
International Journal of Computer Applications Technology and Research

Volume 6–Issue 7, 329-332, 2017, ISSN:-2319–8656

www.ijcat.com 329

Software Effort Estimation Using Adaptive Fuzzy-Neural

Approach

Riyadh A.K. Mehdi

College of Information Technology

Ajman University

Abstract- Software effort estimation is an important step in software development. It predicts the amount of effort and development time

required to build a software system. It is one of the most important tasks and an accurate estimate is vital to the successful completion of the

project. Building software effort estimation requires developing sound computational models. This paper investigates the use of fuzzy-neural

systems in estimating software effort. A comparison is made with a radial basis neural network. Results obtained based on the China dataset

indicates that a hybrid model that combine fuzzy inferencing with neural networks ability to learn from examples provided more accurate

results than using neural networks alone.

Index Terms - Software effort estimation; fuzzy inference; datasets; neural networks; and fuzzy-neural systems.

1. INTRODUCTION
Estimating software development efforts is one of the critical tasks

in managing software development projects. Predicting software

development effort with high accuracy is of paramount importance

for project managers. However, estimating software development

effort is still a challenging problem and one that attracts

considerable research. Numerous software effort estimation models

have been developed [1, 2, 3, 4]. The conventional models use a

mathematical formula to predict project cost based on the estimates

of parameters such as project size measured in lines of source code

or function points, number of software engineers, and other process

and product attributes [5]. Among the software cost estimation

techniques, COCOMO (Constructive Cost Model) is the most

commonly used algorithmic cost modeling technique because of its

simplicity for estimating the effort in person-months for a project

at different stages. COCOMO uses a mathematical formula to

predict project cost estimation [6]. Non-algorithmic models of

software cost estimation based on soft computing approaches such

as artificial neural networks (ANN) and fuzzy logic have also been

used. Artificial neural networks are good at modeling complex

nonlinear relationships. They are massive parallel-distributed

processor made up of simple processing units, which can store

experimental knowledge and making it available for use [5]. An

ANN resembles the brain in two respects [5]: 1) Knowledge is

acquired from its environment through a learning process, 2)

Interneuron connection weights are used to store the knowledge.

On the other hand, fuzzy logic is a mathematical tool for dealing

with uncertainty and imprecision information. Fuzzy logic maps an

input space to an output space through set of if then rules designed

by a human expert in the domain [7]. Fuzzy logic models can be

constructed without any data or with little data [8, 9]. This makes

fuzzy logic superior over data-driven model building approaches

such as neural network, regression and case based reasoning. In

addition, fuzzy logic models can adapt to new environment when

data become available [10]. Implementing fuzzy system requires

that the distinct categories of the different inputs be represented by

fuzzy sets which, in turn, are represented by membership functions.

The domain of membership function is fixed, usually the set of real

numbers, and whose range is the span of positive numbers in the

closed interval [0, 1].

2. LITERATURE REVIEW

Xu and Khoshgoftaar [11] proposed a fuzzy identification cost

estimation model to deal with linguistic data, and automatically

generate fuzzy membership functions and rules. Azzeh et al. [12]

propose an analogy-based software effort estimation using fuzzy

numbers, namely Generalized Fuzzy Number Software Estimation.

They compute the similarity between two generalized fuzzy

numbers based on their geometric distances, center of gravities and

height of the generalized fuzzy numbers, and use fuzzy c-means to

cluster the existing software project data. The estimations are

conducted with the use of generalized fuzzy number operations and

the effort of a project is estimated as a fuzzy number which is

defuzzified with the method of center of gravity. Lopez-Martin et

al. [13] compare three personal fuzzy logic models to estimate the

effort of small software programs, namely triangular, trapezoidal

and Gaussian membership functions, with linear regression model.

They develop the fuzzy logic and linear regression models using

the data gathered from 105 small programs, and then the

estimations generated by these models are compared with each

other using 20 small programs. Wei Lin et al. [14] showed that a

general neuro-fuzzy framework can function with various

algorithmic models for improving the performance of software

effort estimation. They used a Neuro-Fuzzy model to demonstrate

that combining the neuro-fuzzy model with the SEER-SEM effort

estimation model produces unique characteristics and performance

improvements. They concluded that the neuro-fuzzy features of the

model provided their neuro-fuzzy SEER-SEM model with the

advantages of strong adaptability with the capability of learning,

less sensitivity for imprecise and uncertain inputs, easy to be

understood and implemented, strong knowledge integration, and

high transparency. Hodgkinson and Garratt [15] introduced the

neuro-fuzzy model for cost estimation as one of the important

methodologies for developing non-algorithmic models. Their

model did not use any of the existing prediction models, as the

inputs are size and duration, and the output is the estimated project

effort.

Huang et al. [16, 17] proposed a software effort estimation model

that combines a neuro-fuzzy framework with COCOMO II. The

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 7, 329-332, 2017, ISSN:-2319–8656

www.ijcat.com 330

parameter values of COCOMO II were calibrated by the neuro-

fuzzy technique in order to improve its prediction accuracy. This

study demonstrated that the neuro-fuzzy technique was capable of

integrating numerical data and expert knowledge.

Xia et al. [18] developed a Function Point (FP) calibration model

with the neuro-fuzzy technique, which is known as the Neuro-

Fuzzy Function Point (NFFP) model. The objectives of this model

are to improve the FP complexity weight systems by fuzzy logic, to

calibrate the weight values of the unadjusted FP through the neural

network, and to produce a calibrated FP count for more accurate

measurements.

Wong et al. [19] introduced a combination of neural networks and

fuzzy logic to improve the accuracy of backfiring size estimates. In

this case, the neuro-fuzzy approach was used to calibrate the

conversion ratios with the objective of reducing the margin of error.

The study compared the calibrated prediction model against the

default conversion ratios. As a result, the calibrated ratios still

presented the inverse curve relationship between the programming

languages level and the number of function points, and the accuracy

of the size estimation experienced a small degree of improvement.

A survey on software effort estimation techniques is given in [20].

The Adaptive network based fuzzy inference system (ANFIS) is a

hybrid of a feed forward neural network and a fuzzy inference

system. The neural network uses either a pure back propagation

gradient descent learning rule, or a hybrid learning rule that uses

back propagation and a least squares method [21]. The fuzzy logic

component takes into account the imprecision and uncertainty of

the system that is being modelled while the neural network

component apply its learning algorithm to tune the membership

functions of the fuzzy inference system generated [22]. Using this

hybrid method, at first an initial fuzzy model along with its input

variables are derived with the help of the rules extracted from the

input output data of the system that is being modeled. Next the

neural network is used to fine tune the rules of the initial fuzzy

model to produce the final ANFIS model of the system [22]. In

ANFIS the parameters can be estimated in such a way that both the

Sugeno and Tsukamoto fuzzy models [23] are represented by the

ANFIS architecture.

This paper investigates the effectiveness of using a neuro-fuzzy

approach to software effort estimate and how it compares to other

approaches.

3. RESEARCH METHODOLOGY
In this work, an adaptive neuro-fuzzy inference system based on

the Sugeno fuzzy model is used. The following exposition is

adapted from [22].

3.1 ANFIS Architecture
A typical architecture of ANFIS is depicted in Figure 1. A circle

indicates a fixed node, whereas a square indicates an adaptive node

[22].

For a first-order Sugeno fuzzy model, a two rules rule base can be

expressed as follows:

222222

111111

 then , is and is If 2.

 then , is and is If 1.

ryqxpfByAx

ryqxpfByAx

Let the membership functions of fuzzy sets Ai, Bi for i=1,2 be

.,
iA jB In this work, Gaussian membership functions are

used,

ii b

i

i

A

a

cx
x

2

1

1
)(

In evaluating the rules, a product T-norm (logical and) is chosen.

Evaluating the rule premises results in,

1,2.i),()(yxw
ii BAi

Evaluating the implication and the rule consequences gives,

.
),(),(

),(),(),(),(
),(

21

2211

yxwyxw

yxfyxwyxfyxw
yxf

Leaving the arguments out,

21

2211

ww

fwfw
f

The above equation can be rewritten as,

21

2211 where,

ww

w
w

fwfwf

i
i

Figure 1. Structure of adaptive neuro-fuzzy inference system.

3.2 MATLAB Implementation
1. genfis2(Xin,Xout,radii), genfis2 generates a Sugeno-type FIS

structure using subtractive clustering and requires separate sets of

input and output data as input arguments. When there is only one

output, genfis2 may be used to generate an initial FIS for anfis

training. genfis2 accomplishes this by extracting a set of rules that

models the data behavior. The rule extraction method first uses the

subclust function to determine the number of rules and antecedent

membership functions and then uses linear least squares estimation

to determine each rule's consequent equations. This function

returns an FIS structure that contains a set of fuzzy rules to cover

the feature space. The arguments for genfis2 are as follows:

a. Xin is a matrix in which each row contains the input

values of a data point.

b. Xout is a matrix in which each row contains the output

values of a data point.

c. radii is a vector that specifies a cluster center's range of

influence in each of the data dimensions, assuming the

data falls within a unit hyper box.

2. anfis(trainingData, options)

This function generates a single-output Sugeno fuzzy inference

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 7, 329-332, 2017, ISSN:-2319–8656

www.ijcat.com 331

system (FIS) structure using grid partitioning and tunes the system

parameters using the specified input/output training data to adjust

the membership functions parameters. This adjustment is made

using a backpropagation algorithm either alone, or in combination

with a least squares type of method. This allows the fuzzy systems

to learn from the data they are modeling. The MATLAB statement:

[fis,trainError,stepSize,chkFIS,chkError] =

anfis(trainingData,options) returns the validation data error for

each training epoch, chkError, and the tuned FIS structure for

which the validation error is minimum, chkFIS. Using validation

data prevents overfitting to training data. To use this syntax, we

must specify validation data using options.ValidationData.

3.3 Software Effort Estimation Datasets
The China dataset (19 attribute, 499 projects, effort in person-

hours) is used in this work. The number of records used for training,

checking, and testing were 349, 100, and 50 respectively. Because

the number of records is inadequate to estimate the parameters of

the neuro-fuzzy estimation model, It was not possible to use the

datasets below [24]:

 Desharnais (11 attribute, 77 project, effort in person-

hours)

 Cocomo81 (18 attribute, 61 project, effort in person-

month)

 Maxwell (27 attribute, 62 project, effort in function points)

 Albrecht (8 attribute, 24 project, effort in person-hours)

The evaluation criterion used to assess the estimation accuracy are

root mean square error (RMSE), and the mean magnitude

(absolute) error (MME) [25]:

ni

i

ii

ni

i

ii

)p(ffortpredictedE)p(rtactualEffo
n

MME

n/pffortpredictedEpractualEffosqrtRMSE

1

2

1

1

))()((

4. RESULTS
Figure 2 depicts the performance of the neuro-fuzzy model when

run on the testing data (50 records). In Figure 2, the line represent

actual effort and the circles represent estimated efforts.

Figure 2. Actual efforts and estimated efforts using ANFIS.

As a comparison, Figure 3 shows the performance of a RBFN

network using the same set of testing records.

Table 1 shows the mean absolute error, and root mean square root

for the China dataset using the adaptive neuro-fuzzy model and a

radial basis function neural network (RBFN) [26].

Figure 3. Actual efforts and estimated efforts using RBFN.

Table 1. Errors obtained using ANFIS and RBFN on the

China dataset.

Error Type ANFIS RBFN

Root mean square error 1483 2850

Mean magnitude error 874 802

The results indicate that although the mean magnitude error for the

ANFIS model is slightly higher than that for the RBFN model, they

are comparable. However, the root mean square error for the RBFN

is almost twice that of the ANFIS model. This indicate while the

average error is almost the same for the two models, the estimation

of the ANFIS model has much less deviations from the actual

values compared with the RBFN model.

5. CONCLUSIONS
In this paper, the adaptive neuro fuzzy model was applied to the

problem of estimating software developments efforts using the

China data set. The results were compared with using a radial basis

function neural network on the same data set and on the same

testing records. The results indicate while both models are

comparable with regard to the mean magnitude error, the ANFIS

model has a better performance in the sense that the estimates have

a far less deviation that those of the RBFN model.

 Future work will investigate the relevance of the various attributes

in determining the size of efforts required in developing software

so that standardized set of attributes can be used in collecting data

sets.

6. REFERENCES

[1]. S. A. Abbas, A. R. Liao, A. Azam, 2012. “Cost Estimation:

A Survey of Well-Known Historic Cost Estimation

Techniques,” Journal of Emerging Trends in Computing

and Information Sciences, vol. 4, no. 1, pp 612-636.

[2]. R. Malhotra, A. Jain, 2011. “Software Effort Prediction

using Statistical and Machine Learning Methods,”

International Journal of Advanced Computer Science and

Applications, vol. 2, no. 1.

[3]. Abbas Heiat, 2002. “Comparison of Artificial Neural

Network and Regression Models for Estimating Software

Development Effort,” Information and Software

Technology, vol. 44, pp. 911-922.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 7, 329-332, 2017, ISSN:-2319–8656

www.ijcat.com 332

[4]. R. Sharma, 2013. “Survey: Non Algorithmic Models for

Estimating Effort,” European International Journal of

Science and Technology, vol. 2, no. 3.

[5]. Kaushik, A. Chauhan, D. Mittal, and S. Gupta, 2012.

“COCOMO Estimates Using Neural Networks,”

International Journal of Intelligent Systems and

Applications, vol. 9, pp. 22-28.

[6]. Reddy, and K. Raju, “An Optimal Neural Network Model

for Software Effort Estimation,” International Journal of

Software Engineering, vol.12 no.1, pp. 66-78.

[7]. Zadeh, L.A., 2002. From Computing with numbers to

computing with words-from manipulation of measurements

to manipulation of perceptions. International Journal of

Applied Mathematics and Computer Science 12(3), 307-

324.

[8]. MacDonell, S.G., Gray, A.R., Calvert, J.M. 1999. Fuzzy

Logic for Software Metric Practitioners and Researchers.In

: The Proceedings of the 6th International Conference on

Neural Information Processing ICONIP, Perth, pp. 308-

313.

[9]. Ryder, J. 1998. Fuzzy Modeling of Software Effort

Prediction. In: Proceeding of IEEE Information Technology

Conference, Syracuse, New York, pp. 53-56.

[10]. Sailu, M.O., Ahmed, M., AlGhamdi, J. 2004. Towards

Adaptive Soft Computing Based Software Effort

Prediction. In: Fuzzy Information, Processing NAFIPS, pp,

16-21.

[11]. Xu, Z., Khoshgoftaar, T.M., 2004. “Identification of fuzzy

models of software cost estimation,” Fuzzy Sets and

Systems, vol. 145 (1), pp. 141-163.

[12]. Azzeh, M., Neagu, D. Cowling, P.I., 2011. “Analogy-based

software effort estimation using Fuzzy numbers,” Journal

of Systems and Software, vol. 84 (2), pp. 270-284.

[13]. Lopez-Martin, C., Yanez-Marquez, C., Gutierrez-Tornes,

A., 2008. “Predictive accuracy comarison of fuzzy models

for software development effort of small programs,”

Journal of Systems and Software, vol. 81 (6), pp. 949-960.

[14]. Wei Lin Du, Danny Ho, Luiz Fernando Capretz, 2010.

Improving Software Effort Estimation Using Neuro-Fuzzy

Model with SEER-SEM, Global Journal of Computer

Science and Technology, Vol. 10 Issue 12, pp. 51-63.

[15]. Hodgkinson, A. C. and Garratt, P. W. 1999. A NeuroFuzzy

Cost Estimator. Proc. 3rd Int Conf Software Engineering

and Applications (SAE): 401–406

[16]. Huang, X., Ho, D., Ren, J., and Capretz, L. F. 2005. A Soft

Computing Framework for Software Effort Estimation. Soft

Computing: 170–177

[17]. Huang, X., Ho, D., Ren, J., and Capretz, L. F. 2006.

Improving the COCOMO Model Using A Neuro-Fuzzy

Approach. Applied Soft Computing: 29–40

[18]. Xia, W., Capretz, L. F., Ho, D., and Ahmed, F. 2008. A New

Calibration for Function Point Complexity Weights.

International and Software Technology, Vol. 50, Issue 7-8:

670–683

[19]. Wong, J., Ho, D., and Capretz, L. F. 2008. Calibrating

Functional Point Backfiring Conversion Ratios Using

Neuro-Fuzzy Technique. International Journal of

Uncertainty, Fuzziness and Knowledge-Based Systems,

Vol. 16, No. 6: 847 – 862

[20]. Karunakaran, and Sreenath, 2015. Survey on Software

Effort Estimation Technique – A Review International

Journal of Scientific & Engineering Research, Volume 6,

Issue 12.

[21]. J.S. Jang, 1999. "Anfis: Adaptive-network-based fuzzy

inference system," IEEE Trans. Syst., Man, Cybern., vol.

23, pp. 665--685, Mar. 1993 [2] W. H. Wolberg and O.L.

Mangasarian: "Multisurface method of pattern separation

for medical diagnosis applied to breast cytology",

Proceedings of the National Academy of Sciences, U.S.A.,

Volume 87, pp 9193-9196.

[22]. M. Buragohain, 2008. Adaptive Network based Fuzzy

Inference System (ANFIS) as a Tool for System

Identification with Special Emphasis on Training Data

Minimization, PhD Thesis, Indian Institute of Technology

Guwahati, India.

[23]. Y. Tsukamoto, 1979. M. M. Gupta, R. K. Ragade, and R. R.

Yager, “An approach to fuzzy reasoning method,” in

Advances in Fuzzy Set Theory and Application, M. M.

Gupta, R. K. Ragade, and R. R. Yager, Eds., North-Holland,

Amsterdam, pp. 137–149.

[24]. S. J. Shirabad, and T. J. Menzies, 2005. “The PROMISE

Repository of Software Engineering Databases,” School of

Information Technology and Engineering, University of

Ottawa, Canada. Available:

http://promise.site.uottawa.ca/SERepository.

[25]. S. Conte, 1986. H. Dunsmore, and V. Shen, Software

Engineering, Metrics and Models. Benjamin/Cummings.

[26]. Riyadh A.K. Mehdi, 2015. “Software Defect Prediction

Using Radial Basis and Probabilistic Neural Networks”,

International Journal of Computer Applications and

Research, Volume 5, Issue 5, pp. 260-265.

http://www.ijcat.com/

