
International Journal of Computer Applications Technology and Research 

Volume 6–Issue 12, 493-497, 2017, ISSN:-2319–8656 

www.ijcat.com  493 

 

Energy Optimization using Cloud Offloading Algorithm 

 
Jyothi T 

Assistant Professor 

Department of ISE 

GSSSIETW, India 
 

 

Abstract—Computational offloading is an effective 

method to address the limited battery power of a 

mobile device, by executing some components of a 

mobile application in the cloud. In this paper, a 

novel offloading algorithm called ‘Dynamic 

Programming with Hamming Distance 

Termination’ (denoted DPH) is presented. The 

algorithm uses randomization and a hamming 

distance termination criterion to find a nearly 

optimal offloading solution quickly. The algorithm 

will offload as many tasks as possible to the cloud 

when the network transmission bandwidth is high, 

thereby improving the total execution time of all 

tasks and minimizing the energy use of the mobile 

device. Furthermore, the algorithm is extensible to 

handle larger offloading problems without a loss of 

computational efficiency.  

Keywords —Mobile Cloud Computing; Dynamic 

Programming; Computational Offloading; 

Randomization; Hamming Distance; Energy-

Efficiency 

 

I. INTRODUCTION 

Computation offloading is a method where some of 

the computational tasks of a mobile application can be 

offloaded to run on remote servers in the cloud, in 

order to save energy [1] [2]. However, the problem of 

partitioning the application tasks for offloading is NP-

complete in general. The main goal of the offloading 

algorithm is to minimize the overall energy used by 

the mobile application, while meeting an execution 

time constraint. 

 

A task to be offloaded must be transmitted over a 

wireless access network, and the time-varying wireless 

transmission bandwidth must be considered. An 

adaptive offloading algorithm can determine the 

offloading decisions dynamically according to a 

changing wireless environment. 

 

Reference [3] presented a system that enables energy- 

aware offloading of mobile tasks to the  

 

cloud called MAUI. Further improvements were 

proposed in CloneCloud [4]    and Thinkair [5]. In all 

cases, the partitioning problem results in an integer 

programming problem which cannot be solved 

efficiently. A Dynamic Programming (DP) algorithm 

was proposed in [6], where a two dimensional DP table 

was used. However, this scheme did not consider an 

execution time constraint when computing the 

offloading decisions, although this time constraint is 

an important issue for many interactive applications . 

Furthermore, a backtracking algorithm was needed to 

find the final decisions, which was time consuming. 

 

Reference [7] provided a dynamic  programming 

approach which builds a three-dimensional 

programming table and requires pseudo polynomial 

time complexity [7]. However, it doesn’t consider the 

energy consumed in the mobile device which is an 

important criteria for mobile devices. 

 

In this paper, an innovative dynamic programming 

algorithm called DPH is proposed. Dynamic 

programming is an optimization approach that 

transforms a complex problem into a sequence of 

simpler problems. The DPH algorithm introduces 

randomization, i.e., we generate random bit strings of 

0s and 1s periodically and utilize sub-strings when 

they improve the solution (similar to genetic 

optimization). We also fill the dynamic programming 

table in a creative way to avoid the extra computation 

for common sub-strings.  

 

The algorithm can find a nearly optimal solution after 

several iterations. It uses a Hamming distance criterion 

to terminate the search to obtain the final decision 

quickly. The hamming distance termination criterion 

is met when a given fraction of tasks are uploaded. The 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 6–Issue 12, 493-497, 2017, ISSN:-2319–8656 

www.ijcat.com  494 

 

final solution depends upon the wireless network 

transmission bandwidth and the computational power 

of the CAP and cloud servers. 

 

The remainder of the paper is organized as follow: 

Section II provides the system model and problem 

formulation. Section III presents the proposed 

algorithm which is based on the dynamic 

programming table. The paper concludes in section 

IV. 

 

II. SYSTEM MODEL AND 

PROBLEM FORMULATION 

 

Consider an application consisting of some un-

offloadable (i.e., local) tasks and N offloadable tasks. 

Normally,  local tasks include those that directly 

handle user interaction, access local I/O devices or 

access specific information on the mobile device. 

Therefore, local tasks must be locally processed by the 

mobile user. We can merge all the local tasks into one 

task [13]. In [14], an example of a face recognition 

problem which is composed of eight offloadable tasks 

and one local task is presented. 

 

A. Network Model 

 

We consider a handheld mobile device with N 

independent tasks that can be executed locally or 

transferred to cloud for execution as shown in Fig. 1. 

We assume that a WiFi wireless network is available 

for the mobile device, but the network transmission  

bandwidth  can  change  dynamically. 

Typically,wireless interference and network 

congestion will dynamically change the network 

transmission bandwidth. The mobile device needs to 

decide whether each task should be processed locally 

or offloaded, according to the current wireless network 

transmission bandwidth. The time taken to transfer a 

task between a mobile device  and the cloud through a 

wireless link is an important issue since a total 

execution time constraint for all tasks exists. 

Therefore, the dynamic programming algorithm must 

consider the current wireless network bandwidth when 

computing a decision. 

 

For task i, let Mi ∑ {0, 1} be an execution indicator 

variable. Let Mi = 1 if task i is executed at the mobile 

device and 0 otherwise. If it is executed locally, the 

energy consumption is Eli. Eri is the energy 

consumption of the mobile device when the task i is 

executed on the cloud, and Eti is the energy-cost of 

transmitting task i to the cloud server. 

 

Variable Tli is the local execution time to process task 

i, and Tri is the remote execution time when task i is 

executed in remote cloud server. Variable Tti is the 

transmission time to transfer task i to the cloud server. 

 

 
Fig 1: Network Model 

 

It is clear that the transmission energy used to upload 

each task will depend on the network transmission 

bandwidth. Therefore, changes in wireless network 

bandwidth will affect the offloading decision. For 

example, if we assume that transmission time of each 

task is equal to the size of each task divided by the 

network transmission rate, then any variation in the 

transmission rate will affect the final decision of 

whether to offload this task or not. 

 

 The energy consumption function and its 

corresponding execution time are defined in (1) and 

(2): 

 

 
The execution time T of all tasks must satisfy the 

following condition, where Tconstraint is the 

execution time requirement 

 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 6–Issue 12, 493-497, 2017, ISSN:-2319–8656 

www.ijcat.com  495 

 

 

For simplicity, we use M = [M1, M2,  MN] to denote 

a vector of binary offloading decisions. The problem 

that we want to solve is as follow: 

 
 

The number of combinations of binary values Mi to 

search for the optimal solution grows exponentially 

with the number of tasks. Our goal is to determine 

which tasks should be offloaded to the cloud server to 

minimize energy while meeting a mobile application’s 

execution time constraint. 

 

III PROPOSED ALGORITHM BASED 

ON THE DYNAMIC PROGRAMING 

TABLE 

 

A. Innovative Way of Filling the Table  

 

The proposed algorithm is called ‘Dynamic 

Programming with Hamming Distance Termination’ 

(DPH). In this scheme, we use an N*N table to store 

the bit-streams that show which tasks should be 

offloaded (where N is the number of tasks). For the 

first step, a random bit stream is generated that 

determines a first solution.  

 

This stream is assigned to the table such that 1s are 

assigned to the next horizontal cell, and the 0s are 

assigned to the next vertical cell. If the first bit of the 

stream is 1, the starting cell is (1, 2) and if the first bit 

of the stream is 0, the starting cell is (2, 1).  

 

This approach will avoid extra computations for 

common bit strings. A 2D 8*8 table is shown in table 

I. To clarify, assume that N = 8 and the first random 

stream is 11100110 (black numbers) or 00110110 (red 

numbers), (2 examples are given). Assume that the 

second random bit stream in each case is 11000111.  

 

The starting cell of the second stream is (1, 2) since the 

first bit is 1. By following the aforementioned rules to 

fill the table, the resulting green stream is shown in 

table I. 

 

 
Whenever a bit stream is generated randomly, we 

calculate the consumed energy and time of each cell 

(i.e., each task) in the table, and also at the same time 

calculate the total energy and execution time of this bit 

stream. However, if a random bit stream is generated 

which has some common cells with an existing string 

in the table, we only calculate the total energy of new 

string until the first common cell and then compare 

this new total energy with the existing total energy at 

this cell.  

 

If the new total energy at this specific cell is less than 

the previous one, we keep the new sub-string and 

delete the old sub-string, and replace the total-energy 

and cell-energy of this cell with new amounts. We then 

update the energy and execution time of the remaining 

cells for the existing bit stream, based on the new 

values at this common cell. Otherwise, if the total 

energy of the existing bit stream is less than that of the 

new bit stream at the common cell, we will perform 

the same procedure while keeping the existing stream.  

 

Every time a new stream is generated, we keep 

tracking the arrangement of the stream in the table. We 

terminate and accept a solution which has Hamming 

distance larger than a given threshold from an all 1 

stream. The all 1 stream denotes the case where all 

components are executed locally. For example, the 

algorithm can terminate after K=20 iterations, or when 

70% of the tasks have been offloaded. This heuristic 

termination criterion yields good results. 

 

B. Algorithm of the Proposed Scheme The algorithm 

of our proposed scheme is shown in table II: 

 

 

 

 

 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 6–Issue 12, 493-497, 2017, ISSN:-2319–8656 

www.ijcat.com  496 

 

Table II. Algorithm of Proposed Method (DPH) 

1.Initialize Energy and Time matrixes and set the time 

constraint 

(Tconstratint) and Transmission Rate 

2.for iteration = 1 to iteration_num 

3.generate a random bit stream 

4. check the first bit to specify the starting cell in the 

table 

5.  for i = 1 to N-1 

6.     Put each bit of the bit stream in the correct  

        position in table 

7.   Calculate the self-Energy and time of each cell   

      and the total energy and time. 

8.       if this specific cell in table is visited before 

             compare the new Total Energy of this cell  

           with the previous one 

9.            if the new Total Energy of the cell is less         

                   than the previous one 

10.              Replace the total energy and time of this   

                   Cell with the new calculated amounts. 

11.              Update the remaining amounts in the  

                   Remaining cells of the previous bit  

                   stream based on the new amount of this  

                   common cell. 

12.               Calculate the energy and time of the  

                    Remaining bits of the new bit stream. 

13.            Track the position of all bits in the table in  

                  a  matrix 

14.       else 

15.            Keep the previous total energy and time in  

                 the cell. 

16.           Calculate the Energy and time of the  

                 remaining cells of the new stream based  

                 on the existing amount of this cell. 

17.            Track the position of all bits in the table in  

                  a  matrix 

18.       End if 

19.    End if 

20. End for 

21. 

22. if  Number of bits in table = N & Etotal < Emin 

           & Ttotal < Tconstraint & hamming distance   

           criterion is  met 

23. return Etotal, Ttotal 

24. end if 

25. End for 

 

 

 

IV. CONCLUSION 

 

 A mobile device must decide which computational 

tasks of a mobile application should be offloaded in 

order to minimize energy consumption while 

satisfying an execution time constraint. An efficient 

heuristic algorithm called DPH to solve this 

optimization problem is proposed, which uses 

dynamic programming combined with randomization. 

 

 It also uses a hamming distance as a termination 

criterion. Simulation results show that the proposed 

DPH algorithm can find nearly optimal solutions and 

it can be easily handle larger problems without losing 

computational efficiency. The DPH algorithm can be 

used dynamically, to adapt to the changes in the 

network transmission rate. The algorithm will tend to 

offload as many tasks as possible when the network 

performance is good, resulting in a rapid convergence 

to a near optimal solution with a very fast execution 

time. 

 

REFERENCES 

 

[1] Z. Li, C. Wang, and R. Xu, “Computation 

offloading to save energy on handheld devices: a 

partition scheme,” in Proc. International Conf. 

Compilers, Architecture, Synthesis Embedded Syst., 

pp. 238–246, 2001. 

[2] P. Rong and M. Pedram, “Extending the lifetime 

of a network of batterypowered mobile devices by 

remote processing: a Markovian decisionbased 

approach” , Design Automation Conf., pp. 906–911, 

2003. 

[3] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. 

Wolman, S. Saroiu, R. Chandra, and P. Bahl, “MAUI: 

Making smartphones last longer with code offload,” in 

Proc. ACM International Conference on Mobile 

Systems, Applications, and Services (MobiSys), pp. 

49–62, 2010. 

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A  

Patti, “Clonecloud: Elastic execution between mobile 

device and cloud,” in Proc. ACM Conference on 

Computer Systems (EuroSys), pp. 301–314, 2011. 

[5] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. 

Zhang, “Thinkair: Dynamic resource allocation and 

parallel execution in the cloud for mobile code 

offloading,” in Proc. IEEE International Conference 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 6–Issue 12, 493-497, 2017, ISSN:-2319–8656 

www.ijcat.com  497 

 

on Computer Communications (INFOCOM), pp. 945–

953, 2012. 

[6] Y. Liu, M. J. Lee, “An Effective Dynamic 

Programming Offloading Algorithm in Mobile Cloud 

Computing System”, IEEE WCNC'14, pp.1868 – 

1873, 2014. 

[7] A. Toma, J. Chen, “Computation Offloading for 

Frame-Based Real-  Time Tasks with Resource 

Reservation Servers”, IEEE Euromicro Conference on 

Real-Time Systems, pp. 103-112, 2013. 

[8] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and 

D. Milojicic, “Adaptive offloading for pervasive 

computing,” IEEE Pervasive Comput., vol. 3, no. 3, 

pp. 66–73, 2004. 

[9]Available: http://darnok.org/programming/face-

recognition/. 

[10] A. Kammerdiner, P A. Krokhmal, P. M. Pardalos, 

“On the Hamming distance in combinatorial 

optimization problems on hypergraph matchings”, 

Springer Optimization Letters, Vo. 4, pp. 609-617, 

2010. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ijcat.com/

