
International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 190-193, 2017, ISSN:-2319–8656

www.ijcat.com 190

An Examination of the Bloom Filter and its Application
in Preventing Weak Password Choices

Nancy Cheng

Department of Computer Science

Stanevagra University

Fabio Rocca

Department of Computer Science

Stanevagra University

Abstract: Choosing weak passwords is a common issue when a system uses username and password as credentials for

authentication. In fact, weak passwords may lead to system compromising. Lots of approaches have been proposed to

prevent user from selecting weak or guessable passwords. The common approach is to compare a selected password

against a list of unacceptable passwords. In this paper we will explain space-efficient method, which is called Bloom

Filter, of storing a dictionary passwords. The time complexity in this approach is constant time, no matter how many

passwords we have in our dictionary.

Keywords: Weak passwords; Bloom filter; Authentication; Security; Web Security.

1. INTRODUCTION

Authentication is an absolutely essential element of having

a secure environment in digital world. In this process the

identity of the user (or in some cases, a machine) will be

checked against the some credentials that he/she has

provided before for a system[3,9, 12]. If they are matched

the user will be authenticated and forwarded for the next

step which is usually authorization. There are several

approaches for authentication which are selected based on

the system administrator policies and available

infrastructures. One of the basic authentication mechanism

is using user name and password to provide some

fundamental security characteristics. This technique has

been a part of security since long time ago[2,6,11].

However, now a days, systems administrators need to re-

examine their password security policies to remain effective

against modern programs and computers that can crack

weak passwords in minutes. But it has always been a

concern that how we can select a proper and strong

password that cannot be predicted or cracked easily. Lots

of approaches and techniques have been proposed in this

area that try to generate a complicated combination of

characters and numbers as password[14,15]. In the most

cases it works but it is not always comfortable for the user

to have or memorize a system generated password, instead

if we could have a dictionary of weak passwords which are

easy to recognize by attackers and check them against the

entered password proposed by user we can easily decide the

selected password by end user is strong enough or not.

Having a dictionary of weak passwords to be checked

against the entered password usually involves with reading

the whole dictionary which needs extra facilities and

hardware but there is a data structure model that can address

this issue easily which is called Bloom Filter. Bloom filter

is an efficient data structure in terms of space usage and

lookup time that will be explained in details in the next

section.

2. BLOOM FILTER

Bloom filter was introduced in “Space/time

trade-offs in hash coding with allowable errors” paper by

Burton H. Bloom[1]. In this paper he compared the

space/time trade-offs of different types of hash-

tables[12,14]. He found that a new type of hash-table,

which is now known as a Bloom filter needed less time to

reject elements that are not in the table and less space to

store these elements[11]. Bloom filter as an efficient

probabilistic data structure has been used in different areas

such as checking for viruses in network packets, spam

control in email, web caching, spell, password checking

and etc [3,18]. It consists of a bit array of m bits which

are all set to zero, adding the elements to the m bits of

array can be done through the k different hash functions.

Based on the output of each hash function the particular

position in array will be changed to 1 and later on, the

structure can be queried for the membership of elements.

So the elements themselves are not stored in the Bloom

filter, only their membership [5]. Figure 1 shows the

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 190-193, 2017, ISSN:-2319–8656

www.ijcat.com 191

structure of bloom filter.

Figure 1: Bloom filter structure [5].

For the coming request after applying k hash functions, the

bloom filter will be checked If one or more of mapped bits

are still 0, the element is certainly not in the set. If all bits

are 1, the element was probably in the set, although there is

a small probability that the tested bits were set to 1 due to

the addition of different elements. Then we have a false

positive. There is a trade-off between the probability of

false positives and the size of the Bloom filter (m), number

of hash functions (k) and number of items in the set (n)[5].

The false-positive probability can be calculated from m and

k in the following way. The probability p of one of the m

bits still being zero after the addition of n elements is[5]

And the probability of a false positive f is then equal to the

probability that all the k bits that we test are equal to 1,

which is equal to

From simple calculations it follows that for a given m and

n, the value of k that minimizes the false- positive

probability f is equal to:

Which gives the probability of

There are some main parameters that affects the accuracy in

bloom filters, table 1 shows the key components in bloom

filters [5].

Table 1: Key Bloom Filter Parameters

Parameter Outcome

Number of hash

functions (k)

More computation,

lower false positive

rate

Size of filter (m) More space is needed,

lower false positive

rate

Number of elements

in the set (n)

Higher false positive

rate

3. EXPERIMENT AND

EVALUATION
In the current scenario the dataset of popular weak

password is needed, so the dataset of weak passwords with

300,000 passwords was selected. For this project two

approaches experimental and theoretical will be calculated

and compare together to have a good inside about the

implemented version of bloom filter besides having some

optimal values for the other parameters. The key practice

in this project is to calculate the lowest false positive rate for

the implementation through the adjusting the key

parameters. To address that, the list of 30,000 strong

password was used to calculate the false positive rate from

empirical point of view.

The first experiment is to calculate the false positive rate

based on different hash functions to have a basic idea about

the some optimal numbers of hash functions. In bloom filter

using more hash functions may be considered as a way to

reach the lowest positive rate, it is true but at some points

adding more hash functions to the system does not work and

from those points the false positive rate again starts to grow.

In practice, hash functions yielding sufficiently uniformly

distributed outputs, such as MD5 ,CRC32 ,SHA1, SHA2,

murmur, FNV which are useful for most probabilistic filter

purposes like bloom filter [5].

For the first experiment the m/n = 6 was selected and

different hash functions were applied. Figure

2 shows the details about two approaches

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 190-193, 2017, ISSN:-2319–8656

www.ijcat.com 192

Figure 2: False positive rate through different number of

hash functions

As figure 2 depicts the experimental result has a little higher

error in comparison with the theoretical one but almost both

are following the same trend. From the theoretical result

point of view, K=4 plays an optimal solution for the given

data and the experimental one confirms this result. Table 2

shows the exact result for both cases.

Table 2: False positive rate through different number of

hash functions

K Experimental result Theoretical result

1 1.23 0.7

2 0.88 0.62

3 0.65 0.17

4 0.63 0.1

5 0.65 0.13

6 0.68 0.14

For the next step the false positive rate is calculated based

on the different bloom filter sizes (m). Figures

3, 4 and 5 shows the different values for false positive rates

while we are applying different number of hash functions

Figure 3: False positive rate with different size of bloom

filter (K=2)

Figure 4: False positive rate with different size of bloom

filter (K=4).

Figure 5: False positive rate with different size of bloom

filter (K=6).

Figure 6: False positive rate with different size

of bloom filter and different number of hash functions. As

the figure 6 shows the lowest false positive rate can be

achieved with a bloom filter with m/n=50.

Although, it can be considered as an optimal solution for

this scenario but if we had some restrictions in regards of

required space, we can consider the m/n=10 with number of

hash functions equal to 4. In fact, it depends on the domain

and how accurate we expect to receive the outcome from

the bloom filter. In the current case as we do not have that

much sensitivities we can take K=4 with m/n=10 as an

optimal solution.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 190-193, 2017, ISSN:-2319–8656

www.ijcat.com 193

4. CONCLUSION

Bloom filter is a compact data structures for

probabilistic representation of a set in order to support

membership queries[7,8]. It has a strong space advantage

over other data structures for representing sets and it also

comes with lookup time efficiency in comparison with

other approaches, but as may be expected, there is always

a tradeoff and for this case the false positive is a tradeoff

for space and time efficiency. Based on the domain and

acceptable false positive rate, the bloom filter can be

adjusted to achieve the optimal lookup time beside space

efficiency. In this paper, based on the input data and

admissible false positive error rate, 4 independent hash

functions with m/n =10 were selected as an optimal

solution.

REFERENCES
[1] Spafford, Eugene H. "Preventing weak password

choices." (1991).

[2] Broder, Andrei, and Michael Mitzenmacher. "Network

applications of bloom filters: A survey." Internet

mathematics 1, no. 4 (2004): 485-509.

[3] Ganesan, Ravi, and Christopher I. Davies. "Method

and system for proactive password validation." U.S.

Patent 5,394,471, issued February 28, 1995.

[4] Mitzenmacher, Michael. "Distributed, compressed

Bloom filter Web cache server." U.S. Patent

6,920,477, issued July 19, 2005.

[5] Porat, Ely. "An optimal Bloom filter replacement

based on matrix solving." In International Computer

Science Symposium in Russia, pp. 263-273. Springer

Berlin Heidelberg, 2009.

[6] Pouriyeh, Seyed Amin, and Mahmood Doroodchi.

"Secure SMS Banking Based On Web Services." In

SWWS, pp. 79-83. 2009.

[7] Weirich, Dirk, and Martina Angela Sasse. "Pretty good

persuasion: a first step towards effective password

security in the real world." In Proceedings of the 2001

workshop on New security paradigms, pp. 137-143.

ACM, 2001.

[8] Hao, Fang, Murali Kodialam, and T. V. Lakshman.

"Building high accuracy bloom filters using partitioned

hashing." In ACM SIGMETRICS Performance

Evaluation Review, vol. 35, no. 1, pp. 277-288. ACM,

2007.

[9] Shanmugasundaram, Kulesh, Hervé Brönnimann, and

Nasir Memon. "Payload attribution via hierarchical

bloom filters." In Proceedings of the 11th ACM

conference on Computer and communications security,

pp. 31-41. ACM, 2004.

[10] Kirsch, Adam, and Michael Mitzenmacher. "Distance-

sensitive bloom filters." In 2006 Proceedings of the

Eighth Workshop on Algorithm Engineering and

Experiments (ALENEX), pp. 41-50. Society for

Industrial and Applied Mathematics, 2006.

[11] Pouriyeh, Seyed Amin, Mahmood Doroodchi, and M.

R. Rezaeinejad. "Secure Mobile Approaches Using

Web Services." In SWWS, pp. 75-78. 2010.

[12] Zhong, Ming, Pin Lu, Kai Shen, and Joel Seiferas.

"Optimizing data popularity conscious bloom filters."

In Proceedings of the twenty-seventh ACM symposium

on Principles of distributed computing, pp. 355-364.

ACM, 2008.

[13] Mitzenmacher, Michael. "Bloom filters."

In Encyclopedia of Database Systems, pp. 252-255.

Springer US, 2009.

[14] Allahyari, Mehdi, Krys J. Kochut, and Maciej Janik.

"Ontology-based text classification into dynamically

defined topics." In Semantic Computing (ICSC), 2014

IEEE International Conference on, pp. 273-278. IEEE,

2014.

[15] Tarkoma, Sasu, Christian Esteve Rothenberg, and

Eemil Lagerspetz. "Theory and practice of bloom filters

for distributed systems." IEEE Communications

Surveys and Tutorials 14, no. 1 (2012): 131-155.

[16] Melicher, William, Blase Ur, Sean M. Segreti, Saranga

Komanduri, Lujo Bauer, Nicolas Christin, and Lorrie

Faith Cranor. "Fast, lean and accurate: Modeling

password guessability using neural networks."

In Proceedings of USENIX Security. 2016.

[17] Laufer, Rafael P., Pedro B. Velloso, and O. C. M. B.

Duarte. "Generalized bloom filters." Electrical

Engineering Program, COPPE/UFRJ, Tech. Rep.

GTA-05-43 (2005).

[18] Allahyari, Mehdi, and Krys Kochut. "Automatic topic

labeling using ontology-based topic models."

In Machine Learning and Applications (ICMLA), 2015

IEEE 14th International Conference on, pp. 259-264.

IEEE, 2015.

[19] Morris, Robert, and Ken Thompson. "Password

security: A case history." Communications of the

ACM 22, no. 11 (1979): 594-597.

[20] Kaufman, Charlie, Radia Perlman, and Mike

Speciner. Network security: private communication in

a public world. Prentice Hall Press, 2002.

[21] Rosenberg, Jothy, and David Remy. Securing Web

Services with WS-Security: Demystifying WS-Security,

WS-Policy, SAML, XML Signature, and XML

Encryption. Pearson Higher Education, 2004.

[22] Rubin, Aviel D., Daniel Geer, and Marcus J.

Ranum. Web security sourcebook. John Wiley & Sons,

Inc., 1997.

http://www.ijcat.com/

