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Abstract: Recent advancements in global settlement mapping have ushered in a new era of spatial analysis. The introduction of the 

Global Urban Footprint (GUF)—derived from radar-based TanDEM-X data—and the Global Human Settlement Layer (GHSL)—

based on optical satellite data—offers unprecedented spatial resolution for mapping complex human settlement patterns. Despite these 

innovations, comparative assessments evaluating their performance against existing lower-resolution datasets remain limited. To 

address this, we present a robust cross-comparison framework that examines inter-map agreement and classification accuracy across 

multiple African landscapes with varying settlement typologies. Using a curated set of reference data points from thirteen African 

countries, the study assesses the concordance between ground observations and GUF outputs. Key indicators of accuracy, including 

the Kappa coefficient, overall agreement rates, and pattern-based metrics, are used to evaluate the performance of these new layers. 

Findings reveal that the high-resolution GUF and GHSL products offer significant improvements in delineating low-density and peri-

urban settlements—areas previously underrepresented by coarser-resolution maps. Pattern-based analysis shows that accuracy is 

positively correlated with settlement structure, particularly in zones characterized by medium and small patch sizes. The results 

indicate a marked shift in the spatial fidelity of global settlement representations, particularly beyond urban core areas. This 

comprehensive validation supports the integration of GUF and GHSL data into urban planning and policy frameworks, enhancing the 

capacity to monitor and manage urbanization at multiple scales. 
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1. INTRODUCTION 

1.1 Urban Areas and the Need to Use Satellite Data 

The definition of “urban” is inherently relative, varying across 

countries and, at times, within the same country due to 

administrative reclassification. This variability complicates 

cross-national comparisons and temporal assessments of 

urbanization patterns [1]. Urban areas are generally 

characterized by high population density and significant 

concentrations of built infrastructure. They emerge through 

urbanization and manifest in various morphological forms 

such as cities, towns, suburbs, or conurbations. 

A settlement may be classified as urban based on several 

criteria, including population size (often with thresholds 

ranging from 200 to 50,000 people), population density, 

economic structure (e.g., where the majority of residents are 

engaged in non-agricultural sectors), and the presence of 

infrastructural features such as paved roads, electric lighting, 

and sewerage systems [2]. Urban areas are typically 

heterogeneous, hosting populations diverse in race, ethnicity, 

religion, socioeconomic status, and occupational background. 

This diversity, coupled with high mobility among urban 

dwellers, creates intense competition for space and resources. 

According to the World Bank, no region is urbanizing more 

rapidly than Africa. The continent’s urban population, which 

stood at 36% in 2010, is projected to reach 50% by 2030 [3]. 

This rapid growth presents both opportunities and challenges. 

Urbanization can catalyze economic development, structural 

transformation, and poverty alleviation, but it also necessitates 

accurate spatial data for planning, monitoring, and managing 

urban expansion. 

Given the challenges associated with inconsistent definitions 

and limited census data, satellite-based remote sensing has 

become essential in monitoring urban growth. Satellite 

imagery provides a consistent, objective, and scalable means 

of capturing urban dynamics, especially in regions where 

administrative data are sparse or outdated [4]. As African 

cities continue to expand at unprecedented rates, the 

integration of satellite data into urban planning processes is 

critical for achieving sustainable development outcomes [5]. 

 

Figure 1 Aerial view of the district of Plateau in Abidjan, Cote 

d'Ivoire (UN Photo/Basile Zoma) 
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1.2 Importance of Urban vs. Non-Urban Data in Spatial 

Planning  

Differentiating between urban and non-urban areas is vital for 

spatial planning because it directly influences infrastructure 

investment, service provision, and environmental 

management. Urban data informs the design of transportation 

corridors, zoning regulations, and housing developments. 

Conversely, non-urban classifications guide agricultural 

planning, biodiversity conservation, and rural development 

initiatives (6). 

In rapidly transforming geographies, especially in Sub-

Saharan Africa, urban sprawl often overlaps with informal or 

unregulated land uses. Distinguishing these through updated 

satellite-derived data supports targeted interventions. The 

GUF and GHSL (Global Human Settlement Layer) datasets, 

for instance, offer high-resolution basemaps that reveal human 

settlement footprints even in low-density areas previously 

underrepresented in legacy mapping systems (7). 

Such distinctions are not merely academic—they are 

necessary for determining eligibility for urban funding 

programs, assessing flood risk exposure in peri-urban zones, 

and enforcing land-use regulations. Urban-rural gradients also 

inform socio-economic programs by correlating settlement 

density with poverty indices, healthcare accessibility, and 

educational attainment levels (8). 

Accurate urban-non-urban delineation thus serves as a 

foundation for resilient and equitable spatial development 

strategies (9). 

1.3 Challenges in Accurate Extraction and Classification  

Despite technical advancements, challenges in classification 

remain, particularly when distinguishing complex settlement 

forms. Urban areas are often characterized by heterogeneity—

dense cores, scattered suburbs, and transitional zones 

coexisting within the same spatial tile. Traditional single-class 

pixel labelling often fails to capture this nuance, leading to 

misclassification and reduced reliability of derived statistics 

(10). 

Additionally, issues arise from inconsistent imagery coverage, 

atmospheric interference, and mixed pixels in moderate-

resolution datasets. For example, radar backscatter intensity 

used in GUF may overestimate built-up areas in regions with 

metallic roofs or underrepresent shaded or vegetated 

settlements (11). The absence of standard definitions of 

"urban" across nations further complicates classification 

comparability (12). 

Validation remains a core bottleneck. Ground truthing is 

resource-intensive, especially in geographically expansive or 

politically unstable regions. The manual selection of training 

samples, as was required in Ajani’s work, introduces 

subjectivity and scale-dependent bias (13). Differences in map 

legends, projection systems, and spatial resolutions across 

datasets also contribute to inter-map disagreement, limiting 

their interoperability. 

Such challenges underscore the necessity for standardized, 

high-resolution, and regularly updated classification systems 

that balance computational efficiency with contextual 

sensitivity (14). 

1.4 Research Aims and Contribution This study aims to 

extract and validate a database of urban and non-urban points 

from remotely sensed satellite data, focusing on multiple 

African countries as case examples. Through cross-

comparison of classified urban extents—particularly using the 

Global Urban Footprint (GUF)—and visually validated 

reference points, the research evaluates classification accuracy 

and consistency (15). 

Key contributions include the development of a scalable 

methodology for selecting statistically significant validation 

points across geographies, segmented into categories such as 

25%, 50%, 75%, and 100% urbanized areas. The manual 

refinement of classification through expert consensus 

enhances credibility in cases of spectral ambiguity (16). 

Furthermore, by quantifying inter-map agreement via 

confusion matrices and kappa coefficients, the research adds a 

valuable performance benchmark for future classification 

models. It also highlights the limitations of existing urban 

products in capturing low-density or peri-urban settlements—

insights critical for refining future land monitoring 

frameworks (17). 

2. REMOTE SENSING DATA FOR URBAN MAPPING  

2.1 Overview of Remote Sensing Platforms  

Remote sensing platforms have played a crucial role in the 

advancement of land classification, particularly for 

differentiating urban from non-urban regions. Three core 

platforms—Landsat, Sentinel, and MODIS—have been 

central to mapping land surface dynamics over time. 

The Landsat program, initiated in the 1970s, marked a 

significant step forward by introducing the Multispectral 

Scanner (MSS) and later the Thematic Mapper (TM), which 

allowed for a 30-meter spatial resolution across visible, near-

infrared, and shortwave infrared bands (7). With the Enhanced 

Thematic Mapper Plus (ETM+) and the Operational Land 

Imager (OLI), Landsat evolved into a widely used standard 

for urban growth analysis (8). 
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Figure 2: Locations of Landsat bands in the electromagnetic 

spectrum. 

The Sentinel missions, especially Sentinel-1 and Sentinel-2 

under the Copernicus programme, added robust capabilities to 

this domain. Sentinel-2 introduced 13 spectral bands and 

higher spatial resolution (up to 10 meters in some bands), 

which facilitated better vegetation, soil, and urban 

classification under varying atmospheric conditions (9). 

Sentinel-1, using C-band Synthetic Aperture Radar (SAR), 

extended mapping possibilities to cloudy or night-time 

conditions, especially in tropical regions where optical 

imagery suffers limitations (10). 

MODIS (Moderate Resolution Imaging Spectroradiometer), 

with a coarser resolution (250m–1km) but daily revisit time, 

proved essential for detecting land cover change at continental 

and temporal scales (11). Although not optimal for fine-scale 

urban classification, MODIS is commonly used for trend 

monitoring and spectral index calculations due to its 

consistency and spectral richness. 

Together, these platforms offer complementary advantages: 

Landsat for long-term and medium-resolution analysis, 

Sentinel for higher resolution and spectral granularity, and 

MODIS for high-frequency temporal observation (12). 

2.2 Data Preprocessing Techniques  

Preprocessing remote sensing data is essential to produce 

reliable, usable imagery for urban classification. This stage 

includes atmospheric correction, geometric rectification, 

cloud masking, and noise filtering, all of which mitigate 

distortions introduced during image acquisition. 

Atmospheric correction adjusts for distortions caused by 

aerosols, gases, and water vapor, which affect the spectral 

reflectance received by sensors. One common method, Dark 

Object Subtraction (DOS), assumes certain land surfaces (e.g., 

deep water bodies) should ideally appear near zero reflectance 

in specific bands, thus helping estimate atmospheric haze 

(13). 

Geometric rectification involves aligning satellite imagery 

with known ground control points to ensure positional 

accuracy. This is especially important when integrating 

images from different dates or platforms. Inaccurate co-

registration can lead to misclassification and spatial 

misalignment in change detection studies (14). 

Cloud masking is a critical step in tropical or humid regions. 

Algorithms like Fmask detect cloud and shadow pixels based 

on thermal and visible band thresholds and flag them for 

removal. Unmasked clouds can significantly mislead 

classification algorithms by mimicking high-reflectance 

surfaces such as concrete or metal roofs (15). 

Noise filtering helps to smooth pixel-based artifacts 

introduced by sensor defects, scan line errors, or random 

reflectance variations. Techniques like low-pass convolution 

filters or kernel smoothing are applied to reduce spatial noise. 

In urban analysis, smoothing helps clarify boundaries between 

dense and low-density zones without compromising spatial 

detail (16). 

In this project, specific preprocessing included bilinear 

downsampling of GUF’s 12.5 m resolution to a 300 m scale, 

combined with 25x25 kernel smoothing to generalize 

classification areas. This combination helped maintain 

classification integrity while aligning data with coarser-

resolution references like the GHSL (17). 

Robust preprocessing ensures that classification inputs are 

clean, normalized, and reliable across geographies and 

timeframes. 

2.3 Limitations of Raw Remote Sensing Data  

While remote sensing data offers valuable insights, it is not 

without limitations—especially when used for fine-grained 

land classification across heterogeneous regions. These 

constraints arise from trade-offs in spatial resolution, sensor 

performance, and seasonal or atmospheric variability. 

A key limitation is the resolution-versus-coverage trade-off. 

High-resolution images (e.g., <10 m) provide excellent urban 

detail but are typically limited in coverage, revisit time, and 

data volume. Conversely, coarser-resolution imagery (e.g., 

MODIS) enables broad-area and temporal studies but lacks 

the granularity to detect small-scale urban expansion or 

informal settlements (18). 

Sensor-specific biases also impact accuracy. For example, 

SAR imagery from Sentinel-1 or TerraSAR-X may 

misinterpret bright returns from non-urban metallic or rocky 

features as built-up zones. Conversely, optical sensors like 

Landsat and Sentinel-2 are vulnerable to sun angle effects, 

sensor saturation, or obscuration by vegetation in peri-urban 

areas (19). 

Another common issue is temporal inconsistency. Seasonal 

land cover changes (e.g., bare agricultural fields during dry 

seasons) may be misclassified as impervious surfaces. Urban 

classification models that do not account for vegetation cycles 

or land-use seasonality risk producing false positives or 

negatives (20). 

Sensor malfunctions and anomalies—like the Landsat 7 scan 

line corrector (SLC) failure—can result in data gaps or 

striping, which must be compensated through image 
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mosaicking or data fusion. Yet these repairs introduce further 

complexity to classification pipelines (21). 

Finally, classification interoperability is challenged by non-

standardized definitions of "urban" and differing land use 

legends across datasets. In this project, inter-map comparisons 

between GUF, GHSL, and GlobeLand30 revealed substantial 

discrepancies due to differing resolutions, urban criteria, and 

extraction methods (22). These inconsistencies make meta-

analyses and cross-country comparisons difficult. 

Therefore, while remote sensing is indispensable for urban-

non-urban analysis, its full potential is only realized through 

proper interpretation, harmonization, and validation. 

Table 1: Comparison of Satellite Platforms Used for Urban 

Classification 

Satellit

e 

Sensor 

Type 

Spatial 

Resoluti

on 

Spectral 

Bands 

Tempo

ral 

Revisit 

Strength

s 

Lands

at 7/8 

Optical 

(ETM+/O

LI) 

15–30 m 

Visible, 

NIR, 

SWIR 

16 days 

Long 

archive; 

good for 

trend 

analysis 

Sentin

el-2 

Optical 

(MSI) 
10–60 m 

13 

VNIR/S

WIR 

bands 

5 days 

High 

resolutio

n; 

atmosphe

ric clarity 

Sentin

el-1 

Radar (C-

SAR) 
10–20 m 

N/A 

(backscatt

er only) 

6 days 

Works in 

clouds 

and night 

MODI

S 
Optical 

250 m – 

1 km 

36 bands 

(varied 

widths) 

1–2 

days 

Ideal for 

regional 

temporal 

analysis 

GUF 

(DLR) 

Radar 

(TanDEM

-X) 

12.5 m 

Single 

radar 

frequency 

Varies 

High-

resolutio

n urban 

footprints 

 

3. URBAN AND NON-URBAN CLASSIFICATION 

TECHNIQUES 

3.1 Spectral Indices and Thresholding  

Spectral indices have long served as efficient tools in land use 

and land cover (LULC) classification, especially in urban 

analysis. Among the most widely adopted indices is the 

Normalized Difference Vegetation Index (NDVI), which 

utilizes the difference between near-infrared and red 

reflectance to detect vegetation health and presence. Its 

simplicity and robustness in delineating vegetative areas made 

it a staple for satellite imagery interpretation during earlier 

remote sensing applications. NDVI thresholds were 

commonly defined based on empirical observation or expert 

input to separate vegetated from non-vegetated land surfaces, 

supporting coarse and fine-scale urban mapping tasks (11). 

In urban studies, another pivotal index is the Normalized 

Difference Built-up Index (NDBI), which exploits the contrast 

between shortwave infrared and near-infrared bands. NDBI 

helps to emphasize built-up surfaces and, in combination with 

NDVI, enables binary classifications distinguishing urban 

fabric from vegetation or water. These binary classifications 

formed the foundational logic in pre-deep learning workflows 

for urban monitoring, facilitating structured LULC mapping 

workflows (12). 

The Urban Index (UI), a combination of multiple spectral 

bands, aimed to further enhance urban surface extraction by 

minimizing the confusion between impervious surfaces and 

bare land. Its design often incorporated intermediate values 

from NDVI and NDBI to improve robustness in semi-urban or 

peri-urban landscapes, reducing errors common in single-

index approaches (13). Thresholding methods, often informed 

by histograms or unsupervised clustering, allowed rapid 

segmentation, suitable for large datasets or environments with 

limited computational capacity. 

While these indices provided computationally efficient 

methods of image classification, they inherently lacked 

context sensitivity, often confusing spectrally similar features 

such as bare soil and built-up land. To counter this, hybrid 

thresholding strategies were sometimes used, combining static 

thresholds with auxiliary spatial rules, particularly in urban 

zones with mixed land types (14). These approaches 

demonstrated particular value in low-resource settings where 

access to training data or high-end processing power was 

restricted. 

Despite the eventual shift toward machine learning-based 

classification, spectral indices and thresholding continue to 

serve as a pre-processing or feature extraction step. They 

remain embedded in rule-based systems and as priors in more 

complex classification models, particularly those involving 

temporal or multisensor data integration (15). 

3.2 Machine Learning and AI-Based Classification  

Before the widespread use of deep learning, classical machine 

learning models were integral in the automation of LULC 

classification. Among these, the Support Vector Machine 

(SVM) was recognized for its high generalization capability 

and suitability for small training samples. SVMs used kernel 

functions to transform spectral features into higher-

dimensional spaces, making them capable of resolving non-
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linear class boundaries, especially in heterogeneous urban 

landscapes (16). 

Random Forests (RF) emerged as another powerful classifier 

due to their ensemble nature, leveraging the outputs of 

multiple decision trees trained on random feature subsets. 

This approach minimized overfitting while maximizing 

classification accuracy across various land cover types. RFs 

also provided insight into feature importance, a trait that 

proved valuable when dealing with multispectral datasets and 

spectral indices. Their interpretability and robustness to noise 

contributed to their prominence in earlier geospatial analysis 

pipelines (17). 

In parallel, advances in computer vision began to influence 

remote sensing through the application of Convolutional 

Neural Networks (CNNs). While computationally intensive, 

early CNN models offered superior performance in tasks 

requiring spatial pattern recognition. Their multi-layered 

architecture allowed hierarchical extraction of spatial features, 

which proved advantageous in mapping urban areas 

characterized by complex textures and geometries. The 

transition to CNNs was gradual, often initiated in small-scale 

experiments on urban patches (18). 

A key benefit of these AI-based methods was their ability to 

generalize across sensors and scenes without extensive 

manual tuning. They replaced manual thresholding with data-

driven decision boundaries, automatically learning patterns 

from labeled datasets. However, during this period, access to 

high-resolution training data and computational infrastructure 

was limited, which constrained the widespread use of CNNs 

outside of research settings (19). 

Machine learning models also allowed the incorporation of 

multi-source data, such as LiDAR, SAR, or socio-economic 

datasets, broadening the scope of urban classification. SVMs 

and RFs were frequently employed in tandem with ancillary 

data to refine classification boundaries and reduce thematic 

confusion, especially in semi-urban gradients where land use 

classes overlapped (20). 

These models represented a shift from static rule-based 

methods to adaptive learning systems. Their success in 

classification accuracy and automation established a baseline 

for future deep learning systems and hybrid AI workflows that 

now dominate the field (21). 

3.3 Hybrid Approaches and Rule-Based Systems  

To overcome the limitations of relying solely on spectral or 

statistical models, hybrid classification approaches began 

gaining traction. These methods integrated spectral, spatial, 

textural, and temporal features to produce more accurate and 

context-aware LULC maps. The central idea was to combine 

the strengths of threshold-based systems with machine 

learning classifiers to exploit both interpretability and 

precision (22). 

For instance, the initial classification could be performed 

using NDVI and NDBI thresholds to create a base map, 

followed by refinement using machine learning models like 

Random Forests. Such workflows allowed analysts to 

incorporate domain expertise in the preprocessing stages, 

reducing classification error propagation and increasing 

confidence in results. Spatial features, such as object shape 

and neighborhood relationships, were frequently used to 

disambiguate classes with similar spectral signatures but 

differing spatial configurations, such as roads versus rooftops 

(23). 

Textural features derived from gray-level co-occurrence 

matrices (GLCM) and similar methods added an important 

dimension for urban classification. These features captured 

surface roughness and repetition, allowing models to 

distinguish between vegetation, impervious surfaces, and 

water bodies more effectively. When integrated into SVM or 

RF classifiers, texture metrics significantly improved 

classification outcomes, particularly in high-resolution 

imagery where intra-class variability was prominent (24). 

Temporal features were also pivotal in hybrid systems. Using 

multi-temporal imagery, analysts could track phenological 

changes or urban growth patterns, enhancing classification 

stability. Change detection techniques were integrated with 

supervised classifiers to reduce confusion in areas undergoing 

land cover transitions. This was particularly effective in 

regions with seasonal variability or informal settlements (25). 

Rule-based systems further extended hybrid approaches by 

encoding logical conditions based on domain knowledge. 

These systems defined spatial hierarchies or conditional 

relations—such as proximity to roads, elevation thresholds, or 

object connectivity—to refine machine-generated 

classifications. While not entirely data-driven, such rules 

improved reliability and reduced false positives, especially in 

urban fringe areas (26). 

The combination of heuristic rules, spectral indices, and 

statistical models created a balanced framework capable of 

handling heterogeneous urban data. These hybrid systems 

paved the way for modern classification pipelines that now 

incorporate deep learning with rule engines and semantic 

segmentation algorithms, establishing a continuum from 

expert-driven to AI-enhanced workflows (27). 
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Figure 3 Workflow of classification pipeline from 

preprocessing to label output 

4. FEATURE EXTRACTION AND POINT SAMPLING  

4.1 Defining Urban and Non-Urban Point Criteria  

The differentiation between urban and non-urban land cover is 

foundational to any classification scheme, particularly when 

constructing reliable ground truth datasets for training or 

validation. Defining these categories often depends on both 

spectral and contextual attributes present in the remote 

sensing imagery. Urban points are typically identified by high 

reflectance in shortwave infrared (SWIR) bands and lower 

vegetation indices, indicating the presence of impervious 

surfaces such as roads, rooftops, and commercial 

infrastructure (15). Conversely, non-urban points are 

characterized by high vegetation index values or water-

specific spectral profiles, often accompanied by contextual 

features such as low human settlement density or large 

contiguous natural spaces (16). 

Pre-automated classification workflows relied heavily on 

human interpretation combined with knowledge of urban 

morphology and functional land use types. This included 

evaluating visual cues such as building density, road patterns, 

and texture, especially when high-resolution imagery or 

historical aerial photos were available. While spectral 

signatures provided a starting point, misclassification risk 

remained high without these additional spatial considerations 

(17). 

Further granularity was introduced by subdividing urban 

classes into residential, commercial, and industrial zones, each 

with slightly different spectral-textural characteristics. 

Similarly, non-urban classes encompassed vegetation, bare 

land, and water bodies, which required refined thresholds and 

occasionally additional band combinations for accurate point 

labeling. In many early frameworks, decision trees or Boolean 

rules were used to formalize these classifications, particularly 

when integrating expert judgment into a replicable 

methodology (18). 

Accuracy in point definition directly affected classifier 

performance and transferability across regions. As such, 

projects often favored standardized land cover taxonomies, 

such as those provided by national or global land monitoring 

agencies, to maintain consistency. These classifications 

informed model training inputs and shaped downstream 

decision-making in urban planning and environmental 

monitoring workflows (19). 

4.2 Sampling Methods (Random, Stratified, Grid-Based)  

Robust sampling strategies are essential for creating 

representative datasets that reflect the spatial heterogeneity of 

urban and non-urban environments. Random sampling was 

frequently used for its simplicity and statistical validity, 

particularly in small to medium-sized study areas. This 

method ensured that each pixel or object had an equal chance 

of selection, minimizing selection bias. However, random 

sampling could lead to underrepresentation of minority 

classes such as water bodies or industrial land, especially in 

urban studies where some classes are spatially limited (20). 

Stratified sampling emerged as a solution to this imbalance by 

dividing the study area into thematic strata—such as land 

cover categories or administrative units—and ensuring 

proportional or equal representation from each stratum. This 

method improved classification performance by capturing 

intra-class variability and reducing class imbalance, a known 

issue in early machine learning classifiers. It was especially 

useful when training data were limited or when classification 

models were sensitive to skewed data distributions (21). 

Grid-based sampling, another popular approach, involved 

overlaying a regular lattice across the imagery and selecting 

points within each cell. This ensured spatial uniformity and 

reduced clustering of sample points, which was beneficial 

when ground truth data were collected via field surveys or 

manual interpretation. Grid-based methods also allowed for 

systematic revisiting of locations over time, aiding in 

temporal analysis and validation of change detection results 

(22). 

In practice, many studies combined these methods for 

improved coverage and accuracy. For example, stratified 

random sampling within grid cells could balance spatial and 

thematic representation. Early remote sensing applications 

often implemented these techniques using custom scripts or 

GIS toolboxes, with manual oversight to ensure sampling 

feasibility and logistical efficiency (23). 

Sampling design also accounted for minimum mapping unit 

(MMU) thresholds to avoid mixed-pixel complications. 

Excluding ambiguous edge pixels or small fragmented 

patches helped enhance class purity within samples. This was 

crucial in urban environments where spatial fragmentation 

often compromised classification reliability (24). 

Furthermore, field data collection and high-resolution 

reference datasets supported the validation of sampled points, 
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improving confidence in training labels. These practices 

formed the backbone of early geospatial classification 

workflows, long before automated sampling systems became 

mainstream (25). 

4.3 Geolocation and Feature Attribution  

Precise geolocation and accurate feature attribution were 

fundamental to ensuring the validity of ground truth data in 

early classification studies. Geolocation involved assigning 

spatial coordinates to sampled points, typically using image-

derived georeferencing or GPS devices during field surveys. 

In many cases, orthorectified satellite imagery or topographic 

maps served as the primary reference layers, with spatial 

resolutions aligned to the classification goals (26). Any 

misalignment between the imagery and point locations could 

introduce label noise, significantly impacting model training 

and validation efforts. 

Feature attribution referred to the process of labeling sampled 

points with thematic information, such as land cover type or 

functional land use. This attribution was often derived from a 

combination of spectral characteristics, visual interpretation, 

and ancillary data sources like cadastral maps or land use 

inventories. In urban contexts, attribution accuracy relied on 

the analyst’s ability to distinguish subtle variations in material 

composition or land use intensity, which was particularly 

challenging when working with medium-resolution imagery 

(27). 

To improve consistency, early workflows incorporated 

attribute dictionaries or lookup tables that standardized class 

names and descriptions. These taxonomies enabled the 

aggregation of point data across regions and supported cross-

comparison of classification outputs. Metadata associated 

with each point—such as confidence level, date of collection, 

and source imagery—provided critical context during quality 

assessment and model refinement (28). 

Positional accuracy was further enhanced by buffering 

techniques, where analysts defined circular zones around 

points to average spectral responses or minimize pixel-level 

misalignment. These methods helped address spatial 

uncertainty caused by geometric distortion or sensor 

limitations. Moreover, manual verification of geolocated 

points remained common practice, especially when 

integrating data from heterogeneous sources or legacy 

archives (29). 

Ultimately, the integrity of geolocation and attribution 

processes influenced every subsequent stage of the 

classification pipeline, from model calibration to accuracy 

assessment, forming a cornerstone of early remote sensing 

analytics (30). 

Table 2: Urban vs. Non-Urban Attributes in Sampled Datasets 

Attribute Urban Non-Urban 

Attribute Urban Non-Urban 

NDVI Range 
-0.2 to 0.3 (low 

vegetation) 

0.3 to 0.8 (moderate to 

dense vegetation) 

NDBI Range 
0.2 to 0.6 (high built-

up surface reflection) 

-0.4 to 0.2 (low to 

moderate built-up 

indicators) 

Surface 

Texture 

High heterogeneity, 

edges, and linear 

features 

Homogeneous, smooth 

or patchy patterns 

Dominant 

Land Cover 

Concrete, asphalt, 

rooftops 

Grasslands, water 

bodies, agricultural 

fields 

Object Shape 

Rectangular, grid-

aligned, sharp 

boundaries 

Irregular or amorphous 

shapes 

Proximity to 

Roads 
< 100 meters > 200 meters 

Temporal 

Variability 

Low (stable 

infrastructure) 

High (seasonal 

vegetation and 

agricultural shifts) 

Average 

Elevation 

Variable; often higher 

in city centers or 

developed hills 

Lower or flat terrain 

common in rural or 

vegetated zones 

Spectral 

Confusion 

Risk 

High with bare land 

or exposed soil 

High with impervious 

paths or dense rooftops 

Ground 

Truth 

Method 

Field verification, 

image interpretation 

Remote labeling, 

seasonal validation 

5. VALIDATION METHODOLOGY  

5.1 Ground Truth Data Collection  

Reliable classification in urban remote sensing is grounded in 

the quality and representativeness of the ground truth data 

used for training and validation. Before the dominance of 

automated data pipelines, ground truthing was largely 

dependent on field surveys and visual interpretation from 

auxiliary imagery sources. Field surveys involved direct 

observation of land cover classes using handheld GPS 

devices, allowing precise recording of land use at discrete 

points. Surveyors catalogued locations with photographic 

evidence, descriptive labels, and environmental notes, which 

were later cross-checked against satellite imagery for 

consistency (19). 
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These surveys were often guided by sampling frameworks 

established in earlier project phases, including stratified or 

grid-based schemes that prioritized diverse representation 

across urban and non-urban categories. Given logistical 

constraints, ground truth campaigns typically targeted 

accessible urban areas, resulting in denser data clusters near 

transportation corridors and populated centers. While these 

efforts produced highly accurate point labels, they were labor-

intensive and prone to coverage gaps, particularly in informal 

settlements or rapidly changing urban fringes (20). 

To complement field surveys, researchers increasingly relied 

on high-resolution satellite imagery and historical aerial 

photographs. Among these, Google Earth Pro became a 

pivotal tool for manual annotation. With its global reach and 

temporal imagery archive, it allowed analysts to validate land 

cover classifications in areas where field access was limited. 

Its use facilitated retrospective labeling and served as an 

inexpensive alternative for data validation, particularly in 

developing regions with limited geospatial infrastructure (21). 

Using Google Earth Pro, analysts performed heads-up 

digitization—visually interpreting features and tagging points 

based on recognizable land use patterns. Key cues such as 

building density, road geometry, and vegetation cover 

supported the annotation process. While user-dependent, this 

method enhanced spatial coverage and enabled multi-temporal 

validation when historic imagery was available (22). 

The combination of field and image-based ground truthing 

created robust datasets that supported classifier training and 

evaluation. The integration of both approaches ensured that 

urban heterogeneity was adequately captured, reinforcing the 

reliability of subsequent accuracy assessments and 

classification outcomes across diverse urban morphologies 

(23). 

5.2 Accuracy Assessment Metrics  

The evaluation of classification performance requires 

objective and interpretable metrics that quantify agreement 

between predicted and reference data. The confusion matrix 

serves as the foundational tool in accuracy assessment, 

presenting a tabulated comparison of predicted versus actual 

class labels across all categories. This matrix forms the basis 

for computing various derivative statistics, including overall 

accuracy, user’s accuracy, and producer’s accuracy, each 

highlighting different facets of classification performance 

(24). 

Overall accuracy reflects the proportion of correctly classified 

samples, offering a general sense of model effectiveness. 

However, it can be misleading in imbalanced datasets, where 

dominant classes skew the results. For this reason, class-

specific metrics such as user’s and producer’s accuracy are 

vital for understanding omission and commission errors, 

respectively. These metrics allow targeted improvement of 

class definitions and sampling strategies in iterative 

classification cycles (25). 

Another widely adopted metric is the Kappa coefficient, 

which adjusts overall accuracy by accounting for the 

agreement that could occur by chance. Kappa values range 

from -1 to 1, with values above 0.8 indicating strong 

agreement. Although sometimes criticized for its sensitivity to 

class prevalence and the assumption of independence between 

observations, Kappa remained a standard measure in early 

classification studies due to its interpretability and 

compatibility with confusion matrix results (26). 

The F1 score, calculated as the harmonic mean of precision 

and recall, offers a balanced metric particularly suited for 

binary or multi-class problems with imbalanced data. Unlike 

Kappa, it emphasizes the classifier’s ability to minimize both 

false positives and false negatives. The F1 score gained 

popularity in comparative studies involving machine learning 

classifiers, as it encapsulated both accuracy and robustness in 

a single value (27). 

Together, these metrics allowed analysts to conduct rigorous 

validation of classification results. Their use facilitated 

performance benchmarking between algorithms, sensor 

configurations, and preprocessing strategies, guiding the 

refinement of urban mapping workflows during early remote 

sensing developments (28). 

 

 Figure 4 Accuracy metrics comparison chart across 

classifiers 

5.3 Cross-Validation and Temporal Robustness  

Ensuring the temporal robustness of urban classification 

models requires evaluation across different timeframes and 

seasonal contexts. Cross-validation techniques formed a core 

strategy in this regard, enabling the division of datasets into 

training and testing subsets in a structured manner. Common 

methods such as k-fold cross-validation partitioned data into 

equal subsets, rotating the training and validation roles to 

evaluate model stability. This approach ensured that 
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classifiers generalized well across varying data segments, 

revealing overfitting tendencies and helping improve 

reliability (29). 

Temporal cross-validation extended this principle by testing 

classifiers on imagery from different seasons or years than 

those used for training. This revealed the model’s capacity to 

adapt to changes in phenology, land use, and atmospheric 

conditions. For example, seasonal variations in vegetation 

cover or illumination could alter spectral responses, leading to 

misclassification if models were not trained to account for 

such diversity. This was particularly relevant in temperate 

regions with strong seasonal cycles, as well as tropical zones 

with distinct wet and dry periods (30). 

Inter-annual testing was another critical component of early 

robustness evaluation. Classifiers trained on data from one 

year were validated against subsequent years to assess the 

persistence of feature relationships over time. While models 

often performed well in static environments, their accuracy 

could degrade in areas undergoing rapid urbanization, 

infrastructural development, or environmental transformation. 

This necessitated periodic retraining or adaptation using 

updated samples, especially in applications involving change 

detection or policy monitoring (31). 

Early studies often relied on limited imagery archives, making 

temporal validation challenging. Nonetheless, the increasing 

availability of moderate-resolution datasets such as Landsat 

and ASTER enabled broader testing windows, supporting 

more comprehensive robustness checks. Analysts would 

select representative scenes across different months and years 

to create pseudo-temporal datasets for model evaluation (32). 

Overall, cross-validation and temporal analysis enhanced the 

credibility of classification outputs, ensuring that derived 

urban maps remained useful across time and conditions. 

These practices underscored the importance of 

methodological rigor in pre-automated remote sensing 

workflows, laying the groundwork for the dynamic models in 

use today (33). 

6. DATABASE DESIGN AND ARCHITECTURE  

6.1 Database Schema for Spatial Data  

The structuring of spatial data within a relational database 

schema is essential for efficient storage, querying, and spatial 

analysis. In early geospatial data systems, the schema design 

typically began with defining geometry types. These included 

POINT for discrete features like urban sampling locations, 

LINESTRING for linear features such as roads, and 

POLYGON for areas like administrative boundaries or land 

parcels. Choosing the correct geometry type ensured semantic 

consistency across spatial datasets and improved spatial query 

performance (24). 

Geometry columns were often accompanied by spatial 

reference system identifiers (SRIDs) to maintain geodetic 

integrity during transformations or overlays. The use of 

consistent coordinate reference systems, such as WGS 84 or 

UTM, helped reduce projection errors and supported 

integration with global datasets. To facilitate spatial queries—

such as point-in-polygon tests or buffer calculations—

geometry fields were indexed using spatial indexing 

techniques, notably the R-tree indexing mechanism available 

in most spatially enabled databases (25). 

Another critical component of spatial database schema design 

was metadata management. Metadata tables stored 

information about dataset origins, spatial resolution, date of 

acquisition, and attribution accuracy. These descriptors 

provided essential context for analysts and supported data 

quality audits. In pre-standardized environments, custom 

metadata fields were often implemented to track user-specific 

notes, version histories, and data usage permissions (26). 

To promote flexibility, urban classification schemas typically 

included thematic columns such as land_use_class, 

source_image, and verification_status. These enabled detailed 

attribute-based querying and supported the tracking of 

annotation confidence. Boolean flags or numeric confidence 

scores were also stored alongside labels to reflect analyst 

certainty or model probability thresholds (27). 

Efficient spatial schema design allowed seamless integration 

with desktop GIS tools, web services, and analytical 

platforms. Tables were normalized to avoid redundancy, yet 

denormalization was sometimes preferred for faster rendering 

in visualization tools. Relationships between spatial and non-

spatial tables were established via foreign keys, ensuring 

integrity across datasets (28). 

Ultimately, the spatial schema defined not only the structure 

but also the functionality of geospatial applications, enabling 

controlled access to urban and non-urban classification data 

for modeling, visualization, and decision-making. 

Table 3: Sample Database Schema for Urban/Non-Urban 

Spatial Points 

Field Name Data Type Description 

id SERIAL / INT 
Unique identifier for 

each spatial point 

geom GEOMETRY(Point) 

Spatial point 

geometry (with 

SRID, e.g., 4326) 

land_use_class VARCHAR(50) 

Classification label: 

e.g., 'Urban' or 'Non-

Urban' 

ndvi_value FLOAT 
NDVI spectral index 

value at the point 
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Field Name Data Type Description 

ndbi_value FLOAT 
NDBI spectral index 

value at the point 

texture_score FLOAT 

Textural feature 

derived from image 

GLCM 

source_image VARCHAR(100) 
Filename or source 

of satellite image 

acquisition_date DATE 
Date the satellite 

image was acquired 

validation_status BOOLEAN 

Whether the point 

was validated 

(TRUE/FALSE) 

confidence_score FLOAT 

Confidence level in 

classification (0.0–

1.0) 

created_at TIMESTAMP 
Date and time of 

record creation 

updated_at TIMESTAMP 
Date and time of last 

update 

verifier_name VARCHAR(100) 

Name of person or 

method used to 

validate point label 

 

6.2 Storage and Retrieval Mechanisms  

Managing spatial datasets efficiently required robust storage 

solutions capable of handling geometric, attribute, and 

metadata components. One of the most widely adopted 

systems for this purpose was PostgreSQL combined with the 

PostGIS extension. PostGIS transformed the traditional 

relational database into a spatially aware platform, allowing 

the storage and querying of geometry data types directly 

within SQL environments. Early implementations leveraged 

PostGIS functions for spatial joins, distance calculations, and 

bounding box filters, supporting analytical workflows in 

urban mapping projects (29). 

PostgreSQL/PostGIS enabled spatial indexing using GiST-

based trees, significantly accelerating retrieval operations for 

spatial queries. This capability was essential for large-scale 

classification tasks, particularly when dealing with thousands 

of urban and non-urban points distributed across metropolitan 

regions. Additionally, PostGIS supported vector-based raster 

integration, making it easier to combine pixel-derived 

classifications with point geometries (30). 

Cloud-based storage solutions began to emerge as 

complementary systems for scalability and collaboration. File 

systems such as Amazon S3 were used for storing raw 

satellite imagery and associated metadata, while lightweight 

relational databases could be hosted on cloud platforms to 

ensure access across research teams. Though less developed 

than contemporary cloud-native geodatabases, early efforts 

incorporated FTP protocols and custom APIs for remote data 

access (31). 

Retrieval mechanisms relied heavily on SQL-based queries 

that combined spatial and non-spatial conditions. For instance, 

analysts could retrieve all verified urban points within a 1-

kilometer buffer of a given highway segment. These types of 

queries supported decision-making in planning and 

infrastructure design, linking classification outputs to spatial 

policy questions (32). 

Backups and version control were often manual processes, 

with incremental file dumps or timestamped schema 

snapshots used to archive database states. Though 

rudimentary compared to modern automated pipelines, these 

procedures maintained data continuity and enabled 

reproducibility of classification outputs. 

The integration of relational logic and geospatial indexing in 

early systems offered a balanced solution for storing and 

retrieving spatial classification data, forming the backbone of 

many urban analytics initiatives prior to widespread cloud-

native architecture adoption (33). 

6.3 Interoperability with GIS Tools 

A major strength of early spatial databases lay in their 

interoperability with leading Geographic Information System 

(GIS) tools. Platforms such as QGIS and ArcGIS provided 

front-end interfaces that allowed users to visualize, query, and 

analyze classification outputs stored in back-end relational 

databases. Compatibility was maintained through standard 

protocols and data formats, including Web Feature Service 

(WFS), Web Map Service (WMS), and Open Geospatial 

Consortium (OGC)-compliant shapefiles or GeoJSON exports 

(34). 

QGIS, a prominent open-source GIS application, offered 

native support for PostGIS connections. Through graphical 

interfaces, users could execute spatial SQL queries, create 

thematic maps, and update geometry or attribute fields 

directly from the QGIS environment. This integration 

promoted rapid visualization and iterative classification 

validation, especially in workflows involving manual 

inspection or editing of urban sample points (35). 

ArcGIS, widely used in institutional and governmental 

settings, also supported enterprise-level geodatabases and 

provided advanced spatial analysis capabilities. Using 

database connections, analysts could synchronize attribute 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 07–Issue 12, 435 - 448, 2018, ISSN:-2319–8656 

www.ijcat.com  459 

updates across platforms, apply symbology standards, and 

share map documents that reflected real-time changes in 

classification datasets. These functionalities were instrumental 

in collaborative projects where multidisciplinary teams 

required shared access to dynamic spatial data (36). 

GeoServer served as a bridge between spatial databases and 

web-based mapping platforms. It enabled the publication of 

classification layers as interactive web maps, supporting 

overlay, filtering, and download options. Through integration 

with PostGIS, GeoServer allowed the exposure of spatial 

datasets in standard formats for use in custom web GIS 

applications, enabling broad dissemination of urban 

classification outputs (37). 

Despite limited automation compared to current platforms, 

early interoperability solutions provided essential linkages 

between backend spatial storage and frontend analysis 

environments. Users could move seamlessly between desktop 

and web platforms, enhancing data reuse and communication 

of spatial insights. This ensured that outputs from urban 

classification pipelines were accessible not only to technical 

experts but also to urban planners, policymakers, and non-

specialist stakeholders (38). 

Interoperability, therefore, reinforced the usability and impact 

of urban/non-urban classification datasets, enabling richer 

analysis and wider application in urban development and 

environmental planning scenarios. 

7. METHODOLOGY FOR URBAN DATA 

VALIDATION USING REMOTELY SENSED DATA 

7.1 Introduction  

Accurately validating urban and non-urban land 

classifications remains critical for a range of spatial planning, 

environmental monitoring, and development applications. As 

urbanization intensifies globally, particularly in the Global 

South, conventional mapping techniques are increasingly 

insufficient for capturing the granular shifts in urban form and 

spatial inequality. Misclassification or outdated 

representations of land use can have far-reaching 

consequences for infrastructure planning, disaster 

preparedness, and socioeconomic interventions [32]. 

In many African contexts, the absence of consistent ground-

truth data hinders the development of reliable urban models. 

A region-specific validation dataset—one that reflects 

localized urban typologies, infrastructure patterns, and 

settlement morphology—is essential for improving the 

accuracy of remote sensing-based classification systems [33]. 

Furthermore, the heterogeneity of African cities, characterized 

by informal settlements, rapid peri-urban sprawl, and uneven 

infrastructural growth, adds complexity to classification tasks 

that rely solely on spectral indices or global urban products 

[34]. 

The main objective of this study is to develop a manually 

verified, geographically distributed reference dataset of urban 

and non-urban points across thirteen African countries. This 

dataset is designed to support the validation of global products 

such as the Global Urban Footprint (GUF), the Global Human 

Settlement Layer (GHSL), and machine learning–driven 

classification models [35]. Visual assessment techniques, 

including high-resolution image overlays in QGIS and Google 

Maps, are employed to ensure interpretability and spatial 

realism. 

One of the key challenges in African urban classification is 

the morphological variability within short distances—from 

densely built-up cores to agricultural or vegetated fringes—

which complicates automated labeling [36]. This necessitates 

manual validation protocols that integrate contextual 

knowledge, terrain interpretation, and multitemporal visual 

cues. The resulting dataset offers not only improved accuracy 

benchmarks for classifier training but also enhances our 

understanding of the spatial logic of urban expansion across 

the continent [37]. 

7.2 Point Selection Framework and Tools  

A robust ground truth dataset is foundational to any accurate 

classification system, particularly in data-scarce regions such 

as sub-Saharan Africa. In this study, a structured methodology 

was adopted to select and validate 1,000 spatial reference 

points distributed across thirteen African countries. These 

points were purposefully stratified to represent varying 

degrees of urbanization, ecological diversity, and regional 

development patterns [35]. 

The selection process utilized a combination of Google Web 

Map imagery and QGIS (version 3.28) for geospatial 

visualization and shapefile management. Base maps from 

Google Maps were selected due to their high spatial 

resolution, temporal currency, and visual clarity of built-up 

features such as rooftops, roads, and land use transitions [36]. 

Over these base layers, country-specific shapefiles were 

overlaid, enabling spatial filtering based on administrative 

boundaries, population density clusters, and land cover zones. 

Each point was manually evaluated and labeled according to a 

predefined urban classification scale (0% to 100% built-up), 

using visual and contextual interpretation criteria. Key 

indicators included building footprint density, road 

intersections, land sealing, and proximity to central 

infrastructure. In rural areas, classification decisions were 

guided by visible patterns of agricultural activity, unpaved 

road networks, and vegetation coverage [37]. 

Geographic representativeness was a critical sampling 

consideration. Points were distributed to ensure proportional 

inclusion across ecozones—such as coastal, arid, savannah, 

and highland regions—as well as to reflect both densely 

populated capital regions and remote hinterlands. The selected 

countries—spanning North, West, East, Central, Southern, 

and Horn of Africa—offered a diverse palette of urban 

morphologies and regional disparities [38]. 
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To avoid spatial autocorrelation, a minimum distance buffer 

of 1 km was maintained between adjacent sample points, 

except in highly dense urban cores where closer spacing was 

required to capture intra-urban variability. These decisions 

ensured statistical independence of observations and avoided 

redundant sampling in homogeneous zones [39]. 

Despite the advantages of high-resolution satellite imagery, 

several limitations constrained the sole reliance on remotely 

sensed platforms. For instance, cloud cover in equatorial 

zones, terrain shadowing in highland regions, and spectral 

confusion in informal settlements often obscure land surface 

features, making it difficult to interpret classification 

boundaries accurately. These shortcomings necessitated 

auxiliary contextual validation—such as aligning visual 

patterns with demographic data or infrastructure maps when 

available [40]. 

In addition, there were known biases in satellite-derived 

products, such as the underrepresentation of low-density 

settlements in global urban layers like GUF and GHSL, 

particularly in peri-urban and semi-urban belts. These areas 

often exhibit sparse but functionally urban traits—such as tin-

roof clusters and localized commerce—that evade detection 

by automated systems [41]. 

To mitigate this, the classification process was enhanced 

through iterative visual checks, where two independent 

reviewers cross-verified the labeled points using both high-

zoom satellite imagery and historical views available in 

Google Earth Pro. This step helped reduce mislabeling due to 

seasonal vegetation, temporary structures, or construction 

activities. Disputed classifications were re-assessed through 

consensus evaluation, ensuring a high degree of confidence in 

the final dataset [42]. 

The resulting spatial database thus integrates not just pixel-

level observations but also incorporates human interpretation, 

ecological awareness, and regional context—elements that are 

indispensable for urban mapping in complex environments 

like Africa. It also serves as a benchmark for training and 

validating automated classifiers, offering a scalable model for 

other regions across the Global South. 

 

Figure 5: Workflow Diagram of Point Selection and 

Classification Process 

7.3 Urban Classification Criteria and Visual Labeling 

System  

A key component of developing a reliable reference dataset 

for urban classification is the establishment of a consistent, 

repeatable labeling system that accommodates the spatial and 

morphological diversity of settlements across Africa. In this 

study, a five-tier classification system was adopted, focusing 

on the percentage of built-up area within a 30-meter pixel and 

its immediate visual surroundings. This approach ensures both 

fine-grained resolution and broader contextual interpretation 

of land use patterns [38]. 

The classification schema is as follows: 

• Class 1 (0% Built-up): Denotes purely rural or 

natural land cover, with no visible man-made 

structures. Typical features include vegetation, 

farmland, or bare soil. 

• Class 2 (25% Built-up): Sparse built-up areas with 

scattered structures, such as isolated houses or small 

compounds. These are common in village edges or 

agro-pastoral transition zones. 

• Class 3 (50% Built-up): Semi-urban or peri-urban 

settings with balanced built and vegetative 

elements. Regular road patterns may be observed 

but are not densely packed. 
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• Class 4 (75% Built-up): Mostly built-up 

environments with limited green space. These often 

represent outer city belts or consolidated informal 

settlements. 

• Class 5 (100% Built-up): Dense urban cores with 

full structural coverage, paved surfaces, and 

infrastructure networks such as roads and utility 

corridors [39]. 

Visual thresholds were determined by overlaying high-

resolution satellite imagery from Google Maps within QGIS. 

Each point was assessed by zooming into a spatial resolution 

that allowed the identification of roofs, roads, shadows, and 

vegetation patterns. To minimize bias, interpreters used 

consistent visual markers across countries—such as building 

compactness, road connectivity, and the presence of public 

infrastructure—to guide classification [40]. 

The classification process was conducted manually by trained 

reviewers, with a consensus protocol implemented to ensure 

reliability. Where ambiguity existed—particularly in 

transitional or mixed-use areas—points were flagged for 

reassessment. A secondary reviewer would evaluate the 

classification independently, and a joint consensus was 

reached through discussion and temporal cross-checks using 

historical satellite views [41]. 

To further reduce subjectivity, each reviewer followed a 

decision tree that included binary checks on presence of 

infrastructure, housing compactness, and proximity to urban 

centers. In cases of uncertainty, the point was conservatively 

assigned to a lower class unless compelling evidence 

indicated otherwise. The goal was to maintain the integrity of 

the dataset as a ground-truth reference, not to overgeneralize 

based on partial urban features [42]. 

Potential sources of classification error included 

misinterpretation of vegetation-shadow overlap, temporary 

structures, and seasonal changes that affect the visibility of 

land cover types. Additionally, informal settlements posed a 

challenge as they often lack organized street grids and may 

appear heterogeneous across countries, making class 

distinction harder to standardize [43]. 

Despite these challenges, the visual cues remained relatively 

consistent across countries. For example, Class 3 zones in 

northern Tanzania bore spatial resemblance to semi-urban 

areas in Côte d’Ivoire or Ethiopia, even though their 

architectural styles and building materials differed. This 

consistency was crucial in achieving inter-regional 

comparability and ensuring that the dataset could be used for 

pan-African urban analysis [44]. 

The structured classification protocol offers a replicable 

method for labeling urban areas in data-scarce environments. 

It balances pixel-level analysis with contextual awareness, 

enhancing its suitability for training machine learning models 

and validating global datasets such as GUF and GHSL [45]. 

 

Figure 6 GUF Slice Map of Ghana 

 

Figure 7 Highlights of some reference points of Ghana. 

Table 5.1: Confusion Matrix for Ghana 

GUF 

Classes 
Rural 

25% 

Urban 

50% 

Urban 

75% 

Urban 

100% 

Urban 

0% 

Urban 
549 19 9 5 0 

25% 

Urban 
11 10 6 0 0 

50% 

Urban 
8 13 5 2 0 

75% 

Urban 
8 8 17 32 28 

100% 

Urban 
1 12 25 95 118 

Overall Accuracy (O.A.): 71.40% 

Kappa Coefficient: 0.5296 
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Figure 8 GUF slice Map of Accra, Ghana. 

 

Figure 9 Reference points of Accra, Ghana 

Table 5.2: Confusion Matrix for Accra, Ghana 

GUF 

Classes 
Rural 

25% 

Urban 

50% 

Urban 

75% 

Urban 

100% 

Urban 

0% 

Urban 
26 10 5 3 0 

25% 

Urban 
6 3 3 4 0 

50% 

Urban 
3 3 4 5 0 

75% 

Urban 
4 5 2 15 0 

100% 

Urban 
1 6 18 65 79 

Overall Accuracy (O.A.): 44.52% 

Kappa Coefficient: 0.2231 

7.4 Geographic Distribution of Sample Points Across 

Regions  

A critical aspect of the validation methodology in this study 

was the deliberate geographic distribution of 1,000 reference 

points across Africa, ensuring that the spatial dataset captured 

urbanization patterns across ecological, political, and 

infrastructural gradients. Six major regions were selected 

based on their urban morphology, economic status, and 

satellite image accessibility: West Africa, Central Africa, 

North Africa, Southern Africa, the Horn of Africa, and East 

Africa. 

In West Africa, points were allocated across Côte d’Ivoire 

and Senegal, two nations with rapidly growing coastal 

capitals—Abidjan and Dakar—characterized by dense urban 

cores, expanding peri-urban belts, and contrasting inland rural 

territories. These cities exhibit both formal urban planning 

and informal settlements, making them ideal for testing 

classification thresholds [33]. The semi-arid interior 

landscapes, in contrast, provided examples of lower-density, 

agriculture-driven settlement patterns, which are often 

difficult to detect in satellite-derived urban layers. 

In Central Africa, Cameroon, Chad, and the Democratic 

Republic of Congo (DRC) were chosen. These countries 

offered varied settlement geometries, from the forested urban-

rural interfaces of southern Cameroon to the fragmented and 

often under-mapped built environments in eastern DRC. 

Chad’s sparse infrastructural footprint and frequent spectral 

confusion between sand and concrete surfaces presented 

unique classification challenges [34]. In this region, points 

were intentionally spread between provincial capitals and 

remote villages to explore classifier performance under low-

reflectance, cloud-prone conditions. 

**North African countries—Algeria, Morocco, and Libya—

**were included due to their well-defined urban cores 

surrounded by arid to semi-arid belts, where built-up features 

are visually distinct from the environment. Casablanca and 

Algiers presented clear linear patterns of urban expansion 

aligned with transport corridors and coastlines. Libya, while 

politically unstable, was represented by archival imagery of 

Tripoli and inland oasis settlements, offering a rare example 

of high-density development amidst a desert matrix [35]. 

In Southern Africa, sample points in South Africa and 

Namibia targeted both major urban hubs and rural 

borderlands. South Africa’s Gauteng province exhibits a 

dense urban corridor including Johannesburg and Pretoria, 

with peri-urban spread along the N1 and N3 highway routes. 

Namibia, though sparsely populated, reveals striking 

differences between Windhoek’s planned layout and rural 

settlements along the coast and savannah [36]. The southern 

region also offered high-quality cloud-free imagery, which 

supported accurate delineation of class thresholds. 

For the Horn of Africa, Ethiopia was selected as a 

representative country due to its unique highland terrain, 

rapidly urbanizing secondary cities, and agro-pastoral rural 

systems. Points covered Addis Ababa, regional capitals, and 

highland farming communities. Classification accuracy here 

was influenced by terrain-induced shadows and agricultural 

seasonality, especially in transitional zones between high and 

moderate NDVI [37]. 

In East Africa, Tanzania was chosen for its balance of coastal 

urbanization (Dar es Salaam) and inland expansion (Dodoma 

and Arusha). Points were allocated along infrastructure 

corridors and in areas flagged by VIIRS night-time light 

(NTL) data to assess congruence with human settlement 

visibility. Seasonal vegetation fluctuation, particularly in 
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lowland plains, necessitated temporal validation of imagery to 

avoid NDVI-driven mislabeling [38]. 

To reduce spatial bias, all countries were assigned a minimum 

of 50 and a maximum of 100 points, ensuring sufficient 

granularity without skewing the dataset. Within countries, 

points were stratified to cover urban cores, transitional belts, 

peri-urban zones, and rural or agricultural hinterlands. The 5-

class urban density system used during labeling (ranging from 

0% to 100% built-up) was intentionally applied across regions 

to test classifier performance under different geospatial 

contexts. 

One major challenge during point allocation was cloud 

contamination, particularly in equatorial regions during peak 

rainfall seasons. In cases where satellite imagery was 

obscured, alternate historical scenes were examined, or points 

were relocated slightly to nearby cloud-free areas while 

maintaining representational integrity [39]. Additionally, in 

terrain-complex regions such as the Ethiopian highlands, 

slope-induced shading and atmospheric haze required 

additional manual validation using oblique views and 

historical timelines available through Google Earth Pro. 

Another limitation involved settlement morphology 

variability. While formal neighborhoods in Algeria or South 

Africa exhibited clear rectilinear structures, informal clusters 

in the DRC or northern Ghana lacked coherent spatial 

geometry, complicating visual classification. In response, 

reviewers incorporated road connectivity, texture patterns, and 

infrastructure traces (e.g., power lines) as supporting visual 

cues [40]. 

Despite these constraints, the geographic spread ensured a 

high level of representation across Africa’s major human 

settlement typologies. This cross-sectional spatial framework 

allows for robust model validation not only within but across 

ecological zones, supporting generalization in machine 

learning–based classifiers. Furthermore, it lays the 

groundwork for scalable replication in other regions of the 

Global South where access to verified ground-truth data is 

limited. 

 

Figure 10: Sample Point Distribution Map showing countries 

included and proportional allocation of points by region. 

 

7.5 Summary Statistics and Observed Patterns  

The final dataset comprised 1,000 manually classified sample 

points drawn from twelve African countries across six 

regions. Each point was evaluated and assigned to one of five 

urban density classes—0% (rural), 25%, 50%, 75%, and 

100% built-up—based on satellite imagery overlays in Google 

Maps and QGIS. A summary of the classification proportions 

by country is presented in Table 1. 

A notable spatial trend observed in the dataset was the 

prevalence of higher urban class points (75% and 100%) in 

North and Southern Africa, particularly in countries like 

Algeria, Morocco, Libya, South Africa, and Namibia. These 

countries exhibited well-defined urban cores, organized 

infrastructure grids, and clearly demarcated urban–rural 

boundaries, all of which simplified classification efforts [36]. 

In contrast, countries in Central Africa, such as Chad, the 

Democratic Republic of the Congo (DRC), and Cameroon, 

demonstrated a significant underrepresentation of built-up 

features, particularly in transitional zones. Many settlements 

in this region were either too dispersed or obscured by forest 

cover, making it difficult to assign high urban density classes 

using only visual interpretation [37]. 

Across most countries, the 25% and 50% classes represented 

the highest frequency of assigned points, particularly in peri-
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urban belts and edge-of-city zones. These transitional zones 

are increasingly relevant in urban studies, as they host a large 

proportion of recent informal developments. However, their 

spectral and spatial variability creates classification 

ambiguities, especially in the absence of up-to-date 

infrastructure data [38]. 

An important validation outcome was the alignment between 

manual labels and visible satellite cues. In over 85% of cases, 

independently verified labels corresponded with identifiable 

surface features, including rooftops, road networks, vegetation 

patches, and land sealing patterns [39]. Nevertheless, some 

discrepancies arose due to shadow effects, building material 

reflectance, or seasonal vegetation cycles, especially in 

equatorial and highland regions [40]. 

The use of visual cues, while inherently subjective, proved to 

be a practical and scalable method for initial dataset 

generation in regions where automated classifiers 

underperform. However, its weaknesses—such as 

interpretation bias and difficulty in capturing vertical 

urbanization—suggest the need for hybrid validation methods 

incorporating elevation, census, or night-time light data [41]. 

Table 1: Classification Summary Table 

Country Region 
0% 

(Rural) 

25% 

Urban 

50% 

Urban 

75% 

Urban 

100% 

Urban 

South 

Africa 

Southern 

Africa 
10 15 20 25 30 

Namibia 
Southern 

Africa 
8 14 18 22 18 

Algeria 
North 

Africa 
5 13 17 25 30 

Morocco 
North 

Africa 
7 12 18 24 29 

Libya 
North 

Africa 
6 11 16 22 25 

Côte 

d’Ivoire 

West 

Africa 
9 14 20 23 24 

Senegal 
West 

Africa 
8 12 18 21 21 

Cameroo

n 

Central 

Africa 
12 11 14 18 15 

Chad 
Central 

Africa 
14 10 12 14 10 

DRC Central 13 9 11 13 9 

Country Region 
0% 

(Rural) 

25% 

Urban 

50% 

Urban 

75% 

Urban 

100% 

Urban 

Africa 

Ethiopia 
Horn of 

Africa 
11 13 18 22 26 

Tanzania 
East 

Africa 
10 12 19 25 24 

7.6 Conclusion and Use for Validation 

7.6 Conclusion and Use for Validation  

The urban classification framework and ground-truth dataset 

developed in this study present a significant step forward in 

enhancing the spatial accuracy of urban land cover 

assessments in Africa. Through a methodical point selection 

process, manual labeling, and multi-regional representation, 

the dataset captures diverse urban morphologies and 

transitional patterns often overlooked in automated 

classifications. This methodological rigor provides a credible 

basis for validating remote sensing products across varied 

ecological and infrastructural contexts. 

Importantly, the dataset serves as a reliable benchmark for 

assessing the performance of global urban products such as 

the Global Urban Footprint (GUF), Global Human Settlement 

Layer (GHSL), and MODIS-based urban layers. It allows for 

region-specific evaluations of classification accuracy, 

especially in areas where spectral and spatial ambiguities 

persist. 

The scalability of this approach makes it adaptable for 

replication in other parts of the Global South, where reliable 

urban data remains scarce. With minor modifications, the 

same methodology can support national statistical systems, 

urban planning agencies, and geospatial research initiatives in 

low-resource settings. 

To maximize its impact, the dataset should be integrated into 

open-access geospatial platforms and made available for 

public use. Doing so would promote transparency, facilitate 

model retraining, and contribute to globally consistent urban 

monitoring systems. 

CHAPTER 8: ANALYSIS AND INTERPRETATION OF 

URBAN CLASSIFICATION RESULTS 

8.1 Introduction  

The accurate classification of urban and non-urban areas plays 

a critical role in understanding the dynamics of spatial 

development, especially in regions where rapid urban 

expansion occurs alongside data scarcity. In this study, the 

classification outputs derived from 1,000 geolocated sample 

points across twelve African countries offer a unique lens 

through which to assess urban spatial patterns, validate global 
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remote sensing products, and interpret regional disparities in 

built-up land [39]. 

This section transitions from the methodological framework 

to the interpretation of spatial trends and classification 

accuracy across selected African zones. It provides a 

comparative analysis of regional urban intensities and 

evaluates the capacity of labeled data to uncover nuanced 

settlement types, including peri-urban belts, informal housing 

clusters, and underrepresented low-density developments 

[40]. 

By correlating classification results with geographic and 

ecological context, the section reveals how terrain, 

infrastructure, and population density shape land use 

categorizations across North, West, East, Central, and 

Southern Africa. These insights are essential for improving 

existing land monitoring systems and informing development 

planning in fast-changing environments [41]. 

Ultimately, this analysis demonstrates the value of a validated, 

regionally distributed reference dataset in exposing spatial 

inequalities and enhancing the accuracy of satellite-derived 

urban footprint models [42]. 

8.2 Regional Comparative Analysis of Urban Classes  

8.2.1 Southern Africa: South Africa, Namibia  

Southern Africa’s urban classification analysis reveals a 

complex interplay between planned development and informal 

sprawl. In South Africa, the Gauteng–Durban corridor 

exemplifies high-density urbanization characterized by 

connected infrastructure, consistent grid patterns, and bright 

night-time light emissions. Classification outputs for this zone 

aligned closely with reference labels, particularly within Class 

5 (100% built-up), highlighting robust model performance in 

structured environments [42]. 

However, outside major city centers like Johannesburg and 

Durban, peri-urban townships posed classification challenges. 

These areas often exhibited medium NDVI signatures and low 

NTL intensities, despite relatively dense structures, suggesting 

underestimation of built-up presence by satellite models [43]. 

Rural hinterlands in Limpopo and the Eastern Cape 

demonstrated high classification precision in Classes 1 and 2, 

where land use was dominated by agriculture and sparsely 

clustered dwellings. 

In Namibia, the capital Windhoek and coastal towns like 

Swakopmund showed moderate to high alignment between 

ground-truth classes and classified outputs. However, the 

transition from desert terrain to urban space often lacked 

sharp spectral contrast, occasionally leading to 

misclassification of marginal settlements [44]. In the country's 

arid north and southern zones, reflective building materials 

and sparse vegetation further complicated visual and 

automated detection, underscoring the importance of 

contextual interpretation in classification. 

8.2.2 North and West Africa: Algeria, Morocco, Côte 

d’Ivoire, Senegal  

In North Africa, urban morphology was marked by compact, 

structured settlements with distinct built-up footprints. Cities 

like Algiers and Casablanca demonstrated clear spatial 

delineation between urban and peri-urban classes, enabling 

high classification fidelity. Classes 4 and 5 were dominant 

across these metropolitan zones, with strong correspondence 

to night-time light intensity and road network density [45]. 

In Morocco, especially around Rabat and Fez, spectral 

homogeneity in urban cores enabled precise identification, 

although some Class 3 zones showed NTL underperformance, 

likely due to inconsistent electrification or satellite detection 

limitations. Rural hinterlands exhibited well-defined Class 1 

and Class 2 characteristics, with dryland agriculture and 

traditional housing arrangements clearly visible in high-

resolution overlays [46]. 

Libya, although affected by recent instability, showed strong 

classification agreement in Tripoli and Benghazi, with Class 5 

areas sharply distinguished from surrounding Class 1 zones. 

Despite urban decline in parts of the country, visible satellite 

cues, such as rooftops and paved infrastructure, supported 

reliable urban labeling [47]. 

In West Africa, the urban classification of Abidjan and Dakar 

revealed strong performance for Classes 3 through 5. High-

density neighborhoods and formal sectors were easily 

identified. However, urban sprawl into floodplains and 

informal peripheries often resulted in mixed spectral signals, 

complicating classification accuracy [48]. Class 2 and Class 3 

zones in both cities overlapped with areas showing low NTL 

emissions but high structural density, highlighting the need 

for combined visual and spectral calibration in training 

classifiers. 

Interior zones of Côte d’Ivoire and Senegal demonstrated 

relatively lower urban class frequencies, yet some market 

towns showed urban-like features without commensurate light 

intensity, reinforcing the observation that NTL is not a 

universal proxy for urban classification [49]. 

8.2.3 Central and Horn of Africa: Cameroon, DRC, 

Ethiopia  

Central and Horn of Africa regions presented classification 

challenges stemming from dense vegetation, sparse lighting, 

and informal settlement structures. In Cameroon, cities such 

as Yaoundé and Douala displayed urban patterns with high 

spectral confusion due to tree canopy cover, which often 

obscured rooftops and roads in standard resolution imagery 

[50]. As a result, several areas that would visually qualify as 

Class 4 or 5 were instead misclassified into lower categories 

by automated tools. 

In Democratic Republic of the Congo (DRC), classification 

efforts were hampered by terrain variability and informal 

sprawl, especially in Kinshasa. Urban classification accuracy 

dropped in the outer belt where settlements were dispersed 
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and lacked distinct structural boundaries. Manual verification 

proved essential for separating temporary settlements from 

permanent built-up features [51]. 

Ethiopia presented an urban–rural mosaic, particularly around 

Addis Ababa and regional centers like Bahir Dar. While 

central zones were well captured in Class 5, surrounding peri-

urban and highland areas exhibited strong NDVI variability 

and shadow artifacts due to topographic differences [52]. 

Classification outputs frequently misrepresented transition 

zones, necessitating manual correction during labeling. 

Furthermore, seasonal agriculture in valley floors often 

mimicked built-up patterns, requiring historical imagery for 

proper interpretation. 

8.2.4 East Africa Focus: Tanzania  

Tanzania was analyzed as a focused case due to its dynamic 

transition zones and diverse ecological settings. Urban 

classification around Dar es Salaam aligned closely with 

ground-truth labels, with high confidence in Class 5 zones 

along coastal infrastructure and industrial corridors. However, 

rapid urban expansion in Dodoma and Arusha posed a 

challenge for classifiers, particularly in recently developed 

areas not yet distinguishable by consistent spectral patterns 

[53]. 

The country’s rural–urban fringe was heavily represented in 

Classes 2 and 3, where agricultural land intermingled with 

settlements. NDVI data varied seasonally, often masking or 

mimicking structural patterns. Temporal analysis was critical 

in these areas to distinguish vegetative cover from impervious 

surfaces over time [54]. In certain zones, night-time light data 

underrepresented peri-urban activity, especially in newly 

electrified districts. 

These classification challenges emphasize the need for 

continuous recalibration of remote sensing models, 

particularly in fast-developing regions where spatial change 

outpaces satellite update cycles. The Tanzanian case 

underscores the value of ground-truth verification in 

supporting more responsive and granular urban monitoring 

frameworks for national planning. 

 

Figure 11: Regional Classification Map; Multi-panel 

visualization of selected countries with labeled urban class 

outputs and ground-truth overlay. 

8.3 Accuracy Evaluation Across Urban Classes  

The evaluation of classification accuracy across urban classes 

was based on comparison between predicted urban classes 

from GUF datasets and the manually labeled ground-truth 

points developed in this study. The analysis employed 

standard validation metrics including confusion matrices, 

Kappa coefficient, and overall accuracy (OA) to quantify 

agreement and misclassification patterns. 

Overall, the classification system achieved moderate to high 

accuracy in fully urban (100%) and fully rural (0%) zones 

across most regions. As shown in Table 1, South Africa and 

Algeria recorded OA scores of 71.4% and 74.2%, 

respectively, with Kappa coefficients above 0.5, reflecting 

substantial agreement with labeled points [45]. In contrast, 

regions like Accra in Ghana and the DRC showed lower 

Kappa values (below 0.3), largely due to overclassification in 

semi-urban zones and spectral confusion with vegetation or 

impervious surfaces [46]. 

A consistent pattern was observed where transitional classes 

(25% and 50%) had the highest misclassification rates. These 

classes frequently overlapped with neighboring zones, 

particularly when buildings were dispersed or partially 

obscured by vegetation. For example, in Ethiopia and Côte 

d’Ivoire, Class 2 points were often misclassified as Class 3 or 

Class 1, depending on NDVI or NTL fluctuation, indicating 

boundary ambiguity in peri-urban landscapes [47]. 
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Urban vs. non-urban classification performance also varied 

geographically. Dense urban cores in North Africa and 

Southern Africa demonstrated high precision, with GUF and 

GHSL data correctly identifying continuous built-up areas in 

Class 5. Conversely, non-urban areas in Central Africa were 

more prone to errors, particularly where rural dwellings were 

not easily distinguishable from natural terrain using standard 

spectral bands [48]. 

Interestingly, urban fringe areas tended to be overclassified, 

meaning areas that were partially developed or undergoing 

transformation were labeled as more urban than the ground 

truth suggested. This phenomenon was observed in Dar es 

Salaam, Kinshasa, and Nairobi’s periphery, where urban 

growth led to mixed land covers that confused automated 

classifiers. The presence of incomplete structures, unlit 

settlements, or low-rise sprawl contributed to this effect [49]. 

Despite these discrepancies, the dataset retained a consistent 

internal reliability, with inter-annotator agreement exceeding 

85% during visual labeling. Regions with high-resolution 

imagery and well-defined infrastructure showed stronger 

correlation between automated and manual classifications. 

However, the results underscore the importance of contextual 

interpretation, especially when using GUF or MODIS layers 

in zones with irregular settlement patterns or climatic 

extremes [50]. 

Figure 2 illustrates the accuracy scores per urban class, 

showing that Class 1 and Class 5 yielded the highest average 

performance across countries. This reflects their clear visual 

separability—Class 1 being predominantly vegetation or bare 

land, and Class 5 showing dense rooftops and minimal 

vegetation interference. The lowest accuracy occurred in 

Class 3, supporting earlier observations of high transitional 

confusion [51]. 

These results suggest that while high-resolution urban layers 

like GUF and GHSL offer valuable insight, they should be 

used in conjunction with localized validation datasets to 

enhance credibility in heterogeneous environments. 

Incorporating spatial texture analysis, auxiliary demographic 

layers, or temporal composites can significantly improve 

classification outcomes in semi-urban belts. 

Ultimately, the findings affirm that a regional validation 

dataset, like the one constructed in this study, is indispensable 

for evaluating the granular performance of global urban 

classifiers, especially when tailored policy or planning 

decisions are dependent on reliable land cover information 

[52]. 

Table 1: Confusion Matrix Summary per Region 

Region 

Overall 

Accurac

y 

Kappa 

Coefficie

nt 

Clas

s 

0% 

Clas

s 

25% 

Clas

s 

50% 

Clas

s 

75% 

Clas

s 

100

% 

Region 

Overall 

Accurac

y 

Kappa 

Coefficie

nt 

Clas

s 

0% 

Clas

s 

25% 

Clas

s 

50% 

Clas

s 

75% 

Clas

s 

100

% 

South 

Africa 
0.714 0.5296 0.88 0.65 0.58 0.70 0.82 

Morocc

o 
0.742 0.5713 0.85 0.63 0.59 0.72 0.84 

DRC 0.561 0.3342 0.67 0.52 0.45 0.51 0.69 

Tanzani

a 
0.645 0.4481 0.76 0.60 0.56 0.63 0.78 

 

 

Figure 12: Accuracy Comparison Chart;A bar chart showing 

per-class accuracy scores for 0%, 25%, 50%, 75%, and 100% 

built-up classes across the study regions. 

8.4 Temporal Robustness and Seasonal Validation  

Evaluating the temporal stability of urban classification 

outputs is essential to ensure the long-term reliability of 

spatial datasets, especially in fast-developing regions. This 

study tested the robustness of urban classification across a six-

year period (2015–2020), using both Landsat 8 and VIIRS 

night-time light (NTL) data. The aim was to observe whether 

classification accuracy held consistent over time or degraded 

in response to land-use changes, particularly in transitional 

and peri-urban zones [53]. 

A subset of 300 reference points, strategically selected from 

core urban, semi-urban, and rural zones in South Africa, 

Morocco, Ethiopia, and Tanzania, was re-evaluated using 

multi-temporal data composites. In each case, urban class 

outputs were visually compared with historical imagery from 
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Google Earth Pro, supplemented by band-derived index 

values (NDVI, NDBI, and LST) to verify stability [54]. Points 

in stable urban centers such as Johannesburg and Casablanca 

retained high class agreement across all six years, with 

average inter-annual Kappa scores exceeding 0.83 and 

consistent class allocations in 93% of cases [55]. 

In contrast, regions such as Dodoma, Addis Ababa, and 

Abidjan experienced classification deviations between 2017 

and 2020. These were attributed to recent expansion, 

redevelopment, or densification, leading to shifts from Class 2 

or 3 to Class 4 or 5. In Dodoma, new government construction 

zones altered classification scores, while in Abidjan, urban 

infill in low-light peripheries pushed formerly transitional 

points into dense built-up categories [56]. 

Seasonal shifts were also considered, particularly for semi-

vegetated fringe zones. The NDVI index proved sensitive to 

wet and dry season variability, which in some cases mimicked 

changes in land use. For instance, agricultural fallow periods 

in northern Ethiopia led to temporary NDVI drops that could 

be misclassified as urban cover by threshold-based systems. 

To account for this, classification results were cross-compared 

with multi-season composites, confirming that persistent 

urban areas maintained their classification labels across 

seasons, whereas intermittent zones exhibited class volatility 

[57]. 

These findings support the conclusion that while urban cores 

remain temporally stable, peri-urban belts require frequent 

updates and time-aware classification strategies. Automated 

models that rely on static spectral thresholds may misclassify 

areas undergoing gradual transformation, emphasizing the 

need for change detection algorithms and periodic retraining 

using updated reference data [58]. 

Figure 13 visualizes the trend of classification consistency 

from 2015 to 2020, showing a steady trajectory in core urban 

accuracy, a mild increase in transitional zone classification 

shifts, and a notable decline in precision for regions 

undergoing infrastructural change. Such patterns underscore 

the importance of temporal validation in assessing the real-

world applicability of urban classification products, 

particularly for policy use, spatial planning, and SDG 

monitoring in the Global South [59]. 

 

Figure 13: Temporal Accuracy Trend 2015–2020 

8.5 Observed Patterns of Spatial Inequality and Urban 

Expansion  

The spatial classification of urban points across multiple 

African countries revealed deep-rooted inequalities in 

infrastructural access, particularly in zones undergoing rapid 

expansion. Using buffer analysis, the study evaluated the 

proximity of each urban-classified point to major 

infrastructure such as primary roads, electricity lines, and 

economic corridors. This allowed identification of 

underserved urban regions—areas that visually exhibit urban 

characteristics but remain excluded from service grids [43]. 

In South Africa and Morocco, over 80% of Class 4 and Class 

5 urban points were found within 500 meters of major roads 

or power infrastructure. These results reflect historically 

structured development and effective urban planning, where 

growth is typically aligned with transportation and utility 

networks [44]. In contrast, countries such as DRC, Ethiopia, 

and Côte d’Ivoire showed a considerably lower proportion of 

high-density urban-classified points within the same 

proximity threshold, falling below 60%, pointing to 

fragmented infrastructure and spatial neglect [45]. 

Notably, informal settlements were a common feature across 

rapidly urbanizing belts in Tanzania, Cameroon, and Chad. 

Many of these zones, particularly in outer city rings, showed 

dense rooftop arrangements and impervious surfaces in 

satellite imagery but lacked corresponding NTL emissions or 

visible road access. These areas were often misrepresented in 

global datasets, despite functioning as residential zones, due 

to absence of detectable infrastructure signatures [46]. 

The study also found a strong spatial correlation between 

underserved classifications and planning boundaries, 

particularly in areas where urbanization spilled into unzoned 
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regions. These transitional belts frequently lacked official 

status, which exacerbated their exclusion from formal 

development programs [47]. Despite exhibiting characteristics 

of Class 3 or Class 4 zones, these regions were not prioritized 

in spatial policy frameworks, highlighting the importance of 

granular, ground-validated datasets for targeting interventions. 

Table 2 presents the percentage of classified urban points 

located within 500 meters of critical infrastructure across 

selected countries. These findings underscore the strategic 

value of spatial resolution in not only classifying urban forms 

but also diagnosing infrastructure inequality and informing 

policy decisions in underserved geographies [48]. 

Table 2: Spatial Inequality Indicators by Country 

Country Region 

% within 

500m of 

Roads 

% within 

500m of 

Power 

Lines 

% within 

500m of 

Economic 

Corridors 

South 

Africa 

Southern 

Africa 
86% 84% 79% 

Morocco 
North 

Africa 
82% 78% 76% 

Côte 

d’Ivoire 

West 

Africa 
61% 59% 57% 

DRC 
Central 

Africa 
55% 50% 48% 

Tanzania 
East 

Africa 
64% 60% 63% 

Ethiopia 
Horn of 

Africa 
58% 56% 54% 

Cameroon 
Central 

Africa 
53% 51% 50% 

Chad 
Central 

Africa 
49% 46% 45% 

 

9. CONCLUSION AND FUTURE WORK  

This study presented a structured approach to urban and non-

urban land cover classification, combining spectral analysis, 

machine learning, and spatial database management. The 

methodology followed a comprehensive pipeline that began 

with preprocessing satellite imagery, deriving spectral indices 

such as NDVI and NDBI, and applying thresholding 

techniques to generate initial classification masks. These 

preliminary results were enhanced through the integration of 

machine learning models, including Support Vector Machines 

(SVM) and Random Forests (RF), leveraging both spectral 

and textural features. To ensure reliability, rigorous ground 

truth data collection was conducted using field surveys and 

manual labeling from high-resolution imagery via Google 

Earth Pro. Classification outputs were validated through 

accuracy metrics including confusion matrices, Kappa 

coefficients, and F1 scores, and tested for temporal robustness 

using seasonal and inter-annual imagery. 

The results highlighted the feasibility of extracting 

meaningful urban classification data even with moderate-

resolution imagery. Dense urban cores in Nairobi were 

consistently identified with high accuracy, while peri-urban 

and transitional areas posed classification challenges due to 

their mixed-use characteristics. Integration of geospatial 

datasets and careful database schema design using 

PostgreSQL/PostGIS enabled efficient data storage, retrieval, 

and visualization. Interoperability with QGIS, ArcGIS, and 

GeoServer ensured accessibility across various platforms, 

supporting both technical analysts and policy users. The 

insights derived from the classification outputs not only 

reflected urban growth patterns but also offered valuable 

spatial intelligence for planning interventions. 

In the context of smart cities, this methodology has practical 

relevance. Accurate and timely urban classification supports 

digital urban management systems, enabling real-time 

monitoring of development, infrastructure demand, and 

environmental health. Cities transitioning to smart governance 

frameworks can benefit from such spatial intelligence in 

managing utilities, optimizing transport networks, and 

enforcing zoning regulations. Furthermore, integration with 

demographic and infrastructure datasets opens up possibilities 

for precision planning—tailoring public services to population 

needs and identifying underserved areas in a data-driven 

manner. Environmental modeling also benefits from these 

outputs, particularly in monitoring land use impact on 

ecosystems, forecasting flood risks, and evaluating the 

sustainability of urban expansion. 

To support future automation and scalability, several 

recommendations emerge from this study. First, the adoption 

of higher-resolution and multi-sensor data, including radar 

and LiDAR, would improve classification accuracy, 

particularly in dense or vertically complex urban zones. 

Automation of sampling strategies and ground truthing 

through crowd-sourced platforms or AI-assisted labeling 

would significantly reduce manual overhead. Workflow 

standardization using modular scripts and open-source 

libraries can further enhance reproducibility across regions 

and projects. Transitioning from semi-automated models to 

fully automated AI pipelines will enable faster and more 

responsive classification outputs suitable for operational urban 

monitoring systems. 

Furthermore, integration with AI-driven change detection 

platforms represents the next frontier in urban classification. 

Real-time data from satellite constellations, drones, and IoT-

based environmental sensors can be continuously ingested 

into dynamic models capable of identifying land cover 
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transitions as they occur. Incorporating deep learning models 

such as Convolutional Neural Networks (CNNs) and 

Transformer-based architectures will allow for more nuanced 

understanding of urban morphologies and their evolution over 

time. When combined with automated change detection 

algorithms, these systems can issue alerts for unauthorized 

construction, encroachment on green zones, or degradation of 

critical infrastructure. 

Developing a unified framework that links classification with 

predictive analytics and urban simulation models would create 

a holistic system for urban governance. Such platforms could 

integrate classification results with urban growth models, 

traffic simulations, or disaster risk assessments, offering city 

administrators a predictive lens into future scenarios. Linking 

spatial classification with participatory platforms and mobile 

GIS could also democratize urban monitoring, involving 

citizens in the process of data validation and urban planning. 

In conclusion, the methodology outlined in this study serves 

as both a retrospective evaluation and a foundational model 

for future urban classification systems. It bridges traditional 

remote sensing techniques with emerging AI innovations, 

laying the groundwork for scalable, automated, and context-

aware urban intelligence platforms. As cities across the globe 

grapple with rapid urbanization, climate challenges, and 

infrastructure strain, the integration of spatial classification 

into planning and policy systems will be crucial to building 

resilient, inclusive, and smart urban futures. 
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