease of 

deployment. The agent container included all essential 

components for traffic monitoring, inference, and policy 

enforcement. 

Deployment Script Example: 

docker run -d --name agentA \ 

  -v /opt/agent:/agent \ 

  -p 5000:5000 \ 

  selfopt-agent:latest 

 

Container Components: 

• agent.py: Core controller handling state transitions, 

trust score evaluation, and federated 

communication. 

• monitor.py: Passive packet inspection tool 

leveraging PyShark to extract features in real-time 

from mirrored network interfaces. 

• inference.onnx: Lightweight model exported from 

PyTorch or TensorFlow and optimized for ONNX 

Runtime, allowing sub-10 ms inference latency on 

ARM-based CPUs. 

Agents exposed RESTful endpoints for status checks, 

trust score audits, and policy logs, and pushed 

structured telemetry into Kafka topics for orchestrator 

aggregation. 

5.4.2 Secure Federated Aggregation 

The federated learning orchestration was implemented 

using the PySyft framework, which supports secure 

multiparty computations and privacy-preserving model 

updates. Each agent locally trained its model and 

computed encrypted gradients using the Paillier 

homomorphic encryption system. 

Encrypted gradients were aggregated at the central 

orchestrator using the following Python routine: 

def aggregate_updates(agent_updates): 

    encrypted_sum = 

sum([agent.encrypted_grad for agent in 

agent_updates]) 

    global_grad = decrypt(encrypted_sum) 

    update_model(global_grad) 

 

Additional Aggregation Features: 

• Drift analysis was performed every 50 aggregation 

rounds, using Jensen–Shannon divergence to 

compare model behavior across updates. 

• Agents with high trust scores contributed full 

updates, while low-trust agents were either filtered 

or scaled down using trust-weighted aggregation. 

• The final model update was broadcast to agents 

with scope-limited tokens, ensuring that only 

validated agents could receive and apply updates. 

This implementation validated the system’s ability to 

securely learn from edge agents, resist poisoning 

attempts, and adapt to traffic evolution, even under 

constrained compute environments typical of broadband 

nodes. 

5.5 Results and Discussion 

This section presents a detailed analysis of the 

experimental outcomes from deploying the proposed 

Self-Optimizing AI Agent (SOAA) framework across 

multiple testbeds and datasets. The results validate the 

framework’s capacity to deliver high detection 

accuracy, adaptive learning under drift, and trust-aware 

decision governance, while significantly outperforming 

traditional rule-based intrusion detection systems. 

5.5.1 Detection Effectiveness 

Across CIC-IDS2018, UNSW-NB15, and synthetic 

broadband datasets, the self-optimizing agents achieved 

a True Positive Rate (TPR) of 91.7% and a False 

Positive Rate (FPR) of only 4.2%, confirming their 

effectiveness in identifying malicious traffic while 

minimizing disruption to legitimate flows. In contrast, a 

baseline Snort-like static IDS yielded 72.3% TPR and a 

much higher FPR of 12.5%, underscoring the 

limitations of rigid signature-based detection under 

evolving threat conditions. 

Additional latency metrics reflect the responsiveness of 

the agents: 

• Mean Time to Detect (MTTD) improved from 65.9 

ms in the static IDS to 38.1 ms in SOAA. 

• Mean Time to Respond (MTTR) dropped from 

118.6 ms to 74.3 ms, highlighting real-time policy 

execution. 

Model 
TPR 

(%) 

FPR 

(%) 

MTTD 

(ms) 

MTTR 

(ms) 

SOAA 

(Ours) 
91.7 4.2 38.1 74.3 

Static IDS 72.3 12.5 65.9 118.6 

These results affirm the superiority of the RL-based, 

federated SOAA architecture in terms of both accuracy 

and reaction speed, making it highly suitable for 

deployment in bandwidth-constrained or latency-

sensitive environments like edge telecom nodes. 
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5.5.2 Model Drift and Adaptability 

A core strength of the SOAA framework is its built-in 

ability to detect and adapt to model drift. During 

experimentation, Jensen–Shannon divergence (JSD) 

scores were tracked across learning rounds. The average 

drift score remained below 0.12 in over 93% of the 

simulations, indicating that agents were able to preserve 

detection fidelity despite changes in traffic behavior. 

Moreover, SHAP-based feature attribution analysis was 

conducted to assess interpretability and consistency in 

decision-making. Results showed that the features 

contributing most frequently to true positives across all 

agents included: 

• Flow entropy 

• Session duration 

• Source port frequency 

• Protocol variance 

These top-ranked features accounted for more than 80% 

of high-confidence detections, validating the relevance 

and robustness of the feature engineering pipeline. 

 

Figure 5.2: SHAP Feature Importance Across Agents 

A visual ranking of the top 10 most impactful features 

aggregated from all agent detections across datasets. 

This interpretability layer not only supports explainable 

AI (XAI) requirements but also allows human analysts 

to audit and fine-tune detection policies effectively. 

5.5.3 Trust Evolution Analysis 

The dynamic trust score management system (ATS) 

played a critical role in filtering low-performing agents 

during federated training. Over a 24-hour experiment, 

trust scores were logged for all agents. 

Agents with persistently high false positives, or those 

whose model update gradients diverged significantly 

from the mean, saw their ATS values decay. These 

agents were automatically quarantined, removing them 

from model aggregation and policy enforcement. 

This adaptive trust modulation: 

• Prevented the injection of poisoned or skewed 

updates into the global model. 

• Encouraged agents to self-correct behavior based 

on feedback loops. 

• Enhanced overall federated model convergence and 

integrity. 

5.6 Limitations of Experimentation 

While the experimental setup and results were robust 

across multiple datasets and simulation scenarios, 

several important limitations should be noted for full 

transparency and future work planning: 

1. Testbed Simulation vs. Live ISP Networks: 

The system was deployed in a virtualized 

emulation environment, not on live broadband 

infrastructure. While traffic profiles were realistic, 

constraints like network jitter, carrier-grade NAT 

traversal, or real-time subscriber authentication 

flows were not fully replicated. 

2. Simulated Adversarial Conditions: 

Although the framework was evaluated under 

synthetic poisoning and mimicry attack 

simulations, it was not stress-tested against live 

adversarial agents in the wild. Future work should 

incorporate controlled red-team engagements or 

capture-the-flag scenarios to probe zero-day exploit 

resilience. 

3. Limited Traffic Volume Testing: 

The experiments were performed under modest 

throughput conditions (~100 Mbps per agent) due 

to hardware limitations. The behavior of the 

inference engine, trust module, and drift detection 

logic under 1 Gbps+ traffic volumes typical in 

metro or core routers remains unvalidated. 

Despite these limitations, the current results 

demonstrate clear technical feasibility and pave the way 

for staged deployment pilots in collaboration with ISPs 

and edge cloud providers. 

5.7 Summary 

The experimental implementation confirms that self-

optimizing AI agents significantly enhance security 

enforcement in dynamic broadband environments. They 

deliver faster detection, higher accuracy, and 

explainable policy decisions all while preserving 

privacy and enabling scalability via federated learning. 

These results serve as empirical validation of the 

theoretical framework presented in previous chapters. 

 

6. RESULTS AND EVALUATION 

6.1 Overview 

This chapter presents the empirical evaluation of the 

proposed self-optimizing AI agent framework as 

deployed in dynamic broadband environments. The 

evaluation focuses on key dimensions including 

detection performance, adaptability, latency, trust 

evolution, and explainability. Comparative 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 14–Issue 06, 51 – 82, 2025, ISSN:-2319–8656 

DOI:10.7753/IJCATR1406.1004 

www.ijcat.com  72 

benchmarking was conducted against baseline systems, 

including static intrusion detection systems (IDS) and 

non-learning policy enforcers. 

All experiments were performed over a 7-day test 

window, simulating fluctuating broadband traffic 

conditions and multiple threat profiles. Results were 

logged, analyzed, and visualized using Prometheus, 

Grafana, and custom Python scripts with libraries such 

as scikit-learn and SHAP. 

6.2 Detection Accuracy and Precision 

One of the most important indicators of a cybersecurity 

system’s real-world viability is its ability to correctly 

classify network traffic distinguishing legitimate 

behavior from malicious activity while minimizing false 

alarms. To evaluate the classification performance of 

the proposed Self-Optimizing AI Agent (SOAA) 

framework, a detailed analysis was conducted using a 

multi-class confusion matrix, from which core 

performance metrics were derived. 

 

6.2.1 Confusion Matrix and Metrics 

The confusion matrix is a fundamental performance 

evaluation tool that categorizes prediction outcomes 

into four classes: 

• True Positives (TP): Malicious traffic correctly 

identified as malicious. 

• True Negatives (TN): Benign traffic correctly 

identified as benign. 

• False Positives (FP): Benign traffic incorrectly 

identified as malicious (false alarm). 

• False Negatives (FN): Malicious traffic incorrectly 

identified as benign (missed detection). 

From this matrix, several derived metrics offer insight 

into the accuracy, robustness, and reliability of the 

detection system. These metrics are defined as follows: 

Accuracy 

The overall proportion of correctly classified instances, 

measuring general correctness. 

 

Precision 

The proportion of predicted malicious traffic that is 

actually malicious. Precision is critical in security 

contexts to minimize disruption to legitimate users due 

to false alarms. 

 

Recall (True Positive Rate - TPR) 

The proportion of actual malicious traffic that was 

correctly identified. High recall ensures threats are not 

missed, an essential feature for safety-critical or 

compliance-sensitive environments. 

 

F1 Score 

A harmonic mean of precision and recall, used to 

balance the two when both false positives and false 

negatives carry significant operational risk. 

 

Experimental Results and Comparative Analysis 

When evaluated across multiple datasets CIC-IDS2018, 

UNSW-NB15, and synthetic ISP logs the self-

optimizing agents achieved the following average 

performance scores: 

• Accuracy: 94.3% 

• Precision: 91.2% 

• Recall (TPR): 90.1% 

• F1 Score: 90.6% 

These results demonstrate that the SOAA framework 

achieves a high detection fidelity while maintaining low 

false positive rates essential for real-time enforcement 

scenarios in broadband infrastructure. 

By contrast, a baseline static intrusion detection system 

(Snort), configured with default rule sets and updated 

signatures, exhibited significantly lower performance: 

• Accuracy: 79.5% 

• Precision: 68.9% 

• Recall: 74.0% 

• F1 Score: 71.3% 

This substantial gap in F1 performance (+19.3% 

improvement) illustrates the advantages of 

reinforcement learning and federated adaptation in 

dynamically evolving threat landscapes. Static systems, 

even when updated frequently, are limited by their rule 

rigidity and lack of contextual awareness. 

Table 6.1: Detection Performance Metrics 

Model 
Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 

Score 

(%) 

Self-Optimizing 

Agent (SOAA) 
94.3 91.2 90.1 90.6 

Static IDS 

(Snort) 
79.5 68.9 74.0 71.3 
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Interpretation and Implications 

The high precision and recall achieved by SOAA agents 

indicate their suitability for deployment in both 

residential and enterprise broadband environments, 

where operational continuity and false alert suppression 

are critical. The system’s performance suggests: 

• Fewer customer support escalations due to 

wrongful throttling or blocking. 

• Reduced manual alert triage, enhancing NOC team 

productivity. 

• Improved regulatory compliance, as the framework 

supports explainability through SHAP and logs 

decision metrics transparently. 

Furthermore, because the system’s F1 score remains 

high across non-IID datasets, it shows strong 

generalization essential for ISPs operating across 

heterogeneous customer bases and geographically 

diverse nodes. 

6.3 Latency and Real-Time Responsiveness 

Latency is a critical constraint in broadband security 

enforcement, particularly in environments where 

Quality of Service (QoS) must not be compromised. 

This is especially true for applications like VoIP, 

gaming, telemedicine, or autonomous control systems, 

where delay-sensitive decisions such as blocking or 

throttling must be executed within stringent time 

budgets. The proposed Self-Optimizing AI Agent 

(SOAA) framework was benchmarked against this 

requirement using two key latency-related KPIs: 

 

6.3.1 Mean Time to Detect and Respond 

The two core latency metrics used were: 

1. MTTD – Mean Time to Detect: 

This measures how quickly an agent identifies 

an anomalous or malicious event after it has 

occurred. It reflects the responsiveness of the 

inference engine and the efficiency of the 

feature extraction pipeline. 

 

2. MTTR – Mean Time to Respond: 

This quantifies the time taken to enforce a 

response (e.g., BLOCK, THROTTLE) after 

the detection is made. It accounts for policy 

logic execution, agent-orchestrator 

communication (if applicable), and 

enforcement overhead. 

 

Observed Performance: 

Metric SOAA (Ours) Static IDS (Baseline) 

MTTD 38.1 ms 65.9 ms 

MTTR 74.3 ms 118.6 ms 

 

These results show a 42% improvement in detection 

latency and a 37% reduction in response time over the 

static IDS system, affirming the real-time enforcement 

capability of the SOAA framework. 

 

Figure 6.1: Latency Comparison Between SOAA and 

Baseline IDS 

A bar chart comparing MTTD and MTTR values across 

the two systems, with SOAA bars significantly lower, 

demonstrating superior responsiveness. 

This reduction in both detection and response times is 

attributed to: 

• Edge-local inference, eliminating round trips 

to centralized servers. 

• Reinforcement learning agents, enabling pre-

trained models to react faster to known traffic 

patterns. 

• Event-driven architecture, minimizing 

queueing delays during enforcement. 

In practice, such low-latency detection and mitigation 

can prevent service-level violations, reduce the impact 

of burst-based DDoS attacks, and improve user 

experience across broadband services. 

6.4 Drift Adaptability and Model Robustness 
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In high-throughput, continuously evolving network 

environments, one of the core challenges is maintaining 

model performance in the face of concept drift i.e., 

when the statistical properties of network traffic 

patterns change over time. These changes may result 

from benign factors (e.g., new applications, seasonal 

usage patterns) or from adversarial behavior (e.g., 

obfuscation techniques, novel attack vectors). 

 

6.4.1 Drift Detection 

To track such changes, agents employ Jensen–Shannon 

Divergence (JSD) to compare their current prediction 

distributions with historical benchmarks. This 

symmetric divergence metric quantifies how much the 

current model behavior deviates from a reference, 

enabling timely retraining before significant accuracy 

degradation occurs. 

    

Where: P and Q represent probability distributions over 

predicted classes at time intervals t and t+1, DKL is the 

Kullback–Leibler divergence, M is the average of the 

two distributions. 

Drift Response Threshold: A drift score threshold of 

0.15 was established. When an agent’s JSD exceeded 

this value, local retraining was triggered, and in some 

cases, the global orchestrator issued targeted model 

refreshes for the entire cluster. 

Performance Observations: 

• Across typical test runs, JSD scores remained 

below 0.12, indicating strong model consistency 

and robustness under realistic broadband usage 

patterns. 

• Drift was most prominent in synthetic adversarial 

environments, where sudden changes (e.g., 

simulated botnet bursts or IP spoofing spikes) 

drove JSD above threshold. In these cases, 

retraining restored performance to baseline levels. 

This adaptability is especially important in federated 

systems, where non-IID data distributions (i.e., different 

edge locations having dissimilar traffic profiles) can 

easily destabilize models if not properly managed. 

Summary of Benefits: 

• Low drift scores (< 0.12): Indicate reliable 

performance across time and conditions. 

• Local retraining triggers: Enable autonomous 

recovery from drift without manual intervention. 

• SHAP explanation stability: Maintained 

consistency in top-ranked feature importance 

before and after drift corrections. 

6.5 Trust Score Evolution and Policy Quarantine 

The incorporation of Adaptive Trust Score (ATS) into 

the agent framework introduces a novel approach to 

real-time performance regulation and federated 

governance. Rather than treating all agents equally, 

ATS enables a merit-based system where participation, 

privileges, and weightings are tied to behavioral 

reliability over time. 

 

6.5.1 Adaptive Trust Evolution 

Trust scores were dynamically computed for each agent 

based on time-decayed performance metrics, including 

precision, false positive rates, and SHAP-based 

justification consistency. The trust score was updated at 

each evaluation interval using the following formula: 

 

Where: : Evaluation score (e.g., precision or F1 

score) for agent iii at time k, : Decay coefficient 

prioritizing recent behavior. 

Trust scores were logged every hour over a 24-hour 

window. Agents exhibiting consistently low detection 

precision or high false alarm rates experienced trust 

score decay. Once trust dropped below a defined 

threshold (e.g., 0.65), the agent was: 

• Removed from the federated aggregation pool, 

• Quarantined from enforcement privileges, and 

• Logged for potential retraining or human audit. 

 

Figure 6.2: Heatmap of Agent Trust Score Fluctuations 
A time-series heatmap visualizing trust dynamics for 10 

agents over a 24-hour period. Agents A3 and A7, with 

sharp trust declines, were automatically quarantined. 

This adaptive mechanism ensures system-wide 

resilience by dynamically regulating agent influence 

based on operational quality. It prevents poisoned 

updates and minimizes the risk of inconsistent 

enforcement across the distributed system. 

6.5.2 Detection Accuracy by Trust Level 

A stratified performance analysis confirmed a strong 

positive correlation between trust score and detection 

precision: 
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• Agents with ATS > 0.85 achieved a mean precision 

of 94.8%, with F1 scores consistently above 92%. 

• Agents with ATS < 0.65 fell below 80.2% 

precision, contributing disproportionately to false 

positives. 

This validates the effectiveness of ATS as: 

• A predictive indicator of performance, and 

• A viable control metric for access management in 

federated learning cycles. 

In high-assurance environments, such as critical 

infrastructure or regulated ISP services, this behavior-

aware weighting mechanism provides policy 

justification for access revocation or enforcement 

limitation, satisfying governance, risk, and compliance 

(GRC) standards. 

6.6 SHAP-Based Explainability Analysis 

Transparency in AI-driven security decisions is not only 

useful for model debugging and human confidence, but 

also necessary for regulatory frameworks such as the 

EU AI Act, GDPR, and NIST’s AI Risk Management 

Framework. In this context, SHAP (SHapley Additive 

exPlanations) was integrated into the SOAA framework 

to deliver instance-level feature attributions and post-

decision explanations. 

6.6.1 Feature Attribution 

Across all classified samples, SHAP values were 

computed to identify which features most significantly 

influenced anomaly predictions. Aggregated across all 

test agents and datasets, the most influential features 

included: 

• Packet Entropy – Detects randomness in payload or 

header values; often high in obfuscated or 

polymorphic attacks. 

• Flow Duration – Helps distinguish between short 

burst scans and persistent sessions. 

• Source IP Entropy – Flags source hopping behavior 

typical of DDoS or spoofing campaigns. 

• Protocol Distribution – Uneven TCP/UDP ratios 

may indicate tunneling or covert channels. 

• TTL Variance – Irregular TTL values suggest 

nonstandard stacks or evasion tactics. 

 

Figure 6.3: SHAP Summary Plot of Feature Importance 

A bar chart showing the top 10 features ranked by 

average SHAP impact. Entropy-related fields dominate 

the list, followed by timing and protocol metrics. 

This layer of explainability: 

• Supports real-time human verification during 

high-priority alerts, 

• Aids model tuning and policy adjustment, and 

• Satisfies AI transparency mandates required in 

many international frameworks (Lundberg & 

Lee, 2017). 

6.6.2 Case Study: Misclassified Traffic 

In a notable instance, a legitimate BitTorrent session 

was falsely flagged as a peer-to-peer malware 

propagation attempt. The SHAP output revealed that the 

agent had overly weighted source port entropy, which 

was high due to the dynamic port negotiation behavior 

of BitTorrent clients. 

Root cause identified via SHAP: 

• The model had not adequately learned to 

distinguish benign high-entropy behavior 

associated with legitimate P2P tools. 

• This misclassification was detected due to a 

conflicting SHAP signature (i.e., high entropy with 

normal flow duration and TTL values). 

Corrective Action: 

• A whitelist exception policy was introduced for 

known BitTorrent traffic, supported by DPI 

confirmation. 
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• The model was retrained with additional labeled 

examples of legitimate P2P flows, improving its 

precision on subsequent trials. 

This case illustrates the operational value of SHAP not 

just for auditing, but also for continuous learning and 

rule refinement, enabling a tight feedback loop between 

autonomous agents and human operators. 

6.7 Scalability and Resource Utilization 

For a security framework to be practically viable in 

broadband networks and edge telecom environments, it 

must exhibit low resource consumption while 

maintaining high performance. This requirement 

becomes even more critical in Customer Premises 

Equipment (CPE), 5G radio access network (RAN) 

nodes, and multi-access edge computing (MEC) setups 

where CPU, memory, and power are tightly 

constrained. 

To evaluate the efficiency and scalability of the Self-

Optimizing AI Agent (SOAA) system, real-time 

telemetry on CPU, memory, and model inference time 

was collected using cAdvisor and exported to 

Prometheus for continuous monitoring. 

Key Resource Utilization Metrics: 

Metric Value (Avg.) Notes 

CPU Usage 
11.2% on a 2 

vCPU VM 

Agents maintained this even 

under high traffic volumes 

Memory 

Usage 

148 MB 

RAM 

Including traffic buffer, 

model, and SHAP cache 

Inference 

Time 

2.3 ms per 

flow 

ONNX runtime on ARM-

based emulated platform 

 

These results validate that the framework is: 

• Lightweight: Can operate alongside other edge 

functions (e.g., NAT, firewall, routing). 

• Deterministic in latency: With inference and action 

within sub-3 ms windows, the system supports 

real-time policy enforcement. 

• Scalable: Resources scale linearly with flows, not 

feature size, due to bounded packet windowing and 

efficient feature extraction. 

Implication for Telco-Grade Deployments: 

• These metrics meet the operational thresholds of 

modern telco infrastructure, where softwarized 

network functions (VNFs) must adhere to SLA 

constraints on resource isolation, jitter, and 

throughput integrity (Lee et al., 2023). 

• This makes the SOAA framework ideal for mass 

deployment across tens of thousands of nodes, 

ranging from smart gateways to regional micro data 

centers. 

6.8 Comparative Evaluation 

To contextualize the performance of the SOAA 

framework, a comparative evaluation was conducted 

against a baseline static intrusion detection system 

(IDS) configured with industry-standard rules (Snort 

v2.9.x). The assessment incorporated both functional 

and non-functional KPIs, including detection 

performance, latency, trust management, and 

explainability. 

6.8.1 Summary Table of Comparative Results 

Metric SOAA (Ours) Static IDS 

Accuracy (%) 94.3 79.5 

F1 Score (%) 90.6 71.3 

MTTD (ms) 38.1 65.9 

MTTR (ms) 74.3 118.6 

Avg. Trust Score 0.89 N/A 

Explainability 

(SHAP) 
Supported Not Supported 

 

Interpretation and Strategic Advantages 

1. Accuracy and F1 Score 

The SOAA framework outperformed the static 

IDS by a 14.8 percentage point margin in 

accuracy and a 19.3 point gain in F1 score, 

indicating a substantial improvement in both 

correct threat identification and balance between 

false positives/negatives. 

2. Latency Efficiency 

MTTD and MTTR improvements of 42% and 

37%, respectively, demonstrate the system's real-

time capability critical for SLA-driven 

broadband networks where detection and action 

delays translate to user-impacting service 

degradation. 

3. Trust-Based Learning 

SOAA’s average trust score of 0.89 signifies 

high-confidence performance and reinforces 

system resilience by suppressing unreliable 

agents. This is a functionality completely missing 

in static IDS frameworks. 

4. Explainability 

With SHAP integration, SOAA agents provide 
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per-decision transparency, aligning the system 

with AI governance and GDPR-style auditability 

requirements. This positions it ahead of legacy 

IDS tools, which offer minimal introspection and 

often act as black-boxes. 

 

This comparative evaluation clearly illustrates that the 

proposed SOAA framework excels not just in core 

classification performance, but also in broader 

architectural areas including: 

• Trust modulation 

• Latency-sensitive response 

• Edge scalability 

• Regulatory compliance 

This makes it an ideal candidate for next-generation 

broadband infrastructure security, especially where 

operational visibility, adaptive learning, and policy 

explainability are imperative. 

 

6.9 Summary of Findings 

The experimental evaluation of the proposed Self-

Optimizing AI Agent (SOAA) framework has 

substantiated its viability as a cutting-edge solution for 

real-time, decentralized broadband security 

enforcement. The multi-dimensional results from 

detection precision to operational scalability 

demonstrate that the framework is both technically 

robust and strategically aligned with the evolving 

requirements of modern telecommunications 

infrastructures. 

Key Findings 

1. High Accuracy and Low Latency in Real-Time 

Security Enforcement 

The SOAA agents consistently delivered accuracy 

above 94% and F1 scores above 90%, with Mean 

Time to Detect (MTTD) averaging just 38.1 ms and 

Mean Time to Respond (MTTR) at 74.3 ms. These 

results mark a significant improvement over static 

IDS solutions and confirm the framework’s 

suitability for latency-sensitive network services. 

2. Robustness to Model Drift and False Positives 

Through continuous monitoring via Jensen–

Shannon Divergence (JSD) and periodic local 

retraining, agents maintained stable detection 

performance under dynamic traffic conditions. 

Notably, the system kept drift scores below 0.12 in 

most environments and exhibited low false positive 

rates (<4.2%), ensuring service continuity and 

operational trustworthiness. 

3. Transparent, Auditable Decisions via SHAP 

By integrating SHAP (SHapley Additive 

exPlanations) directly into the model inference 

loop, the system provides granular insights into 

every security decision. This not only aids human-

in-the-loop oversight but also supports regulatory 

compliance under frameworks such as the EU AI 

Act, GDPR, and NIST AI RMF. 

4. Dynamic Trust Recalibration and Model Poisoning 

Resistance 

The Adaptive Trust Score (ATS) mechanism 

enables continuous agent evaluation based on real-

time performance. Agents with degraded behavior 

are automatically quarantined, preventing them 

from contributing poisoned or noisy gradients 

during federated learning cycles. This guarantees 

the integrity of the global model and reinforces 

resilience in distributed deployments. 

5. Edge-Native Efficiency and Scalability 

With CPU usage averaging 11.2%, memory 

consumption below 150 MB, and inference latency 

under 3 ms, the framework is proven to be 

deployable on resource-constrained edge devices 

such as 5G RAN nodes and customer premises 

equipment (CPE). The lightweight design supports 

massive horizontal scaling, making it compatible 

with carrier-grade broadband environments. 

 

Strategic Implications 

The SOAA framework effectively bridges the gap 

between AI innovation and telco operational realities, 

providing: 

• A decentralized, explainable, and trust-

governed cybersecurity solution. 

• A plug-and-play architecture for integration 

into existing SDN/NFV-based telecom stacks. 

• A path toward fully autonomous network 

defense, aligned with zero-touch security 

paradigms and self-driving network principles. 

 

These findings collectively validate that self-

optimizing, federated, and explainable AI agents are not 

only feasible for edge security but offer superior 

performance over traditional static models. The 

proposed architecture lays a robust foundation for AI-

native broadband security systems, capable of scaling 

with future 6G networks and meeting both technical and 

regulatory demands. 
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7. PROPOSED FRAMEWORK AND FUTURE WORK 

 
7.1 Introduction to the Proposed Framework 

Building on the empirical validation and algorithmic 

strategies detailed in earlier chapters, this chapter 

synthesizes the key architectural and operational 

insights into a cohesive, scalable framework: the 

Federated Self-Optimizing Enforcement Model 

(FSEM). The FSEM framework unifies reinforcement 

learning (RL), federated learning (FL), and trust-aware 

observability into a plug-and-play architecture for 

telecom-grade broadband environments. 

FSEM is designed to provide proactive, explainable, 

and resilient security enforcement, bridging the 

limitations of static IDS and isolated AI deployments. It 

introduces modular integration points for orchestration 

layers, telemetry pipelines, and privacy-preserving 

model updates. 

7.2 FSEM Architecture Overview 

7.2.1 Framework Layers 

The Federated Security Enforcement Model (FSEM) 

framework is composed of four interdependent 

architectural layers that collaborate to ensure distributed 

security enforcement with transparency and 

adaptability. At the base, the Local Policy Agent (LPA) 

Layer is deployed at edge nodes such as customer 

premises equipment (CPEs), base stations, or 5G access 

points where it is responsible for executing real-time 

inference, explaining decisions using SHAP values, and 

enforcing security policies locally. Above this lies the 

Federated Orchestration Layer, which aggregates 

encrypted model updates from LPAs, detects concept 

drift using divergence scores, and disseminates 

retrained models or adjusted policies to the agents. 

To support performance differentiation and resilience, 

the Trust and Access Control Layer calculates Adaptive 

Trust Scores (ATS) for each agent, governs token-based 

access rights, and proactively isolates agents 

demonstrating degraded or suspicious behavior. 

Complementing these layers, the Telemetry and 

Explainability Layer handles operational observability 

by exposing real-time metrics, log streams, and 

explainable decision artifacts through dashboards built 

with tools like Prometheus and Grafana. 

 

Figure 7.1: FSEM Architecture 

This illustrates a layered system design comprising 

edge-level LPAs equipped with reinforcement learning 

and SHAP explainability logic, a centralized 

orchestrator responsible for secure model aggregation 

and trust scoring, and monitoring interfaces for 

operators to track activity, performance, and anomalies 

across the network. 

7.3 Operational Workflow of FSEM 

The operational lifecycle of the FSEM framework 

follows a five-stage process, beginning with the training 

phase, where edge agents are initialized using pre-

trained models derived from globally trusted datasets 

such as CIC-IDS2018. Once deployed, the agents enter 

the inference phase, during which they continuously 

process incoming packet streams, classify traffic, and 

trigger local enforcement actions using their embedded 

models. 

At regular intervals, the system transitions to the update 

phase, wherein each agent computes encrypted gradient 

updates based on recent observations and transmits 

them to the federated aggregator. The aggregator refines 

the global model and distributes updates back to the 

agents, thereby enabling continual adaptation. 

Simultaneously, in the trust evaluation phase, each 

agent’s trust score is recalculated using a weighted 

function of recent F1 scores, model drift indicators, and 

feedback from the orchestration layer. If an agent’s trust 

score falls below a defined threshold, the quarantine 

and recovery phase is triggered. During this phase, the 

agent is isolated from sensitive operations and, if 

necessary, retrained using meta-learning or knowledge 

distillation techniques to restore performance and 

reintegrate into the federated ecosystem. 

7.4 Applications of FSEM in Telecom Infrastructure 

7.4.1 Fiber and DOCSIS Networks 

The Federated Security Enforcement Model (FSEM) 

can be seamlessly integrated into modern fiber-optic 

and cable infrastructures, specifically within DOCSIS 
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4.0 Cable Modem Termination Systems (CMTS) and 

Passive Optical Network (PON) Optical Line Terminals 

(OLTs). When embedded at these aggregation points, 

FSEM enables low-latency anomaly detection directly 

at the access edge, supports Media Access Control 

(MAC)-level filtering of suspicious or malicious session 

flows, and enforces privacy-preserving telemetry 

collection ensuring that sensitive subscriber data is 

never exposed in raw form during model training or 

analysis. 

7.4.2 5G and 6G Edge Deployments 

In the context of next-generation mobile networks, 

FSEM demonstrates particular relevance for 

deployment at 5G Radio Access Network (RAN) 

elements and Multi-access Edge Computing (MEC) 

nodes. These edge-native implementations allow for 

slicing-aware policy enforcement that respects the 

isolation and priority of different traffic types within 

network slices. Furthermore, federated learning 

mechanisms ensure policy consistency and threat 

intelligence alignment across geographically distributed 

microcells. The trust management layer also governs 

access to shared compute and network resources, 

preserving the security posture of virtualized network 

functions (VNFs) and containerized services in high-

density environments. 

7.5 Future Work and Research Directions 

7.5.1 Integration with Quantum-Safe Communication 

As quantum computing progresses toward practical 

cryptographic attacks, future extensions of FSEM will 

integrate post-quantum cryptographic protocols to 

safeguard the integrity of federated communication. 

Specifically, lattice-based schemes and quantum-safe 

key exchange protocols such as Kyber and FrodoKEM 

will be incorporated to secure gradient transmission and 

policy synchronization. This quantum resilience ensures 

that adversaries leveraging quantum-enabled man-in-

the-middle or inference attacks cannot compromise 

learning cycles or impersonate legitimate agents (Chen 

et al., 2022). 

7.5.2 Intent-Based Security Orchestration 

While the current architecture emphasizes anomaly 

detection and local enforcement, future versions of 

FSEM will evolve toward intent-based security 

orchestration. By leveraging Natural Language 

Processing (NLP) and logic programming, high-level 

business objectives such as prioritizing compliance-

sensitive traffic or restricting cross-border telemetry can 

be automatically translated into adaptive, machine-

enforced security policies. This shift from reactive 

enforcement to policy intent realization opens a new 

frontier in intelligent network automation (Kirkpatrick, 

2023). 

7.5.3 Real-World ISP Deployment 

Planned pilot deployments within Internet Service 

Provider (ISP) infrastructures will provide deeper 

validation of FSEM under authentic subscriber 

workloads and traffic diversity. These real-world trials 

aim to measure agent behavior under production-scale 

network conditions, evaluate seamless integration with 

traditional monitoring tools such as SNMP (Simple 

Network Management Protocol) and NetFlow 

collectors, and assess the commercial viability of the 

solution within environments subject to strict Service 

Level Agreements (SLAs). 

7.5.4 Extended Ecosystem Applications 

Beyond broadband, the FSEM architecture holds 

promise for broader applications across multiple 

verticals. In smart grid networks, it can provide 

substation-level control and detect operational 

anomalies or cyber-physical threats. In connected 

vehicle ecosystems, it offers a federated, secure 

enforcement layer for Vehicle-to-Everything (V2X) 

communication, helping protect autonomous platoons 

from lateral movement or spoofing. Similarly, in 

healthcare IoT settings, FSEM could enforce data 

exfiltration prevention for patient devices and hospital 

telemetry, aligning with HIPAA and other data 

protection mandates. 

7.6 Ethical and Regulatory Considerations 

The Federated Security Enforcement Model (FSEM) is 

designed with privacy, transparency, and regulatory 

compliance at its core. It adheres to the principles of the 

General Data Protection Regulation (GDPR) by 

ensuring that model training occurs through federated 

updates rather than centralized aggregation of raw data. 

All telemetry analysis is performed locally on the agent 

level, thereby eliminating the need to transmit sensitive 

user information across the network. This design 

paradigm significantly reduces the risk of data leakage 

or unauthorized surveillance. 

Further strengthening its compliance posture, FSEM 

integrates explainability tools such as SHAP and real-

time visualization dashboards. These components 

empower both human analysts and auditors to interpret 

and trace the rationale behind autonomous policy 

decisions. In addition to GDPR alignment, FSEM 

supports compliance with the EU AI Act by embedding 

auditable decision logs, adaptive trust scoring for 

accountability, and continuous human oversight through 

alerting interfaces and performance dashboards. These 

measures collectively position FSEM as an ethically 

grounded and regulation-ready framework for next-

generation AI in telecom environments. 
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7.7 Summary and Contributions 

The Federated Security Enforcement Model represents 

a significant shift in how broadband infrastructure can 

approach intelligent security management. Rather than 

relying on static, centralized intrusion detection 

systems, FSEM introduces a modular architecture that 

integrates reinforcement learning, federated learning, 

and explainable AI (RL-FL-XAI) to enable 

decentralized, real-time policy enforcement directly at 

the network edge. 

Among its core contributions, the framework offers 

real-time explainability for every inference-based 

action, achieved through SHAP-driven decision 

transparency and granular feature attribution. It also 

incorporates a dynamic trust management system that 

continuously calibrates agent reliability, ensuring that 

only high-performing entities participate in model 

training and enforcement. Experimental evaluations 

confirm that FSEM delivers measurable improvements 

in detection accuracy, false positive reduction, and 

response latency when compared to legacy IDS 

systems. 

Finally, the architecture has been designed for 

extensibility, making it suitable for integration with 

emerging AI-native network paradigms, such as intent-

based networking, quantum-resilient communication, 

and autonomous service orchestration. Taken together, 

the methods, results, and architectural design presented 

in this work provide a practical and forward-looking 

blueprint for telecommunications providers aiming to 

transition toward intelligent, self-regulating, and 

trustworthy broadband ecosystems. 
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