
International Journal of Computer Applications Technology and Research

Volume 7–Issue 05, 193-199, 2018, ISSN:-2319–8656

www.ijcat.com 193

Availability Assessment of Software Systems

Architecture Using Formal Models

Mahbubeh Sadeghian

Komail Institute of Higher Education

Kordkooy, Iran

Homayun Motameni

Department of Computer Engineering

Islamic Azad University, Sari

Iran

Abstract: There has been a significant effort to analyze, design and implement the information systems to process the

information and data, and solve various problems. On the one hand, complexity of the contemporary systems, and eye-catching

increase in the variety and volume of information has led to great number of the components and elements, and more complex

structure and organization of the information systems. On the other hand, it is necessary to develop the systems which meet

all of the stakeholders' functional and non-functional requirements. Considering the fact that evaluation and assessment of the

aforementioned requirements - prior to the design and implementation phases - will consume less time and reduce costs, the

best time to measure the evaluable behavior of the system is when its software architecture is provided. One of the ways to

evaluate the architecture of software is creation of an executable model of architecture.

The present research used availability assessment and took repair, maintenance and accident time parameters into

consideration. Failures of software and hardware components have been considered in the architecture of software systems.

To describe the architecture easily, the authors used Unified Modeling Language (UML). However, due to the informality of

UML, they utilized Colored Petri Nets (CPN) for assessment too. Eventually, the researchers evaluated a CPN-based

executable model of architecture through CPN-Tools.

Keywords: Software Architecture; Unified Modeling Language; Colored Petri Nets; Availability.

1. INTRODUCTION
Due to the recent increase in the complexity, volume,

number of users, use, and amount of investment, it is

necessary to design and develop software system in a way

which simultaneously reduces the investment cost and

meets the developers and users' needs. The intrinsic

complexity of the software system is caused by factors like

complexity of the subject matter and manufacturing

process, flexibility, and difficult non-standard behaviour

of complex system [1]. Although the complexity cannot

be omitted, it must be controlled by using some methods.

In addition, checking the specifications of a system - prior

to design and implementation phases - will save time and

lower costs. Therefore, the best time to measure the

evaluable behaviour of a system is when the architecture

of the system is provided. Software architecture, which

focuses on components and connectors as the most

important elements and components, creates a relationship

between structure and behaviour of components. A set of

components with their own properties interact with each

other through the connectors. The connectors have their

own specifications too. These will form software system

architecture within a specific configuration [2]. To attain

this goal scientists and developers use modelling. This

paves the way for creation and changing the software

easily and cost-effectively. A model approximately

presents properties of a real system. Therefore, by utilising

a model it is possible to evaluate a system prior to its

implementation. Sometimes it is economically impossible

to build a system without considering the design and

elementary output. [3]. Models, through executable

representation of the properties of the architecture, display

run-time behaviour of systems. These behaviours make

the evaluation of many quality attributes possible. There

are various models to display executable architecture

including Petri Nets, queuing network, stochastic process

algebra and etc. Also, some architecture description

languages can demonstrate an executable architecture.

Availability is one of non-functional requirements that

affect software development. The reason is that

availability problems can cause significant changes in all

of the stages of software life cycle. This is particularly

observable in the initial stages of the development.

Here, the availability is among the factors which greatly

influence the customers' selection and is in direct

relationship with the failure and faults of a system and its

consequences. In fact, failure occurs when a system is not

able to deliver a service based on its characteristics and

attributes. Several works focused on non-functional

requirements, especially availability in the initial stages of

software architecture and development. However, these

methods have limited application in real and complicated

examples. Also, none of these methods evaluates the

requirements entirely. To assess this metric, the authors

proposed method includes CPN.

The second part of the article includes the fundamental

concepts of software architecture, UML, CPN, and

availability. The third part contains selected review of

previous studies. The fourth part embraces the detailed

description of the proposed method. The fifth part

represents a case study for evaluation and modelling of the

proposed method. This is done to demonstrate the

correctness of the method.

2. BASIC CONCEPTS
Regarding their type of application and performance,

concepts are defined differently. This method was

followed in the present article.

2.1 Software Architecture
In fact, software architecture expresses a structure of a set

of solutions for a problem. Decomposition and breaking

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 05, 193-199, 2018, ISSN:-2319–8656

www.ijcat.com 194

the space of a problem into smaller sections paves the way

for designation of general characteristics of each part, and

finding solution for a set of parts with common

specifications.

Therefore, designing of software structure is a crucial and

necessary stage in the development of large and

complicated software. As shown in Figure 1,

requirements are the main input of software architecture

design. Requirements include the users and stakeholders'

desired properties and specifications of a system [4].

Figure 1. Software Architecture View

Software architecture includes the initial decisions for

designing a system. These are the fundamentals of system

design, implementation, deployment, and maintenance.

Software architecture is the first evaluable element in the

process of software development. So, the first step to

design a system which meets the quality requirement is

producing the software structure.

2.2 Unified Modelling Language
Presenting a model of a system paves the way for

studying a system from intended aspects. To develop

information systems, various methods have been

proposed. They can be widely categorised into structured

and object-oriented. The lack of UML in the structured

methods causes deficiencies in the readability and

efficiency of them. This problem was resolved in the

object oriented methods through unified modelling

language. UML is a powerful language which supports all

of the object oriented concepts. Therefore, it is

simultaneously used by the object oriented methodologies

and databases. This language has introduced a powerful

set of modelling elements, charts and Pre-defined

structures to describe the structural characteristics and

behavioural of software architecture [5]. Due to the nature

of the requirements, uncertainty in information system is

inevitable. To develop systems, object oriented

methodologies express their intended concepts through

UML.

2.3 Coloured Petri Nets
Coloured Petri Nets have been introduced as a developed

model of Petri Nets. In addition to places, transitions and

tokens, these networks introduced concepts of statement,

guard and colour. CPN use simple abilities of petri nets

and programming languages. (Figure 2)

Figure 2. A Model of Coloured Petri Nets'

Tokens carry data values in these networks. Coloured

Petri nets provide more accurate models of complex

Asynchronous processing systems. In these networks,

unlike petri nets, tokens are distinguishable because each

token has an attribute called colour [6]. To put it in another

way, they offer a clear graphical view of the system with

a mathematical approach and indicate communication

patterns, control patterns and information flows. These

networks present a framework for analysis, validation and

performance evaluation. Petri nets are based on graph.

Informally, a directed graph consists of two elements:

place and transition. These networks are based on state not

event. This makes the explicit modelling of each case

possible. Petri nets represent models of structural and

behavioural aspects of a discrete event system. They also

provide a framework for analysis, validation, performance

evaluation and reliability [7]. The reason behind using

CPN instead of simple petri nets is that in the former,

tokens can have different values in a place. So if the tokens

are in the same place, it would be possible to distinguish

them from each other [6].

2.4 Availability
In fact, the concept of availability is developed for

repairable systems that require continuous work. At each

random moment, these systems are whether working or

out of order. In the latter case, they are trying to recover

and restart functioning in the minimum time. Generally, a

system has got two possible states: operating or down.

Availability is defined as the probability that one system

works desirably at any point of time t and builds a cycle

as “operational” and “downtime” states. In other words

availability is a compound of reliability and

maintainability parameters [8].

Availability is one of the non-functional requirements. It

is computed in part of system that is in process and shows

proportion of time that the system is running, executing,

and alive. This quality attribute shows the extent to which

the system is able to resolve its problems and return to its

natural state.

3. PREVIOUS STUDIES
In recent years, various methods have been proposed to

assess the availability of the software systems. These

methods have been discussed in various studies. Some of

these methods have been studied in this paper. Reference

[8] discussed availability assessment based on safety in

design stage. This method was used in the present research

for availability assessment and will be explained in the

following sections. Here, we presumed the access to the

sequence diagrams of the system. Because it is impossible

to perform availability assessment through UML

diagrams, we need to do a mapping of sequence diagrams

on petri nets. After production of corresponding petri nets

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 05, 193-199, 2018, ISSN:-2319–8656

www.ijcat.com 195

via UML sequence diagrams, it was implemented in CPN

Tools.

In [9] a model, which is based on measuring the level of

system, is presented through an example of the safety

protection system. Different types of failures are discussed

too. In [10] the relationship between software availability

measurement and the number of restorations with

imperfect debugging has been studied. This paper

proposed a software availability model considering the

number of restoration actions. Through this model,

quantitative measurement of software availability

assessment is achievable. This is based on the number of

restoration actions.

Also different methods and availability models which can

be used in the industry are discussed in [11], [12], [13] and

[14].

In [15] UML activity diagram was converted into CPN

through an automatic method. This paper indicates that as

the result of semantic difference between CPN and UML,

direct transforming from UML to CPN is done manually.

It also shows transforming method that can automatically

convert UML activity diagram into CPN. To overcome the

semantic difference between activity diagram and CPN,

an intermediate XML formatted model was used. The

present article demonstrates the conversion of UML 2.0

diagram into CPN through construction of an intermediate

model. This is utilised to evaluate the performance of

software.

[16] Presents a method of evaluation through using

discrete time Markov model. This method computes the

reliability of software architecture based on the reliability

of each component and the probability of transitions. In

order to evaluate quantitatively, [17] proposed a method

which is based on dynamic Bayesian network. To evaluate

performance quantitatively, [18] developed an approach

based on discrete time Markov model. This approach

computes the performance of software architecture

considering the consumed time in each component and

number of the times that they meet each other in the

process of running a programme. [19] Presents a method

for quantitative assessment of the security. This method

has its basis in discrete time Markov model and calculates

the security of software architecture based on the

vulnerability of components and the frequency that they

meet each other in the process of running a programme.

[20] Represents a way to create a formal model of the

UML diagrams. This research includes a methodology to

create a formal model of the system with the purpose of

analysis and behavioural modelling of UML. In fact UML

state diagrams, which illustrate a sequence of states of an

object during its lifecycle, and UML collaboration

diagrams are converted into object petri nets. Then they

assess verification of UML behavioural properties through

presented formal model to detect and reveal behaviours

based on concurrency such as deadlock. Moreover, [21]

provided a way to assess the authenticity of behaviour and

validation of UML sequence diagrams. This method use

source and destination of messages in sequence diagram

and these diagrams are mapped into PROME Language.

Then SPIN tool was used for simulation.

4. PROPOSED METHOD
In this paper the authors used CPN and CPN Tools for

modelling and availability assessment. Most of the

previous studies used Markov model but in this paper

CPN were used. In other words, compared to Markov

model, describing a problem via a petri net is less

complicated. This is also closer to the designer's

understanding of the system description. Petri nets can be

applied to overcome the deficiencies of the Markov

model. In Markov model, small changes in design of the

system lead to many changes in Markov chain structure.

Therefore, development of the systems that use Markov

model is difficult. However, it is easily possible to develop

the systems which are modelled by petri nets. The

following section describes the method.

4.1 Assessment of Quality Properties via

CPN
Figure (3) shows the process of evaluation of quality

properties through values attributed to the tokens. Here,

the value of x on transition indicates the value of a quality

property. There are two probabilities for firing; firing t1

transition and firing t2 transition. After the t1 transition

firing, the value of x is updated to f(x) which means the

value of a quality property has changed to the value of f(x)

in one stage of progress.

Figure 3. Evaluation of the Quality Properties in CPN [6]

4.2 Availability Assessment
To compute resources availability we have mean time

between resource failure and it’s modification in a time

interval. We can obtain considered metric based on the

availability of the resources. Availability is divided into

intrinsic and operational types (Figure 4). The former is a

function of mean time to repair (MTTR) and mean time

between failures (MTBF) [8].

Ain = μ/ (μ + ƛ) (1)

Figure 4. General Model of Availability

In equation (1), μ = 1/MTTR and ƛ = 1/MTBF

represent repair rate and failure rate respectively.

Operational availability equals the time period attributable

to administrative procedures.

Aop = MTBF/ (MTBF + MTTR + TAP) (2)

TAP is dependent on the policies of enterprise

maintenance organization and procedures like constraints

of ISO-900x. These are not available in the design phase.

However, safety-based operational availability, which is

the authors' proposed idea includes:

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 05, 193-199, 2018, ISSN:-2319–8656

www.ijcat.com 196

MTTR : mean time to repair

MTTM : mean time to preventive maintenance

MTTP : mean time to prepare the system for operation

after an accident or incident.

Failure Rate : ƛ1 = 1/MTBF

Accident Rate : ƛ2 = 1/MTBA,

Preventive Maintenance rate : ƛ3 = 1/MTBM, Repair

Rate : μ1 = 1/MTTR,

Prepare Rate : μ2 = 1/MTTP and

Rate of Repair and Maintenance : μ3 = 1/MTTM. [8]

4.3 UML Conversion Algorithm to CPN
The authors used UML language and sequence diagrams

to describe and present behaviour of architecture

respectively. The aim of this step is converting sender and

receiver of messages into petri nets. A sequence diagram

in performance evaluation shows how a client from a

particular type moves between services centres. It is

possible to consider a colour for a token in petri nets for

every set of scenario which is assigned to a customer.

Later, all of the message senders and receivers, and

message between them must be converted into petri nets.

This diagram emphasizes on the communication pattern

between the components, (i.e. the interaction between

components) and is plotted due to the messages sending

time. This paper used the converting method on messages

sender and receiver object and variety of messages in

sequence diagram such as sequence, selection,

concurrency and iteration. In this case each of the

messages sender and receiver components will be

transformed to place-transition-place [22].

Figure 5. Asynchronous Messages and its Equivalent

Petri Net

Figure 6. Synchronous Messages and its Equivalent Petri

Net

Figure 7. Sequence Structure and its Equivalent Petri Net

Figure 8. Iteration Structure and its Equivalent Petri Net

4.4 Creation of an Executable Model
The first step to create an executable model is using of

hierarchical structure of coloured petri net. So, for CPN a

transition will replace compound parts. Next, a subpage

will be defined for every transition. In addition, a

presented algorithm was used to transform sequence

diagram to CPN. The followings are the steps to create an

executable model of availability assessment through

sequence diagram:

First, we act hierarchically to create an executable model

via CPN. Here, we substitute a compound part in a

sequence diagram for a replacing transition and define a

subpage for every replacing transition.

Second, we use the presented algorithm for transforming

sequence diagram to CPN.

Third, to implement the transition in CPN Tools, we

present the properties and requirements of the sequence

diagram in Standard ML.

Fourth, to evaluate whether the plotted sequence diagram

represents the stated properties correctly, all of them must

be checked with the consideration of all possible

executing states in the sequence diagram. For example,

figure (9) shows CPN for sequence diagram of

withdrawal from ATM in CPN Tools.

Figure 9. Executable Model of Withdrawal from ATM

After creation of an executable model via a petri net, it is

viable to run this model in CPN Tools Software. Based on

the obtained information, the behaviour of architecture

products will be approved or rejected. In the latter case,

the product must be modified.

5. CASE STUDY
To prove the applicability and validation of the model, a

case study is evaluated. In case studies, we look for small

comprehensive examples which simply represent real

world samples. Due to its simplicity, the example of

withdrawal from an ATM is easily understood. The

following section includes simulation of an executable

model in CPN Tools, availability assessment of

architecture, and the obtained results. Figure 10 presents

a general view of the presented model. This is based on

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 05, 193-199, 2018, ISSN:-2319–8656

www.ijcat.com 197

the defined data. Every unit of this system has the

potential to fail. This demonstrates the vitality of the

availability metric for the system. Sequence diagram for

ATM withdrawal is shown in figure 11. Sequence

diagrams are useful designing tools because they provide

dynamic view of the system behaviour.

The modelling process is done in a way that specifies the

number of requests. Then, the system will be run. In

addition, it is possible to stop the operation at any given

time and observe the amount of availability which is

shown in percentage. Figure 12 presents part of the petri

net model equivalent to sequence diagram in CPN Tool.

Figure 10. General View of the Presented Model

Figure 11. Sequence Diagram of ATM Withdrawal

Figure 12. Part of Petri Net Model equivalent to ATM

Sequence Diagram

Figure 13 embodies the results of the proposed method

with 10 requests. In addition, this model has the potential

to include fluctuations in number of requests regarding

the needs.

Figure 13. Output of Model for 10 Requests

Table 1 shows the executed model with 10 requests.

Table 1. Output of model with 10 requests
Type of

operation

Card number Start

time

Request

completion

time

Withdraw

money

1232 1362 5634

5643

50 106

Withdraw

money

1232 1362 5634

6523

344 ---

Withdraw

money

4321 1362 5463

6523

237 286

Withdraw

money

4321 1362 5634

5643

161 ---

Withdraw

money

4321 1362 5634

7253

288 343

Withdraw

money

4321 4382 5634

5643

382 445

Withdraw

money

4321 4382 5634

7253

445 505

Withdraw

money

5232 4382 5634

5643

193 ---

Withdraw

money

6545 1362 5634

5643

0 ---

Withdraw

money

6545 1362 5634

6523

110 158

Considering the results in a single run with ten requests,

some of requests were not completed .In other words, four

requests did not reach the end.

Table 2. Output of the Executed Model with 10 Requests

and 4 Failures
Time Event Reason of event

40 failure Stop

50 Maintenance Start

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 05, 193-199, 2018, ISSN:-2319–8656

www.ijcat.com 198

188 Failure Stop

193 Failure Start

235 Failure Stop

237 Failure Start

380 Failure Stop

382 Failure Start

Results of “start and stop logger” are shown in table (2).

Figure 14 illustrates the amount of availability of the

system using presented method. Diagram of requests and

completion time are presented in figure 15. As it is

observable, four requests were not completed.

Figure 14. Amount of System Availability

Figure 15. Diagram of 10 Requests and their Completion

6. CONCLUSION
The present article focused on the availability assessment

in level of software systems architecture and took the

features of the software and hardware platform into

consideration. Moreover, a CPN-based executable model

was represented. These networks have strong

mathematical background. The main objective of this

paper is to provide an executable model to evaluate the

availability of the architecture of software systems with

input from the maintenance time and the time of the

accident. In this paper, the authors used sequence diagram

to describe behaviour of software systems architecture.

Eventually, a CPN-based executable model was achieved

via proposed method. In fact, this study provided a way to

create an executable model which takes availability with

input from the times of maintenance and accident into

consideration. The results of the simulation of this method

enable us to identify the deficiencies in the planning phase

and modify our products. This saves time and reduces

costs to a large extent.

REFERENCES
[1] Cortellessa V., Marco A.D. & Inverardi P., (2004),

"Three performance models at work: A software

designer perspective", Electronic notes in theoretical

computer science, vol. 97, pp. 219–239.

[2] Clements P. C., Kazman R. & Klein M. H., (2001),

"Evaluating software architecture methods and case

studies", Addison-Wesley Professional.

[3] Galster M., Moussavi M. & Eberlein A., (2006),

"Transition from requirements to architecture: A

review and future perspective", Proceedings of the

seventh ACIS international conference on software

engineering, artificial intelligence, networking,

IEEE, pp. 9-16.

[4] Thiel S., (2005), "A framework to improve the

architecture quality of software-intensive systems".

Approved dissertation of, The university of

Duisburg-Essen, for obtaining the academic degree

[5] Cortellessa V. & Pompei A. (2007), "Towards a UML

profile for QoS: A contribution in the reliability

domain", WOSP ’04 proceeding of the 4th

international workshop on software and

performance, vol. 29 pp. 197-206.

[6] Fukuzawa K. & Saeki M., (2002), "Evaluating

software architectures by coloured PetriNets",

Proceedings of the 14th international conference on

software engineering and knowledge engineering,

pp. 263-270

[7] Jensen K. (1997). "Coloured Petri Nets: Basic

concepts, Analysis methods and practical use",

EATCS monographs on theoretical computer

science, vol. 2, no .2, pp70-120.

[8] Remy H. & Amadou C. (2014), "Safety-based

availability assessment at design stage", Computers

& Industrial Engineering, vol 70, pp. 107–115.

[9] Hecht M., Tang D., Hecht H. & Brill R. W. (1997)

"Quantitative reliability and availability assessment

for critical systems including software", Computer

assurance, COMPASS '97, Are we making progress

towards computer assurance? Proceedings of the

12th annual conference on.

[10] Tokuno K. & Yamada S. (2003), "Relationship

between software availability measurement and the

number of restorations with imperfect debugging",

computers and mathematics with applications, vol.

46, no. 7, pp. 1155-1163.

[11] Ahmed Q., Khan F., Ahmed S. (2014), "Improving

safety and availability of complex systems using a

risk-based failure assessment approach", Journal of

Loss Prevention in the Process Industries, vol. 32 pp.

218-229.

[12] Choi H. & Chang D., (2016), "Reliability and

availability assessment of seabed storage tanks using

fault tree analysis", Ocean Engineering, vol. 120, pp.

1–14.

0

100

200

300

400

500

600

start time request completion time

http://www.ijcat.com/
http://www.sciencedirect.com/science/journal/15710661
http://www.sciencedirect.com/science/journal/15710661
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4850
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4850
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4850
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4850

International Journal of Computer Applications Technology and Research

Volume 7–Issue 05, 193-199, 2018, ISSN:-2319–8656

www.ijcat.com 199

[13] Zio E., Baraldi P. & Patelli E., (2006), "Assessment

of the availability of an offshore installation by

Monte Carlo simulation”, International journal of

pressure vessels and piping, vol. 83, no. 4, pp. 312–

320.

[14] Zitrou A., Bedford T. & Walls L. (2016), "A model

for availability growth with application to new

generation offshore wind farms”, Reliability

engineering and system safety, vol. 152, pp. 83–94.

[15] Zhu L. & Wang Y., (2012), "From UML activity

diagrams to CPN: An automatic transforming

method", IEEE, 7th international conference on

computing and convergence Technology (ICCCT).

[16] Cheung R. C. (1980), "A user-oriented software

reliability model", IEEE Transactions on Software

Engineering, vol. 6, pp. 118-125.

[17] Roshandel R., Medvidovic N. & Golubchik L.

(2007), "A Bayesian model for predicting reliability

of software systems at the architectural level",

Software architectures, Components and

applications, Springer-Verlag, pp. 108-126.

[18] Gokhale S. S., Wong W. E., Trivedi K. S. & Horgan

J. R., (2004), "An analytical approach to architecture-

based software performance and reliability

prediction", Performance evaluation, Elsevier

science publishers B. V. Amsterdam, The

Netherlands, vol. 58, no. 4, pp. 391-412.

[19] Sharma V.S. & Trivedi K.S. (2009), “Quantifying

software performance, reliability and security: An

architecture-based approach", Journal of Systems

and Software, vol. 80, no. 4, pp. 493-509.

[20] Yahia E., Aubry A. & Paneto H., (2012). "Formal

measures for semantic interoperability assessment in

cooperative enterprise information systems",

Computers in Industry, Vol. 63, no. 5, pp. 443-457.

[21] Laxman P. B., (2013), "Validation of UML models

for interactive systems with CPN and SPIN", MTech

thesis.

[22] Cheung L., Roshandel R., Medvidovic N. &

Golubchik L., (2008). "Early Prediction of Software

Component Reliability", ICSE 08, Proceedings of the

30th international conference on Software

engineering, Leipzig, Germany, pp. 111-120.

http://www.ijcat.com/

