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Abstract: Remotely sensed data has become an indispensable asset in spatial planning and development studies, offering a high-

resolution lens through which environmental, infrastructural, and socio-economic disparities can be detected and monitored. From a 

continental perspective, Africa presents a diverse geographical and demographic landscape, with varying degrees of infrastructural 

reach and population density. Across Southern, Western, Central, Northern, Eastern, and the Horn of Africa, large segments of the 

population remain underserved despite rapid urbanization. This study presents a project-based approach to leveraging remotely sensed 

indicators—such as NDVI (Normalized Difference Vegetation Index), NTL (Night-Time Light emissions), and LST (Land Surface 

Temperature)—to identify underserved communities across multiple African regions. Using a harmonized dataset that includes spatial 

and non-spatial attributes from countries such as South Africa, Namibia, Tanzania, Cote d’Ivoire, Senegal, Chad, Cameroun, 

Democratic Republic of Congo, Ethiopia, Libya, Algeria, and Morocco, the study combines satellite-derived indicators with ground-

based demographic datasets to model spatial vulnerability. Spatial classification and clustering techniques are used to detect low-light, 

high-temperature, and low-vegetation zones—traits commonly linked with socio-economic deprivation and infrastructural exclusion. 

Case-specific data (e.g., population values such as 994 in South Africa and 502 in Chad) inform regional differentiation. The 

framework supports policy efforts in data-scarce environments by offering a replicable method to pinpoint critical zones in need of 

targeted development. By contextualizing remote sensing within continental and national development goals, this study underscores 

the transformative potential of satellite data in shaping inclusive, evidence-driven planning across Africa.  
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1. INTRODUCTION 
1.1 Contextual Overview  

Africa continues to face persistent infrastructure inequality, 

where access to electricity, clean water, transport, and health 

services remains unequally distributed across urban and rural 

landscapes [1]. This gap is exacerbated by limited availability 

of reliable ground-level data, particularly in remote and 

conflict-affected regions [2]. As a result, underserved 

communities often remain invisible in national infrastructure 

planning frameworks [3]. 

Remotely sensed data has emerged as a powerful tool to 

overcome these data limitations. By providing consistent, 

high-resolution observations of Earth's surface, satellite 

imagery enables the monitoring of land use changes, 

environmental degradation, and built-up areas across vast 

geographic extents [4]. The potential of such data is 

increasingly recognized in supporting service provision and 

addressing socio-spatial inequalities [5]. 

For example, Night-Time Light (NTL) data derived from 

VIIRS or DMSP-OLS sensors has proven effective in 

detecting electrification patterns, highlighting areas that lack 

access to grid infrastructure [6]. Similarly, the Normalized 

Difference Vegetation Index (NDVI), derived from 

multispectral imagery, can be used to assess urban green 

spaces or identify rural areas where vegetation loss reflects 

environmental vulnerability [7]. 

In the absence of regular census or survey data, satellite-based 

measurements serve as critical proxies for estimating 

development indicators, particularly in marginalised or 

informal settlements [8]. Combined with GIS and ancillary 

socio-economic datasets, remotely sensed data enhances the 

ability to detect spatial disparities and monitor development 

trends in real time [9]. 

By integrating remote sensing technologies into planning 

workflows, African governments and development agencies 

can make more informed decisions that directly target 

infrastructure-poor communities. This shift supports the 

transition from reactive to proactive governance, ultimately 

contributing to more inclusive and sustainable development 

outcomes [10]. 

1.2 Importance of Geospatial Technologies  

Geospatial technologies—including satellite remote sensing, 

Geographic Information Systems (GIS), and global navigation 

systems—have become foundational tools in modern 

development and environmental management [11]. Their 

ability to collect, store, visualize, and analyze spatial 

information at multiple scales enables users to model dynamic 

interactions between natural and human systems [12]. 

In data-scarce regions like sub-Saharan Africa, these 

technologies offer a cost-effective means of deriving essential 

indicators related to land cover, infrastructure, and resource 

distribution [13]. For instance, GIS has been widely applied in 
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mapping slum settlements and monitoring informal urban 

expansion in cities such as Nairobi and Accra [14]. 

Moreover, remote sensing supports early warning systems for 

floods, droughts, and disease outbreaks, helping governments 

to anticipate and mitigate risks rather than respond post-

disaster [15]. In agriculture, multispectral sensors are used to 

assess crop health and guide precision farming interventions 

[16]. These examples underscore how spatial technologies can 

inform strategies for food security, public health, and urban 

development. 

The increased availability of open-access platforms such as 

Google Earth Engine and Sentinel Hub has democratized 

access to satellite data, allowing researchers, NGOs, and local 

authorities to leverage Earth observation tools without 

prohibitive costs [17]. Simultaneously, mobile GIS and open-

source software like QGIS have facilitated the 

decentralization of spatial analysis to local users [18]. 

Together, these developments have elevated geospatial 

technologies from niche academic tools to central instruments 

in evidence-based governance. Their value lies not only in 

technological precision but also in their potential to bridge 

gaps in development planning and enhance equity in resource 

distribution [19]. 

1.3 Research Scope and Objectives  

This study focuses on utilizing remotely sensed indicators to 

identify and characterize underserved communities across 

selected regions in Africa, namely Southern, Western, 

Central, North, and the Horn of Africa. The goal is to design a 

replicable, project-based methodology that highlights spatial 

inequality and supports equitable infrastructure planning [20]. 

The regions under study reflect significant diversity in 

geography, governance, and development status. Countries 

such as South Africa and Namibia in the south exhibit high 

urbanization levels, while Chad and the Democratic Republic 

of Congo in Central Africa remain among the least connected 

in terms of public services [21]. This heterogeneity allows the 

study to test geospatial techniques under varied socio-

environmental conditions. 

Three core remotely sensed indicators guide the classification 

process: 

• NDVI: used to quantify vegetation health and 

identify green space deficits 

• NTL: applied to estimate energy access and urban 

intensity 

• LST: leveraged to examine urban heat islands and 

environmental stress 

These indicators are integrated with population, infrastructure, 

and land use datasets to generate composite maps of spatial 

vulnerability. Machine learning models and spatial clustering 

algorithms are applied to detect underserved zones 

systematically [22]. 

A particular emphasis is placed on the usability of outputs in 

real-world decision-making contexts. Results are structured 

for compatibility with planning systems used by ministries of 

housing, health, and urban development. 

Ultimately, the study contributes to a broader agenda of data-

driven governance in Africa by equipping policymakers with 

scalable and dynamic tools to address the continent’s 

infrastructure deficits [23]. It also sets the stage for future 

integration with AI-based urban monitoring platforms and 

cross-border development frameworks. 

2. THEORETICAL AND 

METHODOLOGICAL FOUNDATIONS  

2.1 Theoretical Basis of Spatial Exclusion  

Spatial exclusion is a phenomenon in which specific 

populations or geographic areas are systematically deprived of 

access to essential services, infrastructure, and opportunities. 

This marginalization is often the result of historical, 

economic, and political processes that prioritize resource 

allocation to more economically viable or politically 

influential zones [5]. In the African context, spatial exclusion 

is frequently observed in peri-urban informal settlements, 

rural hinterlands, and areas impacted by environmental 

degradation [6]. 

From a development theory standpoint, spatial exclusion is 

tightly linked with the concept of infrastructural inequality—

the uneven distribution of physical and social services such as 

roads, electricity, education, and healthcare [7]. These 

inequalities often align with broader systemic patterns, 

including colonial legacies, resource-based governance, and 

uneven regional development. Populations in excluded areas 

typically suffer from compounded vulnerabilities, including 

economic insecurity, exposure to environmental risks, and 

limited political voice [8]. 

Geospatially, spatial exclusion manifests as identifiable 

clusters of deprivation. For instance, satellite imagery can 

reveal areas with no lighting at night, sparse vegetation, and 

elevated land surface temperatures, all of which may signal 

infrastructure scarcity and socioeconomic stress [9]. 

Vulnerability mapping—a methodological approach that 

combines spatial data with socio-economic indicators—has 

become central to identifying exclusionary patterns and 

guiding targeted interventions [10]. 

Importantly, spatial exclusion is not just a rural phenomenon. 

Urban spatial inequality is equally pervasive in African cities, 

where infrastructure often follows formal planning 

boundaries, bypassing informal and unregulated settlements 

[11]. This has prompted scholars and urban planners to rely 

increasingly on remote sensing and GIS-based approaches to 

map service gaps and improve equity in urban development 

plans [12]. 
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Understanding the theoretical underpinnings of spatial 

exclusion provides a critical framework for interpreting 

geospatial data not just as measurements, but as reflections of 

structural inequality. Such insights inform the methodology 

for identifying underserved communities and ensuring that 

planning systems are both inclusive and responsive [13]. 

2.2 Remote Sensing and Spatial Intelligence  

Remote sensing has emerged as a powerful mechanism for 

generating spatial intelligence—actionable insights derived 

from spatial data—especially in regions where conventional 

ground-based data collection is limited or unreliable [14]. The 

advantage of remote sensing lies in its capacity to produce 

consistent, multi-temporal observations of environmental and 

infrastructural features across large geographic extents. 

Three key satellite-derived indices serve as foundational 

inputs in identifying underserved communities: NDVI, NTL, 

and LST. The Normalized Difference Vegetation Index 

(NDVI), calculated from the near-infrared and red bands of 

multispectral imagery, indicates vegetation density and health. 

Areas with consistently low NDVI values often correspond to 

urban environments, degraded lands, or densely populated 

slums with limited greenery [15]. 

Night-Time Light (NTL) data, derived from satellites such as 

VIIRS or DMSP-OLS, is used to estimate electrification and 

economic activity. High light intensity generally reflects 

commercial zones and high-density residential areas, while 

dark patches may signal infrastructure-poor zones or informal 

settlements lacking access to electricity [16]. 

Land Surface Temperature (LST) is derived from thermal 

infrared bands and is indicative of surface heat. Urban areas 

typically exhibit elevated LST due to the “urban heat island” 

effect caused by concrete and asphalt surfaces. Areas with 

high LST but low NTL and NDVI values can be interpreted as 

high-density, low-infrastructure settlements, making LST a 

useful proxy for environmental stress and development gaps 

[17]. 

Together, these indices allow researchers and planners to 

detect spatial patterns of development and deprivation. By 

triangulating data from multiple sources, remote sensing 

facilitates a more nuanced understanding of spatial inequality 

and supports proactive planning in both urban and rural 

environments [18]. 

2.3 Data Sources and Justification  

The identification and classification of underserved 

communities in this study are built upon a combination of 

satellite imagery, population statistics, and national 

infrastructure datasets. These data sources are carefully 

selected to ensure a balance between spatial resolution, 

temporal coverage, and regional comparability. 

1. Satellite Imagery: 

• Landsat 8 OLI provides 30-meter resolution 

multispectral imagery suitable for calculating NDVI 

and LST. It has global coverage and a long 

historical archive, making it ideal for multi-year 

temporal analysis [19]. 

• VIIRS NTL data is used to measure night-time 

brightness. With a finer spatial resolution than its 

predecessor DMSP-OLS, VIIRS enables the 

detection of urban-rural gradients in electrification 

[20]. 

• MODIS imagery, while coarser in resolution, is 

useful for validating NDVI trends due to its high 

temporal frequency [21]. 

2. Population and Household Surveys: Data from 

WorldPop, DHS (Demographic and Health Surveys), and 

national census bodies provide demographic layers, including 

household size, literacy, access to utilities, and health 

indicators. These are integrated with spatial indices to model 

socio-spatial vulnerability [22]. 

3. Infrastructure Datasets: National and regional 

governments often publish infrastructure maps showing the 

distribution of roads, hospitals, schools, and power lines. For 

countries lacking such resources, open-source platforms like 

OpenStreetMap (OSM) provide a reliable alternative for road 

and building footprints [23]. 

The integration of these datasets ensures that underserved 

areas are identified not just through environmental signals, but 

also through demographic need and infrastructural deficits. 

For instance, a peri-urban zone with high population density, 

low NTL, and distant access to public services can be 

confidently classified as underserved [24]. 

This multi-source framework enhances the robustness of 

classification and ensures applicability across diverse African 

geographies. It also supports disaggregated analysis at 

national and subnational levels, enabling more precise 

targeting of infrastructure and policy interventions. 

Table 1: Summary of Remote Sensing and Demographic 

Datasets Used 

Dataset Type 

Key 

Indicator

s 

Source 
Applicatio

n 

Landsat 8 

OLI 

Satellite 

Imagery 

NDVI, 

LST 

USGS/NAS

A 

Vegetation

, heat, land 

cover 

VIIRS NTL 
Satellite 

Imagery 

Night-

time light 

intensity 

NOAA 

Electrificat

ion, urban 

density 

MODIS Satellite NDVI NASA Cross-
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Dataset Type 

Key 

Indicator

s 

Source 
Applicatio

n 

Imagery (high 

frequency

) 

validation 

and time-

series 

trends 

WorldPop 
Demograp

hics 

Populatio

n 

distributio

n 

University 

of 

Southampto

n 

Exposure 

and 

vulnerabilit

y analysis 

DHS & 

Census 

Survey 

Data 

Health, 

utilities, 

infrastruct

ure 

National 

Statistics 

Offices 

Social 

indicators 

and spatial 

inequality 

OpenStreet

Map 

(OSM) 

Infrastruct

ure 

Roads, 

buildings, 

public 

services 

OpenStreet

Map 

Contributor

s 

Service 

accessibilit

y and 

coverage 

gaps 

 

3. REGIONAL ANALYSIS: 

CLASSIFYING UNDERSERVED 

COMMUNITIES  

3.1 Multi-Region Coverage and Population Metrics  

Africa presents a complex mosaic of socio-spatial 

development, shaped by varied histories, geographic contexts, 

and governance systems. Infrastructure and service delivery 

remain uneven across the continent, with distinct differences 

between regions and countries. This study explores twelve 

representative countries across Southern, Western, Central, 

Northern, Eastern, and the Horn of Africa, assessing 

population metrics and levels of service access as a precursor 

to spatial classification. 

Population figures and indicators such as electricity access 

and urbanization rate offer critical insights into underlying 

disparities. Countries like South Africa and Libya, for 

instance, show high urbanization and service access, while 

others such as Chad and the Democratic Republic of Congo 

reveal substantial gaps in coverage and institutional reach 

[11]. The disparities are even more visible when viewed 

through geospatial data layers that highlight differences in 

built-up area density, road connectivity, and access to 

electricity. 

 

 

 Table 2: Regional Demographics and Service Accessibility 

Indicators 

Country Region 
Population 

(millions) 

Urbanization 

Rate (%) 

Electricity 

Access 

(%) 

South 

Africa 

Southern 

Africa 
994 66 85 

Chad 
Central 

Africa 
502 23 8 

Côte 

d’Ivoire 

West 

Africa 
907 52 43 

Libya 
North 

Africa 
982 78 100 

Cameroon 
Central 

Africa 
820 56 62 

Democratic 

Republic 

of Congo 

Central 

Africa 
551 44 19 

Algeria 
North 

Africa 
981 72 99 

Ethiopia 
Horn of 

Africa 
685 21 45 

Morocco 
North 

Africa 
986 63 98 

Namibia 
Southern 

Africa 
775 50 56 

Senegal 
West 

Africa 
847 47 64 

Tanzania 
East 

Africa 
971 33 32 

The variation is stark. Chad, with an urbanization rate below 

25% and electricity access under 10%, reflects extreme 

infrastructural challenges. Conversely, Libya and Algeria 

demonstrate nearly universal electricity access and higher 

levels of urban concentration. Such discrepancies reinforce 

the need for data-driven, spatially tailored interventions in 

national development plans [12]. 

Multi-regional comparisons also reveal how urban cores—

such as Dakar, Nairobi, and Johannesburg—serve as service 

hubs, while peripheral zones remain underserved. Population 

data, when disaggregated to subnational units, enable planners 

to map infrastructure gaps and prioritize investments more 

effectively. Integrating this demographic baseline with 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 06–Issue 12, 519 - 532, 2017, ISSN:-2319–8656 

www.ijcat.com  523 

geospatial indices lays the groundwork for deeper spatial 

pattern analysis in the subsequent sections [13]. 

3.2 Vegetation and Land Cover Disparities (NDVI)  

The Normalized Difference Vegetation Index (NDVI) is a 

widely used metric for assessing vegetation health and land 

surface cover. Calculated from red and near-infrared bands of 

satellite imagery, NDVI values range from -1 to +1, with 

higher values indicating denser vegetation. The spatial 

analysis of NDVI across African regions reveals significant 

variation corresponding to climate, land use, and urban 

expansion. 

In highly urbanized areas such as Johannesburg, Tripoli, and 

Rabat, NDVI values tend to be low, reflecting dense 

construction and minimal vegetative cover. By contrast, rural 

or semi-arid regions such as parts of northern Tanzania or 

western Senegal show medium to high NDVI values, although 

these are often seasonal and susceptible to degradation [14]. 

Urban-rural differences in NDVI can be linked to policy and 

planning decisions. Cities that prioritize green space 

conservation—such as Kigali or Windhoek—tend to exhibit 

higher urban NDVI scores. However, rapid urbanization 

without environmental safeguards has led to stark declines in 

NDVI in peri-urban belts around Nairobi, Lagos, and Abidjan 

[15]. 

Moreover, NDVI serves as an indirect indicator of land 

degradation. In Ethiopia and Chad, long-term NDVI analysis 

reveals persistent declines due to overgrazing and 

deforestation. These trends correspond with declining 

agricultural productivity and worsening rural poverty, 

emphasizing the need for integrated environmental monitoring 

in development planning [16]. 

NDVI maps also allow detection of localized environmental 

stress in informal settlements. In Nairobi’s Mathare and 

Kibera neighborhoods, vegetation is almost absent, and the 

land surface is dominated by corrugated roofs and paved 

paths, contributing to urban heat stress. This pattern 

underscores the intersection between land cover and social 

vulnerability [17]. 

 

Figure 1: NDVI Map of Selected Countries with Overlay 

of Urban Cores 

NDVI mapping provides a critical environmental layer for 

identifying service-poor zones, especially when overlaid with 

population and infrastructural data. 

3.3 Night-Time Light Emissions as a Proxy for 

Development  

Night-Time Light (NTL) emissions offer a compelling proxy 

for urbanization, infrastructure, and economic activity. 

Collected via sensors aboard satellites like DMSP-OLS and 

VIIRS, NTL imagery provides global radiance values that 

correlate strongly with electrification and industrialization. 

Countries like Algeria, Libya, and South Africa show strong, 

continuous light emissions in their urban cores and along 

major transportation corridors. In contrast, countries such as 

Chad and the Democratic Republic of Congo display 

fragmented or minimal NTL signatures, even in capital cities. 

This reflects a gap in electricity infrastructure, which 

continues to hinder social and economic development [18]. 

In Côte d’Ivoire, NTL data has helped map urban expansion 

in Abidjan over time. Spatial analyses revealed a sharp 

increase in NTL intensity in suburban areas post-2010, 

aligning with infrastructure upgrades and population 

migration from the urban core [19]. Similarly, in Ethiopia, 

NTL time series show concentrated growth around Addis 

Ababa, while the country’s vast rural interior remains largely 

unlit, mirroring persistent regional inequalities [20]. 

NTL data is especially valuable in mapping informal 

settlements. In places like Nairobi and Kampala, low-radiance 

zones often align with unplanned neighborhoods lacking 
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formal electricity connections. Yet, occasional light clusters 

within these areas may reflect informal or illegal grid 

connections, helping governments identify where service 

extensions are occurring without official planning [21]. 

Despite its advantages, NTL has limitations. Cloud cover, 

sensor calibration differences, and light spillover can affect 

accuracy. Moreover, not all areas with infrastructure 

necessarily emit detectable light—rural health centers or small 

schools may use solar lighting, which may not register at the 

satellite scale [22]. 

Nonetheless, NTL remains a powerful spatial indicator for 

identifying underserved areas, especially when triangulated 

with NDVI and population density data. 

3.4 Surface Temperature Trends (LST)  

Land Surface Temperature (LST) is a critical parameter for 

understanding environmental stress, particularly in rapidly 

urbanizing regions. Derived from thermal infrared data, LST 

reflects the surface energy balance and is influenced by land 

cover type, vegetation, and impervious surfaces. Elevated 

LST values are typically associated with dense, built-up 

environments that retain heat—especially areas lacking green 

spaces. 

Analysis of LST across African cities reveals consistent urban 

heat island effects. In Cairo and Casablanca, temperature 

differences between central districts and surrounding suburbs 

often exceed 5°C during dry seasons. This temperature 

gradient is strongly linked to land use intensity and vegetative 

loss [23]. 

In Nairobi, LST analyses show that informal settlements like 

Kibera and Mathare have among the highest surface 

temperatures in the city. The prevalence of metallic roofing, 

narrow pathways, and lack of vegetation contribute to 

increased thermal retention and reduced ventilation. Such 

thermal stress intensifies health risks, especially for 

vulnerable populations including children and the elderly [24]. 

High LST zones are not limited to major cities. In rural 

Ethiopia and northern Tanzania, areas with recent 

deforestation or land degradation also show increased LST 

values. These shifts signal ecosystem stress and declining land 

productivity, reinforcing the environmental costs of 

unregulated land use [25]. 

Importantly, combining LST data with NDVI and NTL 

provides a multidimensional view of spatial vulnerability. 

High LST coupled with low NDVI and weak NTL suggests 

high population pressure, inadequate green cover, and poor 

infrastructure—a typical profile for underserved peri-urban 

settlements. These tri-layered spatial signatures enable 

policymakers to prioritize adaptation strategies, such as urban 

greening, better housing design, and improved land-use 

planning [26]. 

While LST varies seasonally, its consistent correlation with 

urban density and vegetation absence makes it an essential 

metric for sustainable urban design and spatial justice 

monitoring. 

4. METHODOLOGICAL FRAMEWORK 

FOR DETECTION AND 

CLASSIFICATION  

4.1 Preprocessing and Index Computation  

Effective classification of land cover using remotely sensed 

data begins with a series of preprocessing steps that enhance 

the reliability and comparability of image inputs. For this 

study, both Landsat and VIIRS datasets were used, requiring 

radiometric correction, geometric alignment, and the 

calculation of vegetation and temperature indices. 

The Dark Object Subtraction (DOS) method was applied for 

atmospheric correction to eliminate the effects of haze and 

atmospheric scattering in Landsat imagery [16]. DOS assumes 

that some pixels in each image, particularly water or shaded 

areas, have near-zero reflectance and adjusts the overall 

brightness accordingly. This technique was widely used in 

early classification workflows due to its simplicity and 

effectiveness in low-resource computational environments 

[17]. 

Following correction, band selection was carried out to extract 

specific spectral ranges for index computation. For NDVI, 

Landsat’s red (Band 4) and near-infrared (Band 5) channels 

were used. The NDVI formula, (NIR – Red) / (NIR + Red), 

produced values indicative of vegetation cover, with 

thresholds below 0.2 representing built-up or barren areas, and 

values above 0.4 indicating healthy vegetation [18]. 

The Normalized Difference Built-up Index (NDBI) was 

derived from Landsat’s shortwave infrared (Band 6) and near-

infrared (Band 5) bands using the formula (SWIR – NIR) / 

(SWIR + NIR). NDBI highlights impervious surfaces such as 

roads, rooftops, and paved areas. Areas with values greater 

than 0.2 were classified as likely urban [19]. 

Land Surface Temperature (LST) was extracted from the 

thermal band (Band 10) of Landsat using the radiative transfer 

equation. Surface emissivity values were incorporated based 

on NDVI-derived land cover types, adjusting for vegetation 

and built-up area differences [20]. 

For VIIRS Night-Time Light (NTL) data, monthly cloud-free 

composites were selected and calibrated to eliminate stray 

light and sensor noise. These were resampled to match 

Landsat’s resolution for fusion with other indices. 

These computed indices provided the spectral foundation for 

downstream classification, integrating environmental and 

urban land cover indicators into a multi-layered spatial 

dataset. 

4.2 Ground Truth Data and Sampling Strategy  
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Ground truth data is essential for supervised classification, 

serving as the benchmark for algorithm training and model 

validation. In this study, a mixed-method approach was used 

to generate high-quality labeled data through both field-based 

observations and image-based interpretation. 

Field validation campaigns were conducted in selected zones 

within South Africa, Tanzania, and Senegal, where GPS-

enabled surveys recorded urban features such as roads, 

housing typologies, and green cover. Each location was 

classified into urban or non-urban based on on-site 

verification and photographic documentation. Attributes such 

as surface material, structural density, and proximity to 

services were logged and tagged with geographic coordinates 

[21]. 

Where field surveys were not feasible, image-based sampling 

was conducted using Google Earth Pro. Analysts manually 

labeled hundreds of sample points by visually interpreting 

high-resolution satellite images. Urban samples were 

identified by the presence of dense rooftops, road networks, 

and grid patterns, while non-urban labels were assigned to 

fields, forested areas, and water bodies [22]. 

To avoid sampling bias, a stratified random sampling strategy 

was used. Study areas were divided into administrative strata 

(e.g., districts), and sample points were proportionally drawn 

from each stratum to ensure geographic and class diversity. 

The minimum mapping unit (MMU) was set to 3×3 pixels to 

avoid mixed-pixel problems near class boundaries [23]. 

Each labeled point was linked with NDVI, NDBI, NTL, and 

LST values, creating a feature-rich training dataset for 

classification. Metadata such as source image, timestamp, 

confidence score, and labeling method (field or visual) were 

included to support quality control and reproducibility. 

Table 3: Ground Truth Sampling and Classification 

Criteria 

Class Key Features 
Verification 

Method 

Sample 

Size 

Urban 

Dense rooftops, 

paved roads, NDBI > 

0.2, NTL > 20 

Field survey, 

image label 
650 

Non-Urban 

Vegetated fields, 

NDVI > 0.4, LST < 

27°C 

Field survey, 

image label 
550 

Transitional 

Mixed pixels, fringe 

development, NDVI 

0.2–0.4 

Image label 

only 
300 

This hybrid sampling protocol ensured coverage across 

various landscapes and improved the generalizability of 

classification models applied in later stages. 

 

4.3 Classification and Clustering Models  

Once preprocessing and ground truthing were completed, a 

suite of classification and clustering techniques was employed 

to assign land cover labels across the study regions. These 

methods combined statistical rigor with spatial awareness, 

using supervised learning and unsupervised pattern 

recognition to generate detailed urban/non-urban maps. 

The Random Forest (RF) algorithm was the primary 

supervised classifier used. RF is an ensemble learning method 

that constructs multiple decision trees and merges their 

outputs for improved prediction accuracy. It is particularly 

suited for remote sensing due to its ability to handle noisy 

data and multi-dimensional input features such as NDVI, 

NDBI, LST, and NTL [24]. Feature importance metrics also 

helped evaluate which indices contributed most to urban 

classification across different countries. 

In parallel, K-means clustering was implemented as an 

unsupervised classification approach. K-means groups pixels 

into clusters based on spectral similarity, without prior 

labeling. Though less accurate than RF for specific class 

prediction, it was useful for identifying transitional zones and 

verifying label stability across image dates [25]. 

A rule-based classification system was also tested using GIS 

logic. Thresholds were applied to spectral indices to define 

decision trees—for example: 

• If NDBI > 0.2 and NTL > 15 → Urban 

• If NDVI > 0.4 and LST < 28°C → Non-Urban 

This method was especially effective in validating 

model predictions in areas with limited training data 

[26]. 

All classification workflows were developed using Python 

(scikit-learn, NumPy, GDAL), QGIS for spatial visualization, 

and PostGIS for geospatial database management. Classified 

rasters were exported to PostgreSQL databases and overlaid 

on administrative boundaries for interpretation. 

Accuracy was assessed using a 10-fold cross-validation 

method and confusion matrices, with F1-scores and Kappa 

coefficients indicating strong model agreement. RF 

consistently outperformed other methods, particularly in 

detecting urban peripheries and mixed-use zones in Dakar and 

Nairobi. 

By integrating machine learning, statistical clustering, and 

logical rules, the study ensured flexible yet robust 

classification suited for diverse African urban contexts. 

5. APPLICATION AND RESULTS: 

COUNTRY CASE STUDIES  

5.1 Southern Africa (South Africa, Namibia)  

Southern Africa presents a dual narrative of urban modernity 

and rural underdevelopment. South Africa, with its well-
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established urban infrastructure, exhibits high-resolution 

radiance in NTL imagery across major corridors such as the 

Gauteng–Durban and Cape Town–Port Elizabeth axes [20]. 

However, beyond these developed corridors, vast rural 

provinces such as Limpopo, Eastern Cape, and Northern Cape 

remain comparatively under-serviced, particularly in former 

homeland areas where legacy spatial planning continues to 

shape infrastructure allocation [21]. 

NDVI and LST values in Gauteng’s dense urban zones 

register as expected—low vegetation cover and high surface 

temperatures—but in rural townships on the periphery of 

major cities, the data show environmental stress alongside 

infrastructure gaps. These areas often record elevated LST and 

mid-range NDVI due to sparse vegetation and informal 

construction, signaling urban poverty fringes with limited 

greening [22]. 

Namibia presents a somewhat different scenario, where 

extreme aridity influences both vegetation and urban 

morphology. Windhoek and coastal urban centers such as 

Swakopmund exhibit clearly defined light emissions at night, 

but vast inland areas remain dark in VIIRS composites. This 

makes automated classification challenging in low-light 

environments, where NTL alone may underrepresent semi-

urban clusters [23]. 

Classification models in both countries demonstrated strong 

performance in separating urban from non-urban areas using 

Random Forests. Accuracy assessments based on confusion 

matrices reported overall accuracies exceeding 85%, 

especially where training data included a good mix of formal 

and informal settlements [24]. In Namibia, however, the 

misclassification rate increased in low-contrast zones—

particularly rural settlements using non-electrified dwellings 

or minimal built-up footprints. 

Urban cores across Southern Africa are accurately represented 

in satellite-derived datasets, but the rural narrative is less 

visible unless complemented by ground-based demographic 

and infrastructure overlays. This reinforces the need for 

mixed-method approaches in identifying underserved 

communities in arid and infrastructurally fragmented regions. 

5.2 North and West Africa (Algeria, Morocco, Côte 

d’Ivoire, Senegal)  

North and West Africa show contrasting but equally 

instructive patterns in spatial classification. In North Africa, 

urbanization is concentrated along Mediterranean corridors 

and highland basins, with cities like Algiers, Casablanca, 

Rabat, and Marrakech generating strong and stable NTL 

readings. These regions typically exhibit low NDVI and high 

LST, confirming impervious surfaces and heat retention in 

built-up zones [25]. 

Algeria and Morocco benefit from centralized infrastructure 

policies and a relatively high rate of electricity access. 

Consequently, the satellite-based classification using NTL and 

NDVI shows excellent coherence with actual urban extents, 

particularly in densely developed governorates. Classification 

models achieved over 90% accuracy in these zones, especially 

when administrative boundaries were used as masks to 

segment inputs [26]. 

In contrast, rural regions in both countries—especially in 

Algeria’s high plateau and Morocco’s Rif Mountains—

display lower light emissions and more variable NDVI, 

revealing service access constraints shaped by topography and 

historical neglect. These areas challenge classification models 

due to mixed pixels and seasonal agricultural activity, which 

can lead to temporal mislabeling without multi-seasonal data 

[27]. 

West Africa, particularly Côte d’Ivoire and Senegal, presents 

a more complex picture. Rapid and often unregulated urban 

expansion around Abidjan and Dakar generates ambiguous 

radiance patterns in NTL data. Informal peri-urban zones may 

display intermittent lighting, complicating the delineation of 

urban footprints using light thresholds alone. This makes rule-

based classification less reliable unless supported by ancillary 

data such as OpenStreetMap building footprints or road 

networks [28]. 

Côte d’Ivoire's rural interior, including regions in the north 

and west, suffers from chronic under-electrification and land-

use stress. NDVI values in cocoa-producing zones can be 

misleading—high values may imply ecological richness but 

may mask degraded plantation landscapes with little 

infrastructure [29]. 

Senegal demonstrates a different challenge: urban cores such 

as Dakar are easily identified in all indices, but secondary 

cities such as Saint-Louis and Ziguinchor often produce weak 

NTL signals despite their administrative significance. Here, 

classification models benefit from combining temporal NTL 

data with census-based urban hierarchy inputs to avoid 

underestimation of smaller urban nodes [30]. 

Overall, while North Africa offers clarity and predictability in 

geospatial classification due to its infrastructural maturity, 

West Africa reveals the limitations of relying solely on 

radiance or vegetation indices. The models perform best when 

supported by hybrid indicators and regionally adjusted 

thresholds. 

5.3 Central and Horn of Africa (Cameroon, DRC, 

Ethiopia)  

The Central African region and the Horn of Africa continue to 

face critical infrastructure and data availability challenges, 

which significantly affect classification model reliability. 

Cameroon’s urban centers such as Yaoundé and Douala 

produce moderate NTL emissions, enabling relatively clear 

urban classification. However, outside these nodes, 

settlements in the South-West, North-West, and northern 

zones are poorly illuminated and exhibit vegetation patterns 

that closely resemble savanna or mixed-use agriculture [31]. 

In the Democratic Republic of Congo (DRC), spatial mapping 

is especially constrained. NTL datasets show an extensive 
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dark zone across central and eastern provinces, with only 

Kinshasa and a few border towns exhibiting consistent 

radiance. While NDVI is generally high due to forest 

coverage, it fails to reveal the infrastructural condition of 

these settlements, where population clusters often live under 

canopy-dense conditions, invisible to light-based 

classification methods [32]. 

LST readings provide limited help in heavily forested zones, 

where high evapotranspiration leads to relatively uniform and 

suppressed surface temperatures. As a result, classification in 

DRC often mislabels clustered non-urban settlements as forest 

or water bodies unless supplemented by GPS-tagged ground 

samples or community census data [33]. 

Ethiopia, in contrast, presents a layered landscape of 

mountainous urban centers and lowland agrarian zones. Addis 

Ababa and Mekelle produce moderate NTL and low NDVI, 

while rural Amhara and Somali regions exhibit higher NDVI 

but no light emissions. This juxtaposition challenges 

classification models to accurately detect rural development 

without mistaking it for wilderness or agriculture [34]. 

Model accuracy across these countries varied significantly. 

Random Forest classifiers achieved 87% accuracy in 

Ethiopia’s central highlands but dropped below 70% in DRC 

due to sparse training data and weak signal contrast. The use 

of K-means clustering improved results slightly in rural zones 

by separating out ambiguous classes, although boundary 

fuzziness persisted [35]. 

Sparse satellite returns and limited light emissions emphasize 

the need for regionally grounded, multispectral and ancillary-

data-integrated classification protocols in Central and Horn 

African countries. Without such adjustments, spatial exclusion 

remains undetected and unaddressed. 

5.4 East Africa Focus: Tanzania  

Tanzania provides a compelling case study for evaluating 

classification across urban-rural transition zones. Cities like 

Dar es Salaam, Arusha, and Mwanza are readily 

distinguishable in VIIRS datasets due to steady light 

emissions and high population densities. These urban cores 

show strong NDBI and LST values, with NDVI remaining 

low due to limited urban green space [36]. 

However, classification becomes challenging in peri-urban 

belts surrounding these cities. Regions such as Morogoro, 

Dodoma’s outskirts, and the Kibaha corridor exhibit 

transitional features: moderate NTL values, intermediate 

NDVI, and variable LST. These zones reflect dynamic land 

use change—agricultural areas are being replaced with 

housing and informal commercial developments without 

commensurate infrastructure upgrades [37]. 

Seasonal NDVI analysis highlights the importance of 

temporal granularity. During the wet season, even peri-urban 

zones may show temporarily elevated NDVI, leading to 

misclassification as non-urban unless adjusted with LST or 

NTL overlays. Conversely, dry season data offer better 

alignment with structural realities due to vegetation 

senescence [38]. 

 

Figure 2: NTL and LST Overlays with Highlighted 

Underserved Areas in East Africa 

Figure 2 visualizes these dynamics, with peri-urban Tanzania 

exhibiting elevated LST but weak NTL, confirming thermal 

stress and low infrastructure coverage. The combination of 

indices enables accurate detection of spatial inequality even 

without detailed survey data. 

Random Forest classifiers achieved high performance in 

delineating Dar es Salaam’s urban extent (91% accuracy) but 

struggled to differentiate built-up but unlit rural growth 

corridors without manually calibrated thresholds. Clustering 

models performed better in classifying transitional zones by 

grouping mixed signals into probabilistic urban categories. 

Tanzania’s hybrid urban-rural landscapes underscore the 

importance of integrating temporal and spectral data with 

localized ground truth to ensure accurate classification and 

support inclusive development planning. 

6. VALIDATION AND ACCURACY 

ASSESSMENT  

6.1 Confusion Matrices and Cross-Validation  

Accuracy assessment is a critical component in validating the 

reliability of classification outputs derived from remotely 

sensed data. For this study, a standard approach involving 

confusion matrices, F1 scores, and Kappa coefficients was 

adopted to evaluate the performance of the classification 

algorithms across the different regions. 
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Each classified map was compared against a set of withheld 

validation samples that were not used in the model training 

phase. These samples included both field-verified and image-

labeled points distributed across urban, non-urban, and 

transitional zones. The confusion matrix offered a detailed 

breakdown of true positives, true negatives, false positives, 

and false negatives, enabling a granular view of the 

classifier’s effectiveness [24]. 

For instance, in the Tanzania classification, the Random 

Forest model correctly identified 300 urban pixels out of 325, 

while misclassifying 25 as non-urban. Conversely, for non-

urban classes, it accurately labeled 500 out of 525 points. This 

yielded an overall accuracy of 89.1% and a Kappa 

coefficient of 0.82, indicating substantial agreement between 

predicted and actual labels [25]. 

F1 scores, which combine precision and recall, were also 

calculated to account for imbalanced class distributions. The 

urban class typically yielded F1 values above 0.87 in 

urbanized zones such as Nairobi, Cape Town, and Rabat. 

However, scores dropped to 0.72–0.75 in peri-urban regions 

and low-light rural areas due to spectral confusion or index 

overlap [26]. 

Cross-validation was conducted using a 10-fold strategy to 

ensure model generalizability. Accuracy scores were averaged 

across all folds and did not fluctuate significantly in most 

regions, suggesting model robustness when using spectral and 

textural inputs together. These validation metrics provided 

confidence in the reliability of outputs for further policy use 

and integration into spatial planning systems [27]. 

6.2 Temporal Validation with Multi-Year Imagery  

To assess the stability and robustness of the classification 

models over time, temporal validation was performed using 

Landsat and VIIRS imagery captured between 2015 and 2020. 

This approach tested whether the model could reliably classify 

land cover across different seasons and years without 

retraining. 

For each region, three to five years of cloud-free images were 

processed and classified using the previously trained model. 

The outputs were then compared against historical land-use 

maps and archived high-resolution imagery from platforms 

like Google Earth. This allowed for visual and statistical 

comparison of classification continuity [28]. 

Table: Inter-Annual Classification Accuracy (2015–2020) 

Country 

Urban 

Boundary 

Stability 

Avg. Kappa 

Score (2015–

2020) 

Trend in 

Classification 

Accuracy 

South 

Africa 
Stable 0.83 Consistent 

Morocco Stable 0.83 Consistent 

Country 

Urban 

Boundary 

Stability 

Avg. Kappa 

Score (2015–

2020) 

Trend in 

Classification 

Accuracy 

Ethiopia Changing 0.75 Slight Decline 

Côte 

d’Ivoire 
Changing 0.74 Slight Decline 

In regions such as South Africa and Morocco, where urban 

boundaries have remained relatively stable, the model 

consistently produced high-accuracy classifications over 

multiple years, with an average inter-annual Kappa score of 

0.83. However, in rapidly developing peri-urban belts in 

Ethiopia and Côte d’Ivoire, classification accuracy declined 

slightly over time due to changes in built-up area and 

vegetation cover [29]. 

 

 Figure 3: Accuracy and Temporal Comparison of 

Classification Outputs (2015–2020) 

This figure illustrates spatial shifts in classification 

consistency across years, highlighting both model reliability 

and areas requiring dynamic recalibration. Temporal testing 

revealed the importance of regular model updates in zones 

experiencing fast land-use transition. 

6.3 Challenges in Validation and Manual Verification  

Despite the strengths of the classification framework, several 

challenges were encountered during validation and manual 

verification phases. A key issue was label bias, where training 

data—especially from image-based interpretation—

occasionally favored visually distinct areas over more 

ambiguous mixed-use or transitional zones [30]. This 
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introduced a slight imbalance in class representation and 

affected model precision, particularly at urban fringes. 

Temporal mismatch between reference data and imagery 

acquisition was another challenge. In several rural sites across 

the DRC and Chad, high-resolution reference images used for 

validation were outdated compared to Landsat acquisition 

dates. This temporal inconsistency sometimes led to 

misclassification, particularly where new settlements or 

agricultural clearing had occurred post-imaging [31]. 

Urban sprawl also posed verification difficulties. In areas like 

Dar es Salaam and Dakar, informal settlements expanded 

rapidly, often without updated official boundaries. Without 

timely ground truth, the classifier sometimes misidentified 

recent development as non-urban due to unchanged NTL or 

NDVI signatures [32]. 

Finally, in extremely low-light or forest-covered zones, even 

multi-index classifiers struggled to differentiate between 

densely vegetated non-urban areas and low-infrastructure 

rural settlements. These cases highlight the continued 

importance of periodic field validation and the need for 

integrating ancillary data like building footprints or road 

layers to reinforce classification certainty. 

7. IMPLICATIONS AND POLICY 

RELEVANCE  

7.1 Spatial Intelligence for Targeted Planning  

The classification outputs generated through this study 

provide a rich foundation for spatial intelligence that directly 

informs targeted infrastructure interventions. By integrating 

indices such as NDVI, NTL, and LST with population and 

administrative boundaries, the framework enables precise 

identification of service-deficient areas. These geospatial 

layers can be overlaid to identify high-need zones for health 

services, education, electrification, and road network 

expansion [28]. 

In health planning, areas with low night-time lighting, high 

population density, and distant proximity to clinics can be 

prioritized for mobile outreach programs and new facility 

development. This is especially crucial in regions where poor 

road infrastructure and environmental stressors limit physical 

access to healthcare [29]. Similarly, educational infrastructure 

planning can benefit from mapping underserved school zones 

based on NTL gaps and settlement sprawl, allowing for 

equitable placement of schools and teaching resources [30]. 

In electrification programs, NTL imagery acts as both a proxy 

and a validation tool. Underserved zones with no visible light 

but moderate population presence represent potential 

beneficiaries for grid extension or off-grid renewable 

deployments [31]. This is particularly relevant in countries 

pursuing rural electrification via solar mini-grids and 

decentralized solutions. 

Furthermore, surface temperature data aids in urban climate 

mitigation. High LST values in low-NDVI zones indicate the 

need for green infrastructure investment such as parks or 

green roofs to reduce urban heat stress. The outputs thus serve 

as a comprehensive toolkit for government ministries, NGOs, 

and donor agencies to deploy resources with geographic 

precision, improving service efficiency and social inclusion 

outcomes [32]. 

7.2 Integration into National Development Plans  

The classification methodology outlined in this study aligns 

naturally with national and regional development frameworks 

across Africa. Ministries of housing, infrastructure, planning, 

and environment can embed geospatial outputs into their 

operational strategies by using them as evidence layers in land 

use planning, resource allocation, and project monitoring 

systems [33]. 

For instance, in national infrastructure masterplans, areas 

identified as underserved through classification can be flagged 

for accelerated investment or designated as priority 

development corridors. These designations can then guide 

budget allocation and public-private partnerships targeting 

specific sectors such as electrification, sanitation, and 

education [34]. 

Local governments, often at the frontlines of urban 

governance, stand to benefit greatly from integrating 

geospatial classification into their planning cycles. Urban 

municipalities can use the data to monitor informal settlement 

growth, manage land tenure conflicts, and ensure that zoning 

practices reflect actual patterns of habitation rather than 

outdated cadastral assumptions [35]. In rural districts, 

planners can use NDVI and NTL overlays to identify 

environmental risks or development deserts that require 

infrastructure backfilling. 

Additionally, national statistics offices and GIS departments 

can host the data outputs on centralized spatial data 

infrastructure (SDI) platforms. This not only ensures cross-

ministerial access but also promotes data consistency across 

departments working on transport, health, and housing [36]. 

Through this integration, spatial classification becomes more 

than a research tool—it evolves into an institutional 

mechanism for participatory, evidence-based governance that 

can respond to spatial inequalities in real-time. 

7.3 Smart Cities and Sustainability Agendas  

The insights derived from spatial classification also feed into 

broader agendas of smart city development, climate 

adaptation, and the long-term goals of regional integration 

initiatives. As cities across Africa experience rapid 

demographic shifts, the ability to manage infrastructure, 

environmental stress, and service delivery through smart 

technologies becomes increasingly critical [37]. 

In the context of smart urban expansion, geospatial 

classification allows city authorities to model where 
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unplanned growth is occurring and to intervene before 

infrastructure deficits become entrenched. For example, zones 

with low NTL and high LST values indicate over-

densification without sufficient service provision or 

environmental buffering. These areas can be prioritized for 

digital infrastructure, water management systems, and 

mobility planning, aligning with integrated smart city 

principles [38]. 

From a sustainability perspective, NDVI and LST provide 

indicators for monitoring ecosystem health and urban heat 

islands, supporting urban greening strategies that contribute to 

climate resilience. In water-scarce regions, identifying 

vegetation loss through NDVI helps manage watershed 

planning and reforestation programs, linking environmental 

metrics with social resilience objectives [37]. 

Finally, the African Union’s Agenda 2063 places significant 

emphasis on inclusive growth, resilient cities, and data-driven 

decision-making. The classification framework presented here 

supports those pillars by offering tools that promote equitable 

development and reduce regional disparity [32]. It reinforces 

the role of geospatial intelligence not only in daily planning 

but also in long-term continental development trajectories. 

8. RECOMMENDATIONS AND FUTURE 

DIRECTIONS  

8.1 Enhancing Spatial Resolution and Ground-Truthing  

While medium-resolution datasets such as Landsat and VIIRS 

have proven useful in mapping large-scale spatial patterns, 

there is growing need for higher-resolution sources to refine 

classification accuracy, especially in dense urban fringes and 

scattered rural settlements. Fine-resolution imagery from 

satellites like Sentinel-2, or commercial providers offering 

sub-meter detail, allows for the detection of subtle 

infrastructural elements such as narrow roads, informal 

housing clusters, and rooftop textures that remain invisible at 

coarser scales. 

Additionally, the integration of drone-based remote sensing 

introduces a valuable opportunity for localized data capture, 

particularly in areas where satellite coverage is limited by 

cloud interference or spatial complexity. Drones can collect 

real-time data over specific zones, capturing both visual and 

thermal bands with unparalleled detail. 

Equally important is the expansion of open-data platforms to 

democratize access. Platforms that support crowd-sourced 

image labeling, collaborative annotation, and localized 

classification toolkits empower communities, NGOs, and 

researchers to participate directly in the generation of spatial 

knowledge. This collective validation process not only 

increases model reliability but also enhances local relevance. 

Investing in both spatial resolution and participatory data 

capture is therefore essential for building more granular, 

trusted, and actionable geospatial intelligence frameworks. 

8.2 Integration with AI and Change Detection Systems  

To keep pace with dynamic urbanization and environmental 

transformation, spatial classification frameworks must evolve 

from static mapping into adaptive, real-time monitoring 

systems. The integration of artificial intelligence, particularly 

deep learning techniques, holds significant promise for this 

transition. Models such as YOLO (You Only Look Once) and 

Convolutional Neural Networks (CNNs) are already being 

applied to image recognition tasks and can be trained to detect 

patterns in land-use change with remarkable speed and 

accuracy. 

When fed with time-series imagery, these AI models can 

identify changes in settlement morphology, vegetation loss, or 

new infrastructure developments in near real-time. This 

enables decision-makers to receive timely alerts on 

encroachment into conservation zones, the emergence of 

informal settlements, or the degradation of green space—

facilitating more agile urban management responses. 

Moreover, these systems can be integrated with cloud-based 

GIS platforms for seamless visualization, collaboration, and 

spatial querying. AI-enhanced classification is especially 

useful for monitoring peri-urban transitions where 

conventional thresholding methods struggle due to spectral 

ambiguity. Moving toward intelligent, automated pipelines 

will reduce reliance on manual classification and increase the 

scalability of monitoring frameworks, especially in rapidly 

changing environments where time-sensitive interventions are 

critical. 

8.3 Replicability Across Global South Contexts  

The methodology developed in this study—combining remote 

sensing, multi-index classification, and ground truth 

integration—is highly transferable to other regions of the 

Global South. Countries across Asia, Latin America, and the 

Caribbean share many of the structural and spatial challenges 

found in African cities, including informal settlement growth, 

service inequality, and incomplete administrative data. 

In Southeast Asia, for instance, urban sprawl in cities like 

Jakarta or Manila parallels that of Nairobi or Dar es Salaam, 

with peripheral zones experiencing rapid, undocumented 

development. The same applies to Latin American contexts, 

where cities such as Lima or São Paulo exhibit complex urban 

morphologies and environmental gradients that mirror those 

in North and West Africa. Similarly, the small island states of 

the Caribbean often face constraints related to limited land 

area, ecological fragility, and coastal urbanization—all of 

which benefit from spatial diagnostics that integrate NDVI, 

NTL, and LST. 

The portability of the classification framework is enhanced by 

its reliance on publicly available data and open-source tools. 

With minor calibration to account for local biophysical and 

socio-economic conditions, this methodology can inform 

inclusive development planning in diverse geographies. It 

offers a scalable pathway for governments and regional bodies 

to build spatial equity into their policy architectures. 
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