
International Journal of Computer Applications Technology and Research

Volume 7–Issue 08, 327-330, 2018, ISSN:-2319–8656

www.ijcat.com 327

A Strategy for Improving the Performance of Small Files

in Openstack Swift

Xiaoli Zhang

School of Communication

Engineering,

Chengdu University of

Information Technology

Chengdu, China

Chengyu Wen

School of Communication

Engineering,

Chengdu University of

Information Technology

Chengdu, China

Zizhen Yuan

School of Communication

Engineering,

Chengdu University of

Information Technology

Chengdu, China

Abstract: This is an effective way to improve the storage access performance of small files in Openstack Swift by adding an aggregate

storage module. Because Swift will lead to too much disk operation when querying metadata, the transfer performance of plenty of small

files is low. In this paper, we propose an aggregated storage strategy (ASS), and implement it in Swift. ASS comprises two parts which

include merge storage and index storage. At the first stage, ASS arranges the write request queue in chronological order, and then stores

objects in volumes. These volumes are large files that are stored in Swift actually. During the short encounter time, the object-to-volume

mapping information is stored in Key-Value store at the second stage. The experimental results show that the ASS can effectively

improve Swift's small file transfer performance.

Keywords: Openstack; Swift object storage; high performance; small files; aggregated storage strategy.

1. INTRODUCTION
The popularity of the World Wide Web is largely responsible

for the dramatic increase in Internet data during the past few

years. Usually, social media, e-commerce, scientific

experiments and other related fields will produce small files by

the tens of millions every day. Global data volume is about

double every two years, and will increase to 40ZB by 2020,

according to IDC, a market-research firm [1][2]. It is worth

noting that the largest proportion and fastest growing are small

files. Typically, "a small file" refers to a file less than 1MB in

size. The size of the small file ranges from a few KB to tens of

KB [3-4]. Texts, pictures, and mails are often small files. The

public climate system stores 450,000 climate model files. Their

average size is 61 bytes [5]. Sharing photos is one of

Facebook’s most popular feature. Users have uploaded over 65

billion photos by 2010 [6]. As the largest personal e-commerce

website in the world, TAOBAO stores over 20 billion images,

whose average size is only 15KB [7]. How to store and access

large numbers of small files efficiently over time makes a new

challenge to the storage architecture of the “big data era”.

Storing many small files requires a high performance, high

availability, high scalability, security and manageable storage

system. But although traditional RAID technology has high

performance, it is not suitable for today's Internet environment

due to its high cost [8]. NAS and SAN are also not suitable for

storing large amounts of data because of their limited

scalability [9]. The famous GFS (Global File System) consists

of inexpensive PC servers and provides fault tolerance [10].

However, when the system stores small files, as the number of

stored files grows rapidly, plenty of metadatas are generated on

the metadata server. This results in poor file access

performance. Facebook independently developed Haystack as

its image storage dedicated storage system [11]. Nevertheless,

it is limited in scalability because it refers to the central node

design of GFS. To solve this problem, Amazon developed

Dynamo storage system [12]. It adopts the method of no center

node and relies on the hash algorithm to solve the file

distribution problem. Similarly, Cassandra [13] and TAIR [14]

are non-centralized storage system. Unfortunately, they are

designed for the storage of large files and do not optimize the

transfer performance of small files. In this paper, we propose

the ASS for improving the transfer performance of a large

number of small files in Swift. ASS has two parts. In the first

stage, the ASS arranges he written objects one by one, and then

merges them into large files in chronological order. Those large

files are called “volumes”, which are actually stored in Swift.

In the second stage, the object-to-volume mapping information

(volume id, location) is stored in the key-value store.

The remainders of the paper are organized as follows: Section

2 discusses related works on improving the transfer

performance of small files. In Section 3, we described the basic

principles of ASS. At the same time, the ASS read algorithm

and small file read/write process are introduced. At Section 4,

we introduced the experimental environment and analyzed the

experimental results. Section 5 concludes the paper.

2. RELATED WORKS
Many people have tried various schemes to improve the small

file storage access performance. The index layout strategy can

achieve efficient reading of small files by optimizing the

physical layout of directory entries, inodes, and data blocks.

For example, to reduce the number of IO, C-FFS [15] embeds

the inodes in the directory entry and replaces the inodes pointer

of the directory entry with inodes. But this strategy has the

disadvantage of synchronous recovery operations in a

distributed environment. The Cache structure optimization

strategy reduces the access time of the storage node by using

the external cache CDN and the internal cache, which

effectively improves the cache hit ratio. For instance, for

efficient access, the Sprite file system uses a stand-alone Cache,

and each server node has its own cache space [16]. Lustre

leverages the distributed cache space of each client. It uses a

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 08, 327-330, 2018, ISSN:-2319–8656

www.ijcat.com 328

collaborative caching strategy that reduces the load on a single

server cache [17]. This approach improves file access

efficiency. However, the multi-level cache is only effective for

hotspot data accessed in the most recent period of time. Due to

the small number of hotspot data, it will cause a lot of non-

hotspot data access inefficiency.

At present, the combined storage solution is also widely used

in the industry. Its main idea is to reduce the amount of

metadatas in the metadata server. And it can improve the

read/write efficiency of small files by consolidating small files

into large data block storage. The consolidation of small files

has many different implementations. For example, Hadoop

uses its own merging file tool - HAR file archiving. The

principle of HAR is to pack multiple small files into one file

and then save it to a block. The archive mainly contains

metadata and data files [18]. But the merging file tool that

comes with the system is often to merge and archive the small

files already stored in the system. This can lead to a lot of disk

read and write consumption. In fact, it is also possible to merge

files on the client before uploading the storage. However, the

measure often stores index information locally. When a small

file is requested, the system first transmits the entire data block

to the client and then reads the offset. This method will result

in a large number of invalid data network transmission

bandwidth.

Compare with the strategies discussed above, our work differs

in two ways: (1) This paper establishes a separate merge engine

in Swift object storage. The merge engine combines small files

into large files before storing them. It is worth noting that it

applies to any small object, such as pictures, documents, etc.

(2) For this merge engine, a method of merging files is

proposed—ASS.

3. MERGE ENGINE

3.1 An aggregated storage strategy
Swift uses loopback devices and the VFS file system as the

underlying storage. In this paper, based on the original Swift

framework, a merge engine is added between the object server

and the XFS file system. The merge engine uses an aggregate

storage strategy. This strategy allows multiple logical files to

share the same physical file. It reduces the number of files and

metadatas, improves the efficiency of metadatas retrieval and

query, and reduces I/O operation delays for file reads. And

effectively solved Swift's small file storage problem. The keys

to strategy are:

(1) Merge storage: The basic idea of the strategy is to store

objects in a volume. Volumes are large files that are stored in

Swift actually. This policy stores objects in a volume and

separates volumes through Swift's virtual partition, which not

only improves the transmission performance of small file, but

also ensures Swift's data migration capabilities.

(2) Index storage: The object—volume mapping information

(volume id, position) is stored in the key value store (KV

server) for cluster maintenance.

The merge engine module includes an object request layer, an

object merge layer, a logical map layer, and a physical map

layer. When Swift's storage node receives a PUT or GET

request from a proxy node, in the original case, Swift Ring uses

a Consistent Hashing Algorithm to complete the “object-virtual

node-device” mapping. In this paper, since a logical map layer

is added, the “object-volume-virtual node-device” mapping is

formed. The “volume-virtual node” mapping relationship is a

logical mapping, and the “virtual node-device” mapping

relationship is a physical mapping. The merge engine module

uses ASS, which works as follows.

Obj1 Obj2 Obj3 Obj4 Obj5 Obj6 Obj7

vol1 vol2 vol3 vol4 vol5

Par1 Par2 Par3 Par4 Par5

Dev1 Dev2 Dev3

Time series data

Figure 1. Basic theory of ASS.

In Figure 1, “obj” is the object, “vol” is the volume, and “Par”

is Partition. As Figure 1 shows, ASS aggregates files according

to the time characteristics of the objects. On the one hand, the

solution translates random writes into sequential writes. It

reduces the system's garbage collection overhead and data

migration overhead. On the other hand, the solution merges and

stores the data, which reducing the processing cost of

metadatas. Both can effectively improve the transmission

performance of small files in Openstack Swift.

3.2 The process of reading and writing files
In this paper, the improvement of Swift framework is embodied

in the optimization of reading and writing. The flow of small

file read/write operations is shown in the Figure 2.

Object server

Proxy
server

partition0 partitionX

Node

KV
server

PUT/
GET

Register

 the
object

Obj1 Obj2

volXvol1

 Figure 2. File read-write process.

Write: When the proxy server receives a PUT request from the

client, it then forwards the PUT request to the storage nodes.

Firstly, storage nodes look for an unlocked volume, or creates

a new writable volume and associated lock file (if a new

volume is created, it needs to be registered in the KV server).

Secondly, storage nodes lock this volume. Storage nodes then

appends object information (Object header、Object metadata、
Object data) to the end of the volume, just like the shaded part

of the figure. The next step is to synchronize the volumes.

Finally, storage nodes register objects to the KV server, which

is to add new entries to the key-value store.

Read: When the proxy server receives a GET request from the

client, it then forwards the GET request to the storage nodes.

Firstly, the storage node gets the (volume index、offset in the

volume) information of the object from the KV server to locate

the volume. The storage node then opens the volume files, gets

the offsets, and locates the objects.The reading algorithm of the

files is as follows:

Filereading(obj Name, obj Size=0)

1 Currentposition←filepositon(obj Name)

2 objheader←header(obj Name)

3 datasize←datasize(objheader)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 08, 327-330, 2018, ISSN:-2319–8656

www.ijcat.com 329

4 datastartoffset←offset(obj Name)+ dataoffset(objheader)

5 dataendoffset←datasize+ datastartoffset

6 if Currentposition>= dataendoffset or obj Size=0

7 then call normal Read(c)

8 if obj Size is normal and obj Size>dataendoffset –

9 Currentposition

10 then Obj Size←dataendoffset- Currentposition

11 else Obj size←dataendoffset- Currentposition

12 data←read(filepositon，Obj size)

13 return data

4. EXPERIMENTAL ENVIRONMENT

AND RESULTS

4.1 Experimental environment
To verify the effectiveness of the strategy, a small Swift cluster

consisting of one proxy node and three storage nodes is built

on the virtual machine. The deployment of each service is

shown in Table 1.

Table 1. The deployment of each service in Swift cluster

Name Operat-

ing

system

Hard-

drive

sizes

Memory

Sizes

Major

services

Contr-

oller

Centos7 20GB 2GB Swift client,

keystone

Node1 Centos7 20GB 2GB CARP,

HAProxy,

Swift

storage

Node2 Centos7 20GB 2GB CARP,

HAProxy,

Swift

storage

Node3 Centos7 20GB 2GB CARP,

HAProxy,

Swift

storage

4.2 Experimental results
To better test the improved small files storage access

performance of the improved Swift framework, many stress

testing experiments have been performed on the improved

framework. Swift-bench was used as test tool. The

experimental test results are as follows.

Figure 3. File write rate(20clients、10KB).

Figure 4. File read rate(20clients、10KB).

Figure 5. File write rate(1clients、10KB).

Figure 6. File reading rate(1clients、10KB).

As shown in Figure 3 and Figure 4, in the case of 20 clients

writing 10KB small files concurrently, when the number of

files is less than 300, the optimized system performance is

lower than that of the unoptimized system. However, as the

number of files increases, the transmission performance of non-

optimized systems gradually decreases, and the performance

advantages of optimized systems become more pronounced. In

the same situation, the read performance of small files is similar

to the former. The scenario where a cluster has only one client

is shown in Figure 5 and Figure 6:as the number of files

increases, the read/write performance of the optimized cluster

is generally greater than that of no optimization. We believe

that as the number of files increases, the IO of the system

becomes more and more crowded. At this time, the merge

strategy can reduce the number of inodes, thereby ensuring the

stability of the system performance.

In order to continue to verify the effectiveness of the ASS. In

the case of 20 clients, these clients uploads/download 500 small

files respectively. At the same time, we record the file access

rate in each case as follows. Note that the size of 500 small files

is 1KB, 5KB, 10KB⋯, 100 KB.

Figure 7. File write rate(20Clients、500files).

Figure 8. File read rate(20Clients、500files).

0

20

40

60

R
at

e(
B

/s
)

The number of small files

File Write Rate（20Clients、10KB）

Before the

improvement

After the

improvemen

0

50

100

R
at

e(
B

/s
)

The number of small files

File Read Rate（20Clients、10KB）

Before the

improvement

After the

improvemen

0

20

40

R
at

e(
B

/s
)

The number of smal files

File Write Rate（1Clients、10KB）

Before the

improvement

After the

improvemen

0

50

100

R
at

e(
B

/s
)

The number of small files

File Read Rate（1Clients、10KB）

Before the

improvement

After the

improvemen

0

20

40

60

10 30 50 70 90

R
at

e(
B

/s
)

The size of files(KB)

File Write Rate（20Clients、500files）

Before the

improvement

After the

improvemen

0

50

100

10 30 50 70 90

R
at

e(
B

/s
)

The size of files(KB)

File Read Rate（20Clients、500files）

Before the

improvement

After the

improvemen

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 7–Issue 08, 327-330, 2018, ISSN:-2319–8656

www.ijcat.com 330

As shown in Figure 7, when 20 clients write 500 files at the

same time, the improved cluster's small files transfer

performance is usually higher than the unimproved cluster. In

the same case, the clients read to the cluster. Although the small

files transfer performance of the optimized cluster is low when

the size of files is less than 20KB, the optimized system

performance is more stable overall. And we believe that the

improved system improves the storage and access performance

of small files.

5. CONCLUSIONS
This paper describes an aggregated storage strategy that is used

to improve small file storage performance in Openstack Swift.

Based on the original Swift framework, we added a merge

engine module between the object server and the XFS file

system. This module uses ASS. Then we use ASS to merge

small files into volumes. Experiments show that the improved

cluster reduces IO congestion and improves the read/write

performance of small files.

6. ACKNOWLEDGMENTS
The authors would like to thank the persons who review and

give some valuable comments to improve the paper quality.

This work was supported by Science and Technology

Department of Sichuan Province, Fund of Science and

Technology Planning (No. 2018JY0290).

7. REFERENCES
[1] Zwolenski, Matt, and L. Weatherill. "The Digital Universe

Rich Data and the Increasing Value of the Internet of

Things." Australian Journal of Telecommunications and

the Digital Economy 3,2014.

[2] John Gantz, and David Reinsel. "The digital universe in

2020: Big data, bigger digital shadows, and biggest

growth in the far east." IDC iView: IDC Analyze the

Future, 2007:1-16.

[3] J. R Douceur, W. J Bolosky, J. R Lorch, and N. Agrawal.

" A five-year study of file-system metadata." ACM

Transactions on Storage, 2007: 9-9.

[4] Meyer, T. Dutch, and W. J. Bolosky. "A study of practical

deduplication." Usenix Conference on File and Stroage

Technologies USENIX Association, 2011:1-1.

[5] A. Chervenak, J. M. Schopf, L. Pearlman, M. H. Su, S.

Bharathi, M. D'Arcy, N. Miller, D. Bernholdt and L.

Cinquini. "Monitoring the Earth System Grid with

MDS4." IEEE International Conference on E-Science and

Grid Computing, 2006. E-Science IEEE, 2006:69-69.

[6] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel.

"Finding a needle in Haystack: facebook's photo storage."

Usenix Conference on Operating Systems Design and

Implementation USENIX Association, 2010:47-60.

[7] Wang, Jing, and Y. Guo. "Scrapy-Based Crawling and

User-Behavior Characteristics Analysis on Taobao."

International Conference on Cyber-Enabled Distributed

Computing and Knowledge Discovery IEEE, 2012:44-52.

[8] C. Weddle, M. Charles, J. Qian, A. I. A. Wang, P. Reiher,

and G. Kuenning. "PARAID: a gear-shifting power-aware

RAID." Usenix Conference on File and Storage

Technologies USENIX Association, 2007:30-30.

[9] Sacks, D. "Demystifying Storage Networking DAS, SAN,

NAS, NAS Gateways, Fibre Channel, and iSCSI." Ibm

Storage Networking, 2001.

[10] S.Ghemawat, H. Gobioff, S. T. Leung. "The Google file

system." ACM SIGOPS Operating Systems Review 37,

2003:29-43.

[11] D. Beaver, S. Doug, H. C. Li, J. Sobel, and P. Vajgel.

"Finding a needle in Haystack: facebook's photo storage."

Usenix Conference on Operating Systems Design and

Implementation USENIX Association, 2010:47-60.

[12] G. Decandia, D. Hastorun, M. Jampani, G. Kakulapati, A.

Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,

and W. Vogels. "Dynamo: amazon's highly available key-

value store." ACM Sigops Symposium on Operating

Systems Principles ACM, 2007:205-220.

[13] Lakshman, Avinash, and P. Malik. "Cassandra:a

decentralized structured storage system." Acm Sigops

Operating Systems Review 44,2010:35-40.

[14] Y. han. "A brief analysis of No SQL database solution

Tair. " The electronic commerce,2011:54-61.

[15] L. zhang. Research and implementation of embedded file

system based on flash memory. University of Electronic

Science and Technology of China, 2005.

[16] Zhong, S, J. Chen, and Y. R. Yang. "Sprite: a simple,

cheat-proof, credit-based system for mobile ad-hoc

networks." Joint Conference of the IEEE Computer and

Communications. IEEE Societies IEEE, 2003:1987-1997.

[17] Nie, Gang, and Q. Xiu-Hua. "Research on Lustre file

system based on object-based storage." Information

Technology, 2007.

Website:

[18] http://hadoop.apache.org/docs/current/hadoop-archives/

HadoopArchives.html

http://www.ijcat.com/
http://hadoop.apache.org/docs/current/hadoop-archives

