
International Journal of Computer Applications Technology and Research

Volume 6–Issue 8, 391-395, 2017, ISSN:-2319–8656

www.ijcat.com 391

Model View Mapper Architecture for Software

Reusability

Chethana S

Lecturer,Dept.of Computer Science

NMKRV PU College

Bangalore, India

Dr.Srinivasan

Professor

RV Engineering College

Bangalore,India

Abstract: Design Pattern Architecture is a serious issue in the development of any complex software system for Small, Medium and

Big Organization. The essential problem is how to incorporate rapidly changing technology and new requirements by composing patterns

for creating reusable designs. The main objective of this proposed work is to enhance the performance of enterprise design pattern reuse,

to monitor software component problems and to predict the best design pattern for reusability. As a solution for all these problems a new

framework called MVM pattern approach is proposed for migrating to a new design approach. It is helpful for all kinds of the organization

complex software developments.

Keywords: Software Reuse, Architectures, Framework, Design Patterns, MVC, MVM, MVVM, MVP

1. INTRODUCTION
Software Reuse is characterized as the way toward building or

collecting software applications and frameworks from the

existing software. By reusing Software pattern there are many

advantages includes time can be saved, increase productivity

and also reduce the cost of new software development. The

proposed work aims on developing a framework for software

pattern reuse in enterprise level applications. Frameworks give

a standard working structure through which client's primary

aim is on creating desired modules than creating lower level

points of interest. By utilizing this facility the software

designers can invest more time in building up the prerequisite

of software, instead of setting up the tools of application

development. The framework is a set of the reusable software

program that structures the basis for an application.

Frameworks help the developers to assemble the application

rapidly. At its best code reuse is refined through the sharing of

regular classes or collection of methods, frameworks, and

techniques.

2. LITERATURE SURVEY
In Neha Budhija [1] expert designers have done an empirical

study of the software reuse activity with the concept of object-

oriented design. The study concentrated on fundamentally three

aspects of reuse : (1) the communication between some design

forms (2) the mental procedures required in reuse (3) the mental

portrayals developed all through the reuse action. In

FENIOSKY PENA-MORA [2] introduces an in-advance

improvement of a framework for utilizing design rationale and

design patterns for creating reusable programming

frameworks. The work describes the use of an explicit software

creation procedure to catch and disseminate specific

knowledge that augments the depiction of the cases in a library

during the development process of software applications by

heterogeneous gatherings. B.JALENDER [3], the authors

described about how the code level reusable components can

be built and how the code level components can be designed. It

also provides some coding guidelines, standards and best

practices used for creating reusable code level components and

guidelines and best practices for making configurable and easy

to use. Tawfig M [4] the authors have presented the concept of

reuse at design level in more details. Also, the work proposes

an approach to improve the reusability of software design by

using the concept of directed graph. The outcome of the

proposed work is to produce a design to be considered as

reusable components which can be adapted in many software

systems. Erich Gamma[5] proposed design patterns as a new

mechanism for expressing object-oriented design experience

and they described that the design patterns can be considered

reusable micro-architectures that contribute to an overall

system architecture. Authors described how to express and

organize design patterns and newly introduced a catalog of

design patterns. In Reghu Anguswamy [6] provided a generic

list of reuse design principles for component based software

development which is based on a preliminary analysis of the

literature of software reuse and reuse design over the past few

decades. Authors suggested that the proposed list is new since

the reuse design principles presented in the past were specific

to programming languages, domains, or programming

paradigms. William B[7] In their paper authors have briefly

summarized about software reuse research, discussed major

research contributions and unsolved problems in the proposed

area, they provided pointers to key publications. Sajjan G [8] in

this paper the authors have done an attempt to answer some

unsolvable questions. Authors pointing out that it have been

more than three decades since the idea of software reuse was

proposed. They have done a research on how far are

investigators with software reuse research and practice. In

CHARLES W[9] have done a survey on various approaches to

software reuse found in the research literature. Some taxonomy

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 8, 391-395, 2017, ISSN:-2319–8656

www.ijcat.com 392

has been used to describe and compare the different approaches

and make generalizations about the field of software reuse. The

taxonomy used in the work is used to characterize each reuse

approach by its reusable artifacts and the way how are

organized. SathishKumar[10] ,the authors have given a brief

summarization of present research status in the field of software

reuse and major research contributions. Some future directions

for research in software reuse are also discussed.

Model view mapper pattern

There are many different approaches existing for software

reusability such as MVC(Model View

Controller),MVM(Model View Presenter) and MVVM(Model-

View-ViewModel) and all these approaches have its own

advantages and disadvantages. So a new framework is

proposed for Software design reusability called Model View

Mapper Pattern.

The Model represents a set of packages instead of business

logic classes i.e. business model as well as database access

authority along with server side validation i.e. data model. It

also defines business rules for data means how the data can be

changed and manipulated then updated in to database along

with proper validation. The View represents the UI

Components like CSS, jQuery, Angular.js, Ajax, html etc. It is

also represents as database access authority along with server

side as well as client side validation. It is not only responsible

for displaying the data that is received from the mapper and

from the database as the result. The Mapper is responsible to

process the incoming requests. It receives valid input from

users via the View, then process the user’s data with the help

of Model as well as View and passing the results back to the

View. Typically, it acts as the coordinator between the View

and the Model. Figure[1] describes the flow of how the

communication takes place in the proposed MVM pattern

architecture.

Code Classifier & Code Analyzer Algorithm is used in the

work to classify and count the number of class name, abstract

class name, method name, and abstract method name,

interfaces used in the program, iteration counts and the number

of lines in the file present in the file. Tracing Behavioral

Dependency algorithm is used to identify the Dependent Class

Name & Depending Class Name in separate table.

Algorithm 3: Hybrid ABC-CMArtificial Bee

Colony + Naïve Bayes Classifier Model

1: Initialize the population of solutions Bee i, j ,i = 1 ...EL, j =

1 ...P

2: Evaluate the population

3: iteration=1

4: repeat

5: Produce new solutions Val i, j for the employed bees by

using (2) and evaluate them

6: Apply the greedy selection process in Bees

7: Calculate the probability values Pop i, j for the solutions Bee

i, j by (1)

8: Produce the new solutions Val i, j for the onlookers from the

solutions Bee i, j selected depending on Pop i, j and evaluate

them

Figure1. Proposed MVM pattern Architecture

9: Apply the greedy selection process

10: Determine the unrestrained solution for the scout, if exists,

and replace it with a new randomly produced solution Bee i, j

by (3)

11: Memorize the best solution achieved so far.

12. Let best solution be a training set of samples, each with

their class labels. There are n classes, Cls1, Cls2, . . . ,Clsn.

Figure 2. Sequence Diagram for MVM

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 8, 391-395, 2017, ISSN:-2319–8656

www.ijcat.com 393

Each sample is represented by an n-dimensional vector, X =

{x1, x2, . . . ,xn}, depicting n measured values of the n

attributes, Attb1, Attb2, . . . , Attbn, respectively.

13. Given a sample X, the classifier will predict that X belongs

to the training set taking the highest a posteriori probability,

conditioned on X. That is X is predicted to belong to the class

Clsi if and only if

P(Clsi |X) > P(Clsj |X) for 1 ≤ j ≤ m, j != i.

Thus we find the class that maximizes P(Clsi |X). The class Clsi

for which P(Clsi |X) is maximized is called the maximum

posteriori hypothesis. By Bayes’ theorem

P(Clsi |X) = P(X|Clsi) P(Clsi) P(X) .

14. As P(X) is the same for all classes, only P(X|Clsi)P(Clsi)

need be maximized. If the class a priori probabilities, P(Clsi),

are not known, then it is commonly assumed that the classes

are equally likely, that is, P(Cls1) = P(Cls2) = . . . = P(Clsk),

and we would therefore maximize P(X|Clsi). Otherwise we

maximize P(X|Clsi)P(Clsi). Note that the class a priori

probabilities may be estimated by P(Clsi) = freq(Clsi , T)/|T|.

15. Given data sets with many attributes, it would be

computationally expensive to compute P(X|Clsi). In order to

reduce computation in evaluating P(X|Clsi) P(Clsi), the naive

assumption of class conditional independence is made. This

assumes that the values of the attributes are temporarily

independent of one another, given the class label of the trial.

Mathematically this means that

P(X|Clsi) ≈ n PI k=1 P(xk|Clsi).

The probabilities P(x1|Clsi), P(x2|Clsi), . . . , P(xn|Clsi) can

easily be predictable from the training set. Recall that here xk

refers to the value of attribute Attbk for sample X.

(a) If Attbk is categorical, then P(xk|Clsi) is the number of

samples of class Clsi in T having the value xk for attribute

Attbk, divided by freq(Clsi , T), the number of sample of class

Clsi in T.

(b) If Attbk is continuous-valued, then we typically assume that

the training values have a Gaussian distribution with a mean µ

and standard deviation σ defined by

g(x, µ, σ) = 1 √ 2πσ exp − (x − µ) 2 / 2σ 2 , so that

p(xk|Clsi) = g(xk, µClsi , σClsi).

We need to compute µClsi and σClsi , which are the mean and

standard deviation of values of attribute Attbk for training

samples of class Clsi .

Figure 2.Sequence Diagram of MVM pattern

The sequence diagram in Figure 2shows the difference between

the event responses of all patterns.

16. In order to predict the class label of X, P(X|Clsi)P(Clsi) is

evaluated for each class Clsi . The classifier predicts that the

class label of X is Clsi if and only if it is the class that

maximizes P(X|Clsi)P(Clsi).

17: Iteration=Iteration+1

18: until Iteration=MITR

3. RESULTS AND DISCUSSION

3.1. Module 1 Process Flow:

 Upload MVC Software Version 1: MVC Software

Version1 have 297 files

 Display Code Analyzer Page for Software version1

 Upload MVC Software Version 2 : MVC Software

Version 2 have 299 files.

 Display code Analyzer Page

 Trace events for Software1

 Trace events for Software2

The overall process flow shown in figure 3 to figure

9.Upload both Software1 and Software2.Figure 3 and

figure4 shows the Tracing events for both inputs.Figure5

shows the Behavioral dependency table for both

software.Figure6 shows the filenames and their

reusability percentage by using MVM Pattern. Figure 7

represents the chart which shows the percentage of

reusability. Same process continues with proposed

MVM pattern and the results are shown in figure 8 and

figure9.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 8, 391-395, 2017, ISSN:-2319–8656

www.ijcat.com 394

Figure 3.Trace events status for Software1

Figure 4. Trace events for Software2

 Trace the Behavioral Dependency for both software

V1 and V2

Figure 5. Behavioral Dependent Class

 Finding out the design reuse level.

Figure 6. Overall Percentage using MVC Pattern

Figure 7. Reusability using MVC pattern

3.2. Module 2 Process Flow – Type 1:

 Upload MVC Software Version 1:

 MVC Software Version 1 are having 297 files.

 Display code analyzer for software V1: Total number

of classes present in V1

 Upload MVM software

 Code analyzer algorithm works for MVM pattern for

softwareV1:Total number of classes present in

SoftwareV1 are 26

 Trace Events will extract both MVC Software

Version 1 & MVM Software class names.

 Behavioral Dependency algorithm gets executed and

it will extract all the MVC Software Version 1

&MVM Software Dependent Class Name &

Depending Class Name in separate table.

 Finally displays the design reusability percentage.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 8, 391-395, 2017, ISSN:-2319–8656

www.ijcat.com 395

Figure 8. Overall reuse percentage using MVM pattern

Figure 9. Reusability percentage in MVM pattern

In Background Hybrid ABCCM algorithm will works to track

the Pattern Reuse Percentage for MVC Software Version 1 &

MVM Software. Then extract some additional background

metrics. Same process continues with different software

modules.

4. CONCLUSION
In order for programmers to be able to reuse those design whose

existence is not known to them, a design approach which help

them in locating a pattern for reusage and converting them into

components is proposed .The outcome of this research is to

develop a framework for software pattern reusability at the

code level .Methods by which the framework may be used to

develop reusability will be proposed in the future research

work.

5. REFERENCES

[1] “Review of Software Reusability” NehaBudhija and

Satinder Pal Ahujain “International Conference On Computer

Science And Information Technology (Iccsit'2011)” Pattaya

Dec. 2011

[2] “Design Rationale And Design Patterns In Reusable

Software Design” Feniosky Pena-Mora And Sanjeev

Vadhavkar

[3] “Designing Code Level Reusable Software Components”

,B.Jalender 1 , DrA.Govardhan 2 , DrP.Premchand

,International Journal of Software Engineering & Applications

(IJSEA), Vol.3, No.1, January 2012.

[4] Tawfig M. Abdelaziz, Yasmeen.N.Zada and Mohamed A.

Hagal ,” A STRUCTURAL APPROACH TO IMPROVE

SOFTWARE DESIGN REUSABILITY”

[5] “Design Patterns: Abstraction and Reuse of Object-

Oriented Design” Erich Gamma , Richard Helm , Ralph

Johnson, John Vlissides , Conference Proceedings, Springer-

Verlag Lecture Notes in Computer Science.

[6] Reuse Design Principles ,ReghuAnguswamy and William

B Frakes, International Workshop on Designing Reusable

Components and Measuring Reusability Picture held in

conjunction with the 13th International Conference on

Software Reuse.

[7]”Software Reuse Research: Status and Future” William B.

Frakes and KyoKang ,IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 31, NO. 7, JULY 2005

[8] Software Reuse: Research and Practice “Sajjan G. Shiva

and LubnaAbouShala ,International Conference on

Information Technology (ITNG'07).

[9] “Software Reuse” CHARLES W. KRUEGER ACM

Computing Surveys, Vol. 24, No. 2, June 1992.

[10] “A Framework for Software Reuse and Research

Challenges” Sathish Kumar Soora, International Journal of

Advanced Research in Computer Science and Software

Engineering.

http://www.ijcat.com/

