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Abstract: Choosing weak passwords is a common issue when a system uses username and password as credentials for 

authentication. In fact, weak passwords may lead to system compromising. Lots of approaches have been proposed to 

prevent user from selecting weak or guessable passwords. The common approach is to compare a selected password 

against a list of unacceptable passwords. In this paper we will explain space-efficient method, which is called Bloom 

Filter,  of storing a dictionary passwords. The time complexity in this approach is constant time, no matter how many 

passwords we have in our dictionary. 
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1. INTRODUCTION 
 

Authentication is an absolutely essential element of having 

a secure environment in digital world. In this process the 

identity of the user (or in some cases, a machine) will be 

checked against the some credentials that he/she has 

provided before for a system[3,9, 12]. If they are matched 

the user will be authenticated and forwarded for the next 

step which is usually authorization. There are several 

approaches for authentication which are selected based on 

the system administrator policies and available 

infrastructures. One of the basic authentication mechanism 

is using user name and password to provide some 

fundamental security characteristics.  This technique has 

been a part of security since long time ago[2,6,11]. 

However, now a days, systems administrators need to re-

examine their password security policies to remain effective 

against modern programs and computers that can crack 

weak passwords in minutes. But it has always been a 

concern that how we can select a proper and strong 

password that cannot be predicted or cracked easily. Lots 

of approaches and techniques have been proposed in this 

area that try to generate a complicated combination of 

characters and numbers as password[14,15]. In the most 

cases it works but it is not always comfortable for the user 

to have or memorize a system generated password, instead 

if we could have a dictionary of weak passwords which are 

easy to recognize by attackers and check them against the 

entered password proposed by user we can easily decide the 

selected password by end user is strong enough or not. 

Having a dictionary of weak passwords to be checked 

against the entered password usually involves with reading 

the whole dictionary which needs extra facilities and 

hardware but there is a data structure model that can address 

this issue easily which is called Bloom Filter. Bloom filter 

is an efficient data structure in terms of space usage and 

lookup time that will be explained in details in the next 

section. 

 
2. BLOOM FILTER 

 
Bloom filter was introduced in “Space/time 

trade-offs in hash coding with allowable errors” paper by 

Burton H. Bloom[1]. In this paper he compared the 

space/time trade-offs of different types of hash- 

tables[12,14]. He found that a new type of hash-table, 

which is now known as a Bloom filter needed less time to 

reject elements that are not in the table and less space to 

store these elements[11]. Bloom filter as an efficient 

probabilistic data structure has been used in different areas 

such as checking for viruses in network packets, spam 

control in email, web caching, spell, password checking 

and etc [3,18].  It consists of a bit array of m bits which 

are all set to zero, adding the elements to the m bits of 

array can be done through the k different hash functions. 

Based on the output of each hash function the particular 

position in array will be changed to 1 and later on, the 

structure can be queried for the membership of elements. 

So the elements themselves are not stored in the Bloom 

filter, only their membership [5]. Figure 1 shows the 
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structure of bloom filter. 

 

Figure 1: Bloom filter structure [5]. 

 

For the coming request after applying k hash functions, the 

bloom filter will be checked If one or more of mapped bits 

are still 0, the element is certainly not in the set. If all bits 

are 1, the element was probably in the set, although there is 

a small probability that the tested bits were set to 1 due to 

the addition of different elements. Then we have a false 

positive. There is a trade-off between the probability of 

false positives and the size of the Bloom filter (m), number 

of hash functions (k) and number of items in the set (n)[5]. 

The false-positive probability can be calculated from m and 

k in the following way. The probability p of one of the m 

bits still being zero after the addition of n elements is[5] 

 
And the probability of a false positive f is then equal to the 

probability that all the k bits that we test are equal to 1, 

which is equal to 

 
From simple calculations it follows that for a given m and 

n, the value of k that minimizes the false- positive 

probability f is equal to: 

 
Which gives the probability of 

 
There are some main parameters that affects the accuracy in 

bloom filters,  table 1 shows the key components in bloom 

filters [5]. 

 

Table 1: Key Bloom Filter Parameters 

Parameter Outcome 

Number of hash 

functions (k) 

More computation, 

lower false positive 

rate 

Size of filter (m) More space is needed, 

lower false positive 

rate 

Number of elements 

in the set (n) 

Higher false positive 

rate 

 

3. EXPERIMENT AND 

EVALUATION 
In the current scenario the dataset of popular weak 

password is needed, so the dataset of weak passwords with 

300,000 passwords  was selected. For this  project  two 

approaches experimental and theoretical will be calculated 

and compare together to have a good inside about the 

implemented version of bloom filter besides having some 

optimal values for the other parameters.  The key practice 

in this project is to calculate the lowest false positive rate for 

the implementation through the adjusting the key 

parameters. To address that, the list of 30,000 strong 

password was used to calculate the false positive rate from 

empirical point of view. 

The first experiment is to calculate the false positive rate 

based on different hash functions to have a basic idea about 

the some optimal numbers of hash functions. In bloom filter 

using more hash functions may be considered as a way to 

reach the lowest positive rate, it is true but at some points 

adding more hash functions to the system does not work and 

from those points the false positive rate again starts to grow. 

In practice, hash functions yielding sufficiently uniformly 

distributed outputs, such as MD5 ,CRC32 ,SHA1, SHA2, 

murmur, FNV which are useful for most probabilistic filter 

purposes like bloom filter [5]. 

For the first experiment the m/n = 6 was selected and 

different hash functions were applied. Figure 

2 shows the details about two approaches 
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Figure 2: False positive rate through different number of 

hash functions 

 

As figure 2 depicts the experimental result has a little higher 

error in comparison with the theoretical one but almost both 

are following the same trend. From the theoretical result 

point of view, K=4 plays an optimal solution for the given 

data and the experimental one confirms this result. Table 2 

shows the exact result for both cases. 

 

Table 2: False positive rate through different number of 

hash functions 

K  Experimental result Theoretical result 

1 1.23 0.7 

2 0.88 0.62 

3 0.65 0.17 

4 0.63 0.1 

5 0.65 0.13 

6 0.68 0.14 

 

For the next step the false positive rate is calculated based 

on the different bloom filter sizes (m). Figures 

3, 4 and 5 shows the different values for false positive rates 

while we are applying different number of hash functions 

 
Figure 3: False positive rate with different size of bloom 

filter (K=2) 

 
Figure 4: False positive rate with different size of bloom 

filter (K=4). 

 
Figure 5: False positive rate with different size of bloom 

filter (K=6). 

 

 
Figure 6: False positive rate with different size 

 

of bloom filter and different number of hash functions. As 

the figure 6 shows the lowest false positive rate can be 

achieved with a bloom filter with m/n=50. 

Although, it can be considered as an optimal solution for 

this scenario but if we had some restrictions in regards of 

required space, we can consider the m/n=10 with number of 

hash functions equal to 4. In fact, it depends on the domain 

and how accurate we expect to receive the outcome from 

the bloom filter. In the current case as we do not have that 

much sensitivities we can take K=4 with m/n=10 as an 

optimal solution. 
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4. CONCLUSION 

 
Bloom filter is a compact data structures for 

probabilistic representation of a set in order to support 

membership queries[7,8].  It has a strong space advantage 

over other data structures for representing sets and it also 

comes with lookup time efficiency in comparison with 

other approaches, but as may be expected, there is always 

a tradeoff and for this case the false positive is a tradeoff 

for space and time efficiency. Based on the domain and 

acceptable false positive rate, the bloom filter can be 

adjusted to achieve the optimal lookup time beside space 

efficiency. In this paper, based on the input data and 

admissible false positive error rate, 4 independent hash 

functions with m/n =10 were selected as an optimal 

solution. 
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