
International Journal of Computer Applications Technology and Research 

Volume 7–Issue 07, 259-269, 2018, ISSN:-2319–8656 

www.ijcat.com  259 

Decay Property for Solutions to Plate Type Equations 
with Variable Coefficients 

 
Shikuan Mao 

School of Mathematics and Physics, 

North China Electric Power University, 

Beijing 102206, China 

Xiaolu Li 

School of Mathematics and Physics, 

North China Electric Power University, 

Beijing 102206, China 

 

Abstract: In this paper we consider the initial value problem for a plate type equation with variable coefficients and memory in 

 1n n  ), which is of regularity-loss property. By using spectrally resolution, we study the pointwise estimates in the spectral 

space of the fundamental solution to the corresponding linear problem. Appealing to this pointwise estimates, we obtain the global 

existence and the decay estimates of solutions to the semilinear problem by employing the fixed point theorem. 
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1. INTRODUCTION 
In this paper we consider the following initial value problem 

for a plate type equation in  1n n  : 

       

       

2

0 1

1 1 , ,

,0 , ,0

p

g tt g t g t t

t

u u u k u f u u u

u x u x u x u x

          


 

 (1.1) 

Here 0 2p  , 0, 0   are real numbers ， the 

subscript t  in 
tu  and 

ttu  denotes the time derivative (i.e., 

t tu u  ,
2

tt tu u  ), 

1

1
i j

n ij

g x xij
Gg

G 
     is the Laplace(-Beltrami) 

operator associated with the Riemannian metric  

 
1

n

ij i j

ij

g g x dx dx


  ,  det ijG g  

and    
1

ij

ijg g


 ,  ,u u x t is the unknown function 

of 
nx R and 0t  , and represents the transversal 

displacement of the plate at the point x and t , g ttu  

corresponds to the rotational inertial. The term
tu represents a 

frictional dissipation to the plate. The term 

      
0

:
tp p

g t g tk u k t u d        

 corresponds to the memory term, and  k t satisfies the 

following assumptions: 

Assumption [A].  2k C R ,   0k s  , and the 

derivatives of k  satisfy the following conditions 

     0 1 ,C k s k s C k s     

       2 3 , .C k s k s C k s s R     

Where  0,1,2,3iC i  are positive constants. 

We suppose the metric g satisfies the following conditions: 

Assumption [B]. The matrix
ijg is symmetric for 

each
nx , and there exists 0C  and 0C  such that 

 i    ,ij n ij

xg C g x C



   , 

,n nx     . 

 ii  
2 2

1 21

n ij

i jij
C g x C   


  , 

,n nx     . 

Assumption [C].  2nf C  and there exists   

satisfying 1  such that    n
f U O U , 

as 0U  . 

It is well known that under the above assumptions, the 

Laplace operator g is essentially self-adjoint on the Hilbert 

gt
e


space  2 ,n

gH L d with domain  0

nC
, 

here gd Gdx  . We denote the unique self-adjoint 

extension (to the Sobolev space  2 nH ) by the same 

symbol g . The spectrum of g is 0  ， , and it 

generates a contraction semi-group
gt

e


on  p nL  
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 1 p   , We note by our assumptions of the metric g , 

the measure gd is equivalent to dx , and by the (functional) 

calculus for pseudodifferential operators, we have the 

following classical equivalence (cf. [8, 5]): For s , there 

exists 0sC  , such that 

 

   

2

1 2, 1

1.2

s s

s

s g sH H

L

n

C u u u C u

u S

  
   
 

 

 

where  nS  is the class of Schwartz functions. 

The main purpose of this paper is to study the global 

existence and decay estimates of solutions to the initial value 

problem (1.1). For our problem, it is difficult to obtain 

explicitly the solution operators or their Fourier transform due 

to the presence of the memory term and variable coefficients. 

However, we can obtain the pointwise estimate in the spectral 

space of the fundamental solution operators to the 

corresponding linear equation 

   

   

21 1

0 1.3

g tt g t

p

g t

u u u

k u





    

   

from which the global existence and the decay estimates of 

solutions to the semilinear problem can be obtained. The 

following are our main theorems. 

Theorem 1.1 (energy estimate for linear problem). Let 0s   

be a real number. Assume that
   max 1,2 2

0

s p nu H
 

  

and  1

s nu H , and put 

 max 1,2 20 0 1 .s p sH H
I u u    

Then the solution to the problem (1.3) with initial 

condition   00u u and   10tu u satisfies 

     0 1 10, ; 0, ;s n s nu C H C H     
and the following energy estimate: 

   

    
1

1

2 2

2 2 2

0
0

.

s s

s s

tH H

t

tH H

u t u t

u u d CI  







  
 

The second one is about the decay estimates for the 

solution to (1.3), which is stated as follows: 

Theorem 1.2 (decay estimates for linear problem). Under the 

same assumptions as in Theorem 1.1, then the solution to (1.3) 

satisfies the following decay estimates: 

   1
2

0 1 ,
sH

u t CI t




 


   

for 0 1,s   and 

    2
0 1 ,

st H
u t CI t








   

for 0 s  . 

Theorem 1.3 (existence and decay estimates for semilinear 

problem). Let
2

n
s  and 0 2p   be real numbers. 

Assume that
   max 1,2 2

0

S p nu H
 

 ,  1

s nu H , 

and put 

 max 1,2 20 0 1s p sH H
I u u    

then there exists a small 0  , such that when
0I  , 

there exists a unique solution to (1.1) in 

     0 1 10, ; 0, ;s n s nu C H C H     
satisfying the following decay estimates: 

     1
2

0 1 , 1.4
sH

u t CI t




 


 

for 0 1,s   and 

     2
0 1 , 1.5

st H
u t CI t








 

for 0 s  . 

Remark 1. If the semilinear term is the form of  f u , then 

we may assume  0 1s n  and  1 2
2

n
s n    in 

Theorem 1.3. 

For the study of plate type equations, there are many 

results in the literatures. In [4], da Luz–Charão studied a 

semilinear damped plate equation : 

   2 . 1.6tt tt tu u u u f u     
 

They proved the global existence of solutions and a 

polynomial decay of the energy by exploiting an energy 

method. However the result was restricted to 

dimension 1 5n  , This restriction on the space 

dimension was removed by Sugitani–Kawashima (see [23]) 

by the fundamental method of energy estimates in the Fourier 

(or frequency) space and some sharp decay estimates. Since 

the method of energy estimates in Fourier space is relatively 

simple and effective, it has been adapted to study some related 

problems (see [18, 19, 20, 24]). 

For the case of dissipative plate equations of memory 

type, Liu–Kawashima (see [15, 12]) studied the following 

equation 

 2 ,ttu u u k u f u       

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 7–Issue 07, 259-269, 2018, ISSN:-2319–8656 

www.ijcat.com  261 

as well as the equation with rotational term 

 2 , ,tt tt tu u u u k u f u u u        , 

and obtained the global existence and decay estimates of 

solutions by the energy method in the Fourier space. The 

results in these papers and the general dissipative plate 

equation (see [13, 14, 16, 23]) show that they are of 

regularity-loss property. 

A similar decay structure of the regularity-loss type was also 

observed for the dissipative Timoshenko system (see [10]) 

and a hyperbolic-elliptic system related to a radiating gas (see 

[9]). For more studies on various aspects of dissipation of 

plate equations, we refer to [1, 2, 3, 7]. And for the study of 

decay properties for hyperbolic systems of memory-type 

dissipation, we refer to [6, 11, 22]. 

The results in [12] are further studied and generalized to 

higher order equations in [16] and to the equations with 

variable coefficients in [17]. The main purpose of this paper is 

to study the decay estimates and regularity-loss property for 

solutions to the initial value problem (1.1) in the spirit of [12, 

15, 16, 17]. And we generalize these results to the case of 

variable coefficients and semilinear equations. 

The paper is arranged as follows: We study the pointwise 

estimates of solutions to the problem (2.2) and (2.3) in the 

spectral space in Section 2. And in Section 3, we prove the 

energy estimates and the decay estimates for solutions to the 

linear equation (1.3) by virtue of the estimates in Section 2. In 

Section 4, we prove the global existence and decay estimates 

for the semilinear problems (1.1). 

For the reader’s convenience, we give some notations 

which will be used below. Let  F f denote the Fourier 

transform of f defined by 

   
 

 
2

1ˆ :

2 n

ix

n

R

F f f e f x dx



    

and we denote its inverse transform as
1F 

. 

Let  L f  denote the Laplace transform of f defined 

by 

 
   2

2

2 ˆ1s
n

n x
x

s
s

H
L R

L R

f f f    

here  
1

2 21   denotes the Japanese bracket. 

2. Pointwise estimates in the spectral space. 

We observe that the equation (1.1) ( respectively (1.3) ) is 

equivalent to the following in-homeogeneous equation 

      

     

21 1 0

, 2.1

p

g tt g g

p

t g

u u k u

u k u F t x



 

     

    

with         0, , ,
p

g tF t x k t u x f u u u   
 

(respectively,       0,
p

gF t x k t u x  ). 

In order to study the solutions to (2.1), we study the 

pointwise estimates for solutions to the following ODEs with 

parameter   , respectively: 
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2

1 , 1 0 ,

, 0 2.2 ,

0, 1, 0, 0,

p

tt

p

t

t

G t k G t

G t k G

G G

     

  

 

    


   
  


（ ）

and 

        

 

   

2 4 2

2

1 , 1 0 ,

2.3 ,, 0

0, 0, 0, 1,

p

tt

p

t

t

H t k H t

H t k H

H H

     

  

 

    


    


 

（ ）

We note that      
2

, , ,tG t H t H t   


  , and 

apply the Laplace transform to (2.2) and (2.3) (which is 

guaranteed by Proposition 1 given at the end of this section), 

then we have formally that 

 
 

       
 

2

1

2 2 4 2 2

1
,

1 1 0
t p p

G t L t
k L k



  


       





  
  

       

 

 
 

       
 

2

1

2 2 4 2 2

1
,

1 1 0
t p p

H t L t
k L k






       





 
  

       

 

Now by virtue of the solutions to (2.2) and (2.3), the 

solution to (2.1) can be expressed as 

     

       

0 1

1

0

, ,

, 1 2.4
t

g

u t G t u H t u

H t F d  


   

   
where  ,G t  and  ,H t  ) are defined by the 

measurable functional calculus (cf. [21]): 

      

      
 

2

2

, , ,
2.5

, , ,

LR

LR

G t G t d P

H t H t d P





    

    

  



 





，

，

for ,  in the domain of  ,G t  and  ,H t   
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respectively, here P  is the family of spectral projections 

for the positive self-adjoint operator  
1

2
g    . We 

note that  ,G t  and  ,H t   are the solutions (formally) 

to the following operator equations: 

     

 
   

 

21 1 0

0 2.6

0 , 0

p

g tt g g

p

t g

t

G k G

G k G

G I G O



 

      



    


 

and 

     

 
   

 

21 1 0

0 2.7

0 , 0

p

g tt g g

p

t g

t

H k H

H k H

H O H I



 

      



    


 
  

respectively, here I  stands for the identity operator, and O  

denotes the zero operator. 

Thus estimates for  u t  can be reduced to estimates for 

 ,G t  and  ,H t   in terms of (2.4). 

First, let us introduce some notations. For any reasonable 

complex-valued function  f t ,  0,t  , we define 

      

         

        

0

0

2

0

: ,

: ,

: .

t

t

t

k f t k t f d

k f t k t f f t d
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Then direct computations imply the following lemma 

Lemma 2.1. For any functions  1k C R and 

 1H R  , it holds that 
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Remark 2. From Lemma 2.1 1), we have 

     0 .
t

k k k k t k             

Now we come to get the pointwise estimates of  ,G t   

and  ,H t   in the spectral space, and we have the 

following proposition. 

Proposition 1 (pointwise estimates in the spectral space). 

Assume  ,G t   and  ,H t  are the solutions of (2.2) and 

(2.3) respectively, then they satisfy the following estimates: 

   

     

22 2

2 4

, ,

,

t

p c t

G t G t

k G t Ce
 

   

   


    

    ，
 

And 

   

     

22 2

2 4

, ,

, ,

t

p c t

H t H t

k H t Ce
 

   

   


    

   

here k G and k H are defined as in (2.8), and 

  2      with  
1

2 21 .      

Proof. We only prove the estimate for  ,G t  , and the case 

for  ,H t   can be proved in a similar way. To simplify the 

notation in the following, we write G for  ,G t  . 

Step 1. By multiplying (2.2) by tG and taking the real part, 

we have that 

  

    

2 22 4 2

2 2

1 1
1

2 2

Re 0 2.9
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t
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G k G G

  

 

   
       

   

   

Apply Lemma 2.1 2) to the term   Re tk G G  in (2.9), 

and denote 

      

 

2 22 4 2
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and 
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2 2

2 22

2 , 0 ,
2 2

p p

tR t C G k G k G
 

 
 

     
 

then we obtain that 

     1 1, , 0. 2.10E t F t
t

 


 


Step 2. By multiplying (2.2) byG and taking the real part, we 

have that 
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1
1 0

2
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In view of Lemma 2.1 1), we have that 

        
       

0

2

Re Re

Re 0

t

k G G k G G k d GG

k G G k t k G

      

   



Denote 
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2
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2

, : Re 1 ,
2

, : 1 ,

, : 1 Re ,

t

p

p

t

E t G G G

F t k t G

R t G k G G


 

   

  

  

  

   

 

then (2.11) yields that 

       2 2 2, , , . 2.12E t F t R t
t

  


 
  

Step 3. Define   2       , and set 

       

       

     

1 2

1 2

2

, : , , ,

, : , , ,

, : , ,

E t E t E t

F t F t F t

R t R t

    

    

   

 

 



 

Here  is a positive constant and will be determined later. 

Then (2.10) and (2.12) yields that 

       , , , . 2.13E t F t R t
t

  


 
  

We introduce the following Lyapunov functions: 

       

     

2 22 4 2
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2 2
2 2
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1 1 1
, : 1 1 ,

2 2 2

, : .
2 2

p

t

p p

t

E t G G k G

F t G k t G k G

   

 


    

  

From the definition of  1 ,E t  and  1 ,F t  , we know 

that there exist positive constants  1, 2,3iC i   such that 

the following estimates hold: 

     

     

1 0 1 2 0

1 3 0

, , , ,

, , . 2.14

C E t E t C E t

F t C F t

  

 

 


 

On the other hand, since 

   2 24

2 , ,tE t C G G      

we know that 

      

   

2 22 4
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2

4 0

, 1

, .
2

t

p
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Choosing  suitably small such that 1 2
4 min ,

2 2

C C
C

 
  

 
, 

and by virtue of (2.14), we have that 

       1 2
0 0

3
, , , . 2.15

2 2

C C
E t E t E t   

In view of (2.14), it is easy to verify that 

          
24 2

3 0 3, , 1 2.16pF t C F t C k t G         

Since 
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We have 

   

   

 

2
2 2
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, 0
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2
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p

t

p

R t C G k G

C k G

C F t


   


  

 

 
    

 





 

Taking  sufficiently small such that 
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1 1 2
4

5

1
, min ,

2 2 2

C C
C

C
   
   

  
, we have that 

     
1

, , . 2.17
2

R t F t   

In view of (2.13), the relation (2.17) yields that 

     
1

, , 0. 2.18
2

E t F t
t

 


 


 

On the other hand, (2.15) and (2.16) yield that 

       , , 2.19F t c E t     

Then (2.18) and (2.19) yield that 

       , 0, 2.20
c

E t e E
 

 


  

By virtue of (2.15) and (2.20), we get the desired results. 

3. Decay estimates of solutions to the linear 

problem. 

In this section we shall use the functional calculus of  and 

the pointwise estimates in spectral space obtained in 

Proposition 1 to prove the energy estimate in Theorem 1.1 and 

the decay estimates in Theorem 1.2. 

Proof of Theorem 1.1. From (2.18) and (2.19) we have that 

     , , 0.E t C E t
t

   


 


 

Integrate the previous inequality with respect to t  and appeal 

to (2.15), then we obtain 

         0 0 0
0

, , , . 3.1
t

E t E CE t      
Multiply (3.1) by

 2 1s



   and integrate the resulting 

inequality with respect to the measure  0 0,d P u u , as 

well as by the definition of  ,G t   in (2.5) and the 

equivalence (1.2), then we obtain the following estimate 

for   0,G t u : 
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Similarly, we have 
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From (3.3), we know that 

     11 1 1, , , 0, 3.4ss

n

HH
H t u C u u S t


    

which implies 
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Similarly, we have 
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Again from (3.3), we know that 

   
2 2

1 1 1, , , 0.ss

n

t HH
H t u C u u S t      

which implies that 
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1
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12
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H
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where in the first inequality, we used the Jensen’s inequality, 

while in the second inequality, we used the
1L -estimates for 

the convolution operation with respect to time (or changing 

the order of integration). 

In a similar way, by (3.3), we have 
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Thus, in term of (2.4) and the estimates of (3.2)–(3.8), as 

well as the fact that 
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, 1 . 3.9

t t t
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with       0,

p

gF t x k t u x  defined in (2.1), we 

have 
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That is the conclusion of the theorem. 

In order to prove Theorem 1.2, we need the following lemma 

which is a direct result of Proposition 1. 

Lemma 3.1. With   2       introduced in Proposition 

1,  ,G t  and  ,H t  satisfy the following estimates: 
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By the above lemma, we have the following estimates: 

Lemma 3.2. Let 0, 0r   be real numbers, then the 

following estimates hold: 
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Proof. We only prove the case 1), but the other cases can be 

deduced similarly. In view of Lemma 3.1 1) and the 

functional calculus (2.5) as well as the equivalence (1.2), we 

have that 
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It is obvious that 
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On the other hand, 
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Thus the result for the case 1) is proved. 

Proof of Theorem 1.2. Let 0r , then from (2.4) we have 

that 
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By Lemma 3.2, we know that 
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where in the second step, we used the exponentially decay 
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property of )(tk , which is a direct result from the 

Assumption [A]. Thus, we have 
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Here 0,0,0 321  vvv satisfy 
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It gives that 
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Thus, the inequality (3.10) holds with r satisfying 

0 1 .r s      

Taking the maximal r , i.e., 1r s    , we obtain 
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That is the result for )(tu . 

The estimate for )(tut can be proved in a similar way by 

just using the fact (3.9) and Lemma 3.2, and we omit the 

details. 

4. Global existence and decay estimates of 

solutions to the semilinear problem. 

In this section, by virtue of the properties of solution operators, 

we prove the global existence and optimal decay estimates of 

solutions to the semilinear problem by employing the 

contraction mapping theorem. 

From (2.1), we know that the solution to (1.1) can be 

expressed as 
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Lemma 4.1 (Moser estimates). Assume that 0r  be a real 

number, then 
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By the previous lemma and an inductive argument, we have 

the following estimates: 
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Proposition 2. There exists 0C such that 
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Proof. By the Sobolev imbedding theorems, we have 
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We will prove that )(uu  is a contraction mapping 

on RB for some 0R . 
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Proof of Theorem 1.3. We denote  
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In view of lemma 3.2 3), we have that 
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By Lemma 4.2, we get that 
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In view of (4.1), we have that 
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Le 0v in (4.5), we have that 
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By virtue of (4.6) and (4.7), we obtain the desired results. 

Step 2. we prove: 
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In view of Lemma 3.2 4), we have 
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In a similar way to (4.6) and (4.7), we have 
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By virtue of (4.9) and (4.10), we obtain the desired results. 

Combining the estimates (4.2) and (4.8), we obtain that 
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So far we proved that 
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1 XX
v w C R v w    if , Rv w B . 

On the other hand,     00 t t  , and from Theorem 

1.2 we know that   2 00
X

C I  if
0I is suitably 

small.Take
2 02R C I . if

0I is suitably small such that 

1

1

1

2
C R  , then we have that 

   
1

.
2 XX

v w v w     

It yields that, for
Rv B , 

    2 0

1 1
0

2 2XX X
v v C I R R        

Thus   Rv B  ,  v v is a contraction 

mapping on
RB .and by the fixed point theorem 

there exists a unique
Ru B satisfying  u u  , 

and it is the solution to the semilinear problem (1.1) 

satisfying the decay estimates (1.4) and (1.5). So 

far we complete the proof of Theorem 1.3. 
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