New Axioms in Topological Spaces

Vivekananda Dembre Assistant Professor Department of Mathematics, Sanjay Ghodawat University, Kolhapur,India

Abstract: In this paper, we study some separation axioms namely, w-To-space, w-T1 -space and w-T2-space and their properties. We also obtain some of their characterizations.

Keywords: W-TO-Space, W-T1 -Space, W-T2-Space.

1. INTRODUCTION

In the year 2000,Sheik John introduced and studied w-closed and w-open sets respectively. In this paper we define and study the properties of a new topological axioms called w-To-space, w-T1 –space, w-T2-space.

II.PRELIMINARIES

Throughout this paper space (X,τ) and (Y,σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c, P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

Definition 2.1: A subset A of a topological space $(X,\,\tau)$ is called

Definition 2.1: A subset A of a topological space (X, τ) is called

(i) A weakly closed set (briefly, ω -closed set) if Cl(A) \subseteq U whenever A \subseteq U and U is open in (X, τ).

(ii) A subset A of a topological space (X,τ) is called weakly open(briefly ω -open) set in X if A^c is ω -closed in X.

(iii)A topological space X is called a τ w space if every w - closed set in it is closed.

Definiton 3: A map $f:(X, T) \rightarrow (Y, \sigma)$ is called

(i) W-continuous map [1] if $f^{-1}(v)$ is w closed in (X, \mathcal{T}) for every closed V in (Y, σ) .

(ii)W-irresolute map[1]if $f^{-1}(v)$ is w closed in (X, \mathcal{T}) for every w-closed V in (Y, σ) .

www.ijcat.com

(iii)W-closed map[1] if $f^{-1}(v)$ is w closed in (X, \mathcal{T}) for every closed V in (Y, σ) .

(iv)W-open map[1] if $f^{-1}(v)$ is w closed in (X,\mathcal{T}) for every closed V in (Y,σ) .

4. W-To-SPACE:

Definition 4.4.1: A topological space (X, τ) is called w-T_ospace if for any pair of distinct points x,y of (X,τ) there exists an w-open set G such that $x \in G$, $y \notin G$ or $x \notin G$, $y \in G$.

Example 4.4.2: Let $X = \{a, b\}$, $\mathcal{T} = \{\mathcal{P}, \{b\}, X\}$. Then (X, \mathcal{T}) is w-T₀-space, since for any pair of distinct points a, b of (X,\mathcal{T}) there exists an w-T₀ open set $\{b\}$ such that a $\notin \{b\}, b \in \{b\}$.

Remark 4.4.3: Every w-space is w-To-space.

Theorem 4.4.4: Every subspace of a w-T_o-space is w-T_o-space.

Proof: Let (X, \mathcal{T}) be a w-T₀-space and (Y, \mathcal{T}_y) be a subspace of (X, \mathcal{T}) . Let Y_1 and Y_2 be two distinct points of (Y, \mathcal{T}_y) . Since (Y, \mathcal{T}_y) is subspace of $(X, \mathcal{T}), Y_1$ and Y_2 are also distinct points of (X, \mathcal{T}) . As (X, \mathcal{T}) is w-T₀-space, there exists an w-open set G such that $Y_1 \in G, Y_2 \notin G$. Then $Y \cap G$ is w-open in (Y, \mathcal{T}_y) containing but Y_1 not Y_2 . Hence (Y, \mathcal{T}_y) is w-T₀-space. **Theorem 4.4.5:** Let f: $(X,T) \rightarrow (Y, \mu)$ be an injection, wirresolute map. If (Y,μ) is w-T₀-space, then (X,T) is w-T₀-space.

Proof: Suppose (Y, μ) is w-T_o-space. Let a and b be two distinct points in (X, \mathcal{T}) .

As f is an injection f(a) and f(b) are distinct points in (Y,μ) . Since (Y,μ) is w-T₀-space, there exists an w-open set G in (Y,μ) such that f(a) \in G and f(b) \notin G. As f is w-irresolute, f⁻¹(G) is w-open set in (X,\mathcal{T}) such that a \in f⁻¹(G) and b \notin f⁻¹(G). Hence (X,\mathcal{T}) is w-T₀-space.

Theorem 4.4.6: If (X, T) is w-T₀-space, T_W-space and (Y, T_y) is w-closed subspace of (X, T), then (Y, T_y) is w-T₀-Space. **Proof:** Let (X, T) be w-T₀-space, T_W-space and (Y, T_y) is wclosed subspace of (X, T). Let a and b be two distinct points of Y. Since Y is subspace of (X, T), a and b are distinct points of (X, T). As (X, T) is w-T₀ -space, there exists an w-open set G such that a \in G and b \notin G. Again since (X, T) is T_W-space, G is open in (X, T). Then Y \cap G is open. So Y \cap G is w-open such that a \in Y \cap G and b \notin Y \cap G. Hence (Y, T_y) is W-T₀ –space.

Theorem 4.4.7: Let f: $(X, \tau) \rightarrow (Y, \mu)$ be bijective w-open map from a w-T₀ Space (X, τ) onto a topological space (Y, τ_y) . If (X, τ) is T_w-space, then (Y, μ) is w-T₀ Space.

Proof: Let a and b be two distinct points of (Y, \mathcal{T}_y) . Since f is bijective, there exist two distinct points e and d of (X, \mathcal{T}) such that f(c) = a and f(d) = b. As (X, \mathcal{T}) is w-T₀ Space, there exists a w-open set G such that $c \in G$ and $d \notin G$. Since (X, \mathcal{T}) is T_w-space, G is open in (X, \mathcal{T}) . Then f(G) is w-open in (Y, μ) ,

Example 4.4.9: Let $X = \{a,b\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then (X,τ) is a topological space. Here a and b are two distinct points of (X,τ) , then there exist w-open sets $\{a\}, \{b\}$ such that $a \in \{a\}, b \notin \{a\}$ and $a \notin \{b\}, b \in \{b\}$. Therefore (X,τ) is w-T₀ space.

Theorem 4.4.10: If (X,T) is w-T₁-space,then (X,T) is w-T₀-space.

Proof: Let (X,T) be a w-T₁-space. Let a and b be two distinct points of (X,T). Since (X,T) is w-T₁-space, there exist w-open sets G and H such that $a \in G$, $b \notin G$ and $a \notin H$, $b \in H$. Hence we have $a \in G$, $b \notin G$. Therefore (X,T) is w-T₀-space.

The converse of the above theorem need not be true as seen from the following example.

Example 4.4.11: Let $X = \{a,b\}$ and $\mathcal{T} = \{\varphi,\{b\},X\}$. Then (X,\mathcal{T}) is w-T₀-space but not w-T₁-space. For any two distinct points a, b of X and an w-open set $\{b\}$ such that $a \notin \{b\}$, $b \in \{b\}$ but then there is no w-open set G with $a \in G$, $b \notin G$ for $a \neq b$.

Theorem 4.4.12: If f: $(X,T) \rightarrow (Y,T_y)$ is a bijective w-open map from a w-T₁-space and T_w-space (X,T) on to a topological space (Y,T_y) , then (Y,T_y) is w-T₁-space.

Proof: Let (X, \mathcal{T}) be a w-T₁-space and T_w-space. Let a and b be two distinct points of (Y, \mathcal{T}_y) . Since f is bijective there exist distinct points c and d of (X, \mathcal{T}) such that f(c) = a and f(d) = b. Since (X, \mathcal{T}) is w-T₁-space there exist w-open sets G and H such that $c \in G$, $d \notin G$ and $c \notin H$, $d \in H$.

since f is w-open, such that $a \in f(G)$ and $b \notin f(G)$. Hence (Y, \mathcal{T}_y) is w-T₀-space.

Definition 4.4.8: A topological space (X, \mathcal{T}) is said to be w-T₁-space if for any pair of distinct points a and b of (X, \mathcal{T}) there exist w-open sets G and H such that $a \in G$, $b \notin G$ and $a \notin H$, $b \in H$. Since (X, \mathcal{T}) is T_w -space, G and H are open sets in (X, \mathcal{T}) also f is w-open f(G) and f(H) are w-open sets such that a = f (c) \in f(G), b = f(d) \notin f(G) and a= f(c) \notin f(H), b= f(d) \in f(H). Hence (Y, \mathcal{T}_y) is w-T₁-space.

Theorem 4.4.13: If (X, \mathcal{T}) is wT₁ space and T_w-space, Y is a subspace of (X, \mathcal{T}) , then Y is w-T₁ space.

Proof: Let (X, τ) be a w T₁ space and T_w-space. Let Y be a subspace of (X, τ) . Let a and b be two distract points of Y. Since Y_CX, a and b are also distinct points of X. Since (X, τ) is w-T₁-space, there exist w-open sets G and H such that a \in G, b \notin G and a \notin H, b \in H. Again since (X, τ) is T_w-space,G and H are open sets in (X, τ) , then Y \cap G and Y \cap H are open sets so w-open sets of Y such that a \in Y \cap G, b \notin Y \cap G and a \notin Y \cap H, b \in Y \cap H. Hence Y is w T₁ space.

Theorem 4.4.14: Iff: $(X, \tau) \rightarrow (Y, \tau_y)$ is injective w-irresolute map from a topological space (X, τ) into w-T₁-space (Y, τ_y) , then (X, τ) is w-T₁ - space.

Proof: Let a and b be two distinct points of (X, \mathcal{T}) . Since f is injective, f(a) and f(b) are distinct points of (Y, \mathcal{T}_y) . Since (Y, \mathcal{T}_y) is w-T₁ space there exist w-open sets G and H such that f(a) \in G, f(b) \notin G and f(a) \notin H, f(b) \in H.Since f is w-irresolute, f⁻¹(G) and f⁻¹(H) are w-open sets in (X, \mathcal{T}) such that a \in f⁻¹ (G), b \notin f⁻¹(G) and a \notin f¹(H), b \in f⁻¹(H). Hence (X, \mathcal{T}) is w-T₁ space.

Definition 4.4.15: A topological space (X, \mathcal{T}) . is said to be w-T₂- space (or T_w-Hausdorff space) if for every pair of distinct points x, y of X there exist T_w-open sets M and N such that $x \in N, y \in M$ and $N \cap M = \emptyset$.

Example 4.4.16: Let $X = \{a,b\}$, $\tau = \{\emptyset, \{a\}, \{b\}, X\}$. Then (X,τ) is topological space. Then (X,τ) is w-T₂-space. T_w-open sets are \emptyset , $\{a\}$, $\{b\}$, and X. Let a and b be a pair of distinct points of X, then there exist T_w - open sets $\{a\}$ and $\{b\}$ such that $a \in \{a\}$, $b \in \{b\}$ and $\{a\} \cap \{b\} = \emptyset$. Hence (X,τ) is w-T₂-space.

implies, $x \in U$, $y \notin U$ and $x \in V$, $y \notin V$. Hence (X, τ) is w-T₂-space.

Theorem 4.4.18: If (X, τ) is w-T₂-space, T_w- space and (Y, τ_y) is subspace of (X, τ) , then (Y, τ_y) is also w-T₂-space.

Proof: Let (X, \mathcal{T}) , be a w-T₂ - space and let Y be a subset of X. Let x and y be any two distinct points in Y. Since $Y \subseteq X$, x and y are also distinct points of X. Since (X, \mathcal{T}) is w-T₂ - space, there exist disjoint T_w-open sets G and H which are also disjoint open sets, since (X, \mathcal{T}) is T_w - space. So G∩Y and H∩Y are open sets and so T_w- open sets in (Y, \mathcal{T}_y) . Also $x \in G$, x $\in Y$ implies $x \in G \cap V$ and $y \in H$ and $y \in Y$ this implies y $\in Y \cap H$, since $G \cap H = \emptyset$, we have $(Y \cap G) \cap (Y \cap H) = \emptyset$. Thus G∩Y and H∩Y are disjoint T_w-open sets in Y such that $x \in G \cap Y$, $y \in H \cap Y$ and $(Y \cap G) \cap (Y \cap H) = \emptyset$. Hence (Y, \mathcal{T}_y) is w-T₂ - space.

Theorem 4.4.19: Let (X,\mathcal{T}) , be a topological space. Then (X,\mathcal{T}) , is w-T₂-space if and only if the intersection of all T_w-closed neighbourhood of each point of X is singleton.

Proof: Suppose (X, \mathcal{T}) , is w-T₂-space. Let x and y be any two distinct points of X. Since X is w-T₂-space, there exist open sets G and H such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$.Since $G \cap H = \emptyset$ implies $x \in G \subseteq X$ -H. SoX-H is Tw-closed neighbourhood of x, which does not contain y. Thus y does not belong to the intersection of all Tw-closed neighbourhood of x. Since y is arbitrary, the intersection of all Tw-closed neighbourhoods of x is the singleton {x}.

Conversely, let (x) be the intersection of all Tw-closed neighbourhoods of an arbitrary point $x \in X$. Let y be any point of X different from x. Since y does not belong to the intersection, there exists a Tw-closed neighbourhood N of x such that $y \notin N$. Since N is Tw-neighbourhood of x, there exists an Tw-open set G such $x \in G \subseteq X$. Thus G and X - N are Tw-open sets such that $x \subseteq G$, $y \in X$ -N and $G \cap (X - N) = \emptyset$. Hence (X, \mathcal{T}) is w-T₂-space.

Theorem 4.4.17: Every w-T₂- space is w T₁space.

Proof: Let (X,T) be a w-T₂- space. Let x and y be two distinct points in X. Since (X,T) is w-T₂- space, there exist disjoint T_w-open sets U and V such that $x \in U$, and $y \in V$. This

Theorem 4.4.20: Let f: $(X,T) \rightarrow (Y,T_y)$ be a bijective wopen map. If (X,T) is w-T₂- space and T_w space, then (Y,T_y) is also w-T₂- space. **Proof:** Let (X, \mathcal{T}) , is w-T₂- space and T_w- space. Let y₁ and y₂ be two distinct points of Y. Since f is bijective map, there exist distinct points x₁ and x₂ of X such that $f(x_i) = y_j$ and $f(x_2) = y_2$. Since (X, \mathcal{T}) is w-T₂- space, there exist w-open sets G and H such that X₁ \in G, X₂ \in H and G \cap H = \emptyset . Since (X, \mathcal{T}) is T_w-space, G and H are open sets, then f(G) and f(H) are w- open sets of (Y, \mathcal{T}_y) , since f is ppw-open, such that y₁ = f(x₁) \in f(G), y₂ = f(x₂) \in f(H) and f(G) \cap f(H) = \emptyset . Therefore we have f(G) \cap f(H) = f(G \cap H) = \emptyset . Hence (Y, \mathcal{T}_y) is wT₂-space.

Theorem 4.4.21: Let (X,\mathcal{T}) be a topological space and let (Y,\mathcal{T}_y) be a W-T₂-space. Let f: $(X,\mathcal{T}) \longrightarrow (Y,\mathcal{T}_y)$ be an injective w-irresolute map. Then (X,\mathcal{T}) is w-T₂-space.

Proof: Let x_1 and x_2 be any two distinct points of X. Since f is injective, $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$. Let $y_1 = f(x_1)$, $y_2 = f(x_2)$ so that $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$. Then $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Since (Y, \mathcal{T}_y) is W-T₂-space there exist T_w-open sets G and H such that $y_1 \in G$, $y_2 \in G$ and $G \cap H = \emptyset$. As f is T_wirresolute $f^{-1}(G)$ and $f^{-1}(H)$ are T_w-open sets of (X, \mathcal{T}) . Now $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$ and $y_1 \in G$ implies $f^{-1}(y_2) \in f^{-1}(G)$ implies $x_1 \in f^{-1}(G)$, $y_2 \in H$ implies $f^{-1}(y_2) \in f^{-1}(H)$ implies $x_2 \in f^{-1}(H)$. Thus for every pair of distinct points x_1 , x_2 of X there exist disjoint T_w-open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that

 $x_1 \in f^{-1}(G), x_2 \in f^{-1}(H)$. Hence (X, \mathcal{T}) is w-T₂-space.

REFERENCES:

[1] M.Sheik john, a study on g-closed sets on continuous maps in topological and bitopological spaces ph.d Thesis Bharathiar University Coimbatote (2002).

[2]R.S.Wali and Vivekananda Dembre, "Minimal weakly open sets and maximal weakly closed sets in topological spaces"; International Journal of Mathematical Archieve; Vol-4(9)-Sept-2014.

[3] R.S.Wali and Vivekananda Dembre, "Minimal weakly closed sets and Maximal weakly open sets in topological spaces"; International Research Journal of Pure Algebra; Vol-4(9)-Sept-2014.

[4] R.S.Wali and Vivekananda Dembre, "on semi-minimal open and semi-maximal closed sets in topological spaces";

Journal of Computer and Mathematical Science; Vol-5(9)-0ct-

[5] R.S.Wali and Vivekananda Dembre, "on pre generalized pre regular weakly closed sets in topological spaces "; Journal of Computer and Mathematical Science; Vol-6(2)-Feb-2015 (International Journal)

[6]R.S.Wali and Vivekananda Dembre, "on pre genearalized pre regular open sets and pre regular weakly neighbourhoods in topological spaces"; Annals of Pure and Applied Mathematics"; Vol-10- 12 2015.

[7]R.S.Wali and Vivekananda Dembre, "on pre generalized pre regular weakly interior and pre generalized pre regular weakly closure in topological spaces", International Journal of Pure Algebra- 6(2),2016,255-259.

[8]R.S.Wali and Vivekananda Dembre, "on pre generalized pre regular weakly continuous maps in topological spaces", Bulletin of Mathematics and Statistics Research Vol.4.Issue.1.2016 (January-March).

[9]R.S.Wali andVivekananda Dembre,on Pre-generalized pre regular weakly irresolute and strongly pgprw-continuous maps in topological spaces, Asian Journal of current Engineering and Maths 5;2 March-April (2016)44-46.

[10]R.S.Wali and Vivekananda Dembre,On Pgprw-locally closed sets in topological spaces,

International Journal of Mathematical Archive-7(3),2016,119-123.

[11]R.S.Wali and Vivekananda Dembre, (T_1 , T_2) pgprw-closed sets and open sets in Bitopological spaces, International Journal of Applied Research 2016;2(5);636-642.

[12]R.S.Wali and Vivekananda Dembre,Fuzzy pgprwcontinuous maps and fuzzy pgprw-irresolute in fuzzy topological spaces; International Journal of Statistics and Applied Mathematics 2016;1(1):01-04.

[13]R.S.Wali and Vivekananda Dembre,On pgprw-closed maps and pgprw-open maps in Topological spaces;International Journal of Statistics and Applied Mathematics 2016;1(1);01-04.

[14]Vivekananda Dembre, Minimal weakly homeomorphism and Maximal weakly homeomorphism in topological spaces, Bulletin of the Marathons Mathematical Society,Vol. 16, No. 2, December 2015, Pages 1-7.

2014 (International Journal).

[15]Vivekananda Dembre and Jeetendra Gurjar, On semimaximal weakly open and semi-minimal weakly closed sets in topological spaces, International Research Journal of Pure Algebra-Vol-4(10), Oct – 2014.

[16]Vivekananda Dembre and Jeetendra Gurjar, minimal weakly open map and maximal weakly open maps in topological spaces, International Research Journal of Pure Algebra-Vol.-4(10), Oct – 2014; 603-606.

[17]Vivekananda Dembre ,Manjunath Gowda and Jeetendra Gurjar, minimal weakly and maximal weakly continuous functions in topological spaces, International Research Journal of Pure Algebra-vol.-4(11), Nov–2014.

[18]Arun kumar Gali and Vivekananda Dembre, minimal weakly generalized closed sets and maximal weakly generalized open sets in topological spaces, Journal of Computer and Mathematical sciences, Vol.6(6), 328-335, June 2015.

[19]R.S.Wali and Vivekananda Dembre; Fuzzy Pgprw-Closed Sets and Fuzzy Pgprw-Open Sets in Fuzzy Topological SpacesVolume 3, No. 3, March 2016; Journal of Global Research in Mathematical Archives.

[20]Vivekananda Dembre and Sandeep.N.Patil; On Contra Pre Generalized Pre Regular Weakly

Continuous Functions in Topological Spaces; IJSART - Volume 3 Issue 12 – DECEMBER 2017

[21]Vivekananda Dembre and Sandeep.N.Patil ; On Pre Generalized Pre Regular Weakly Homeomorphism in Topological Spaces; Journal of Computer and Mathematical Sciences, Vol.9(1), 1-5 January 2018. [22]Vivekananda Dembre and Sandeep.N.Patil ;on pre generalized pre regular weakly topological spaces; Journal of Global Research in Mathematical Archives volume 5, No.1, January 2018.

[23]Vivekananda Dembre and Sandeep.N.Patil ; Fuzzy Pre Generalized Pre Regular Weakly Homeomorphism in Fuzzy Topological Spaces ;International Journal of Computer Applications Technology and Research Volume 7–Issue 02, 28-34, 2018, ISSN:-2319–8656.

[24]Vivekananda Dembre and Sandeep.N.Patil; PGPRW-Locally Closed Continuous Maps in Topological Spaces; International Journal of Trend in Research and Development, Volume 5(1), January 2018.

[25]Vivekananda Dembre and Sandeep.N.Patil ; Rw-Separation Axioms in Topological Spaces; International Journal of Engineering Sciences & Research Technology; Volume 7(1): January, 2018.

[26]Vivekananda Dembre and Sandeep.N.Patil ; Fuzzy pgprw-open maps and fuzzy pgprw-closed maps in fuzzy topological spaces; International Research Journal of Pure Algebra-8(1), 2018, 7-12.

[27]Vivekananda Dembre and Sandeep.N.Patil ; Pgprw-Submaximal spaces in topological spaces ; International Journal of applied research 2018; Volume 4(2): 01-02.