
International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 153-156, 2019, ISSN:-2319–8656

www.ijcat.com 153

Use and Analysis on Cyclomatic Complexity in Software
Development

Chandrakant R. Gujar

Assistant Professor,

MCA WKBS Mandals

MCA College for Women’s

Deopur Dhule, Maharashtra, India

Dr. Suryakanta R. Ajmera

MCA WKBS Mandals

MCA College for Women’s

Deopur Dhule, Maharashtra, India

Abstract: Cyclomatic complexity is software metric used in software developments as White box testing and structural

testing. The purpose of the paper is to describe the Use and Analysis on Cyclomatic complexity in Software development

with an example. The Cyclomatic complexity is computed using the flow graph of the program: the nodes of the graph

correspond to one or more code statement and the edges connect two nodes. Based on the flow graph how to find

Cyclomatic complexity is described here.

Keywords: Cyclomatic Complexity, Flow graph, Predicate node, connected components, developers, testers.

1. INTRODUCTION
Cyclomatic complexity is software metric (measurement). It

was developed by Thomas J. McCabe, Sr. in 1976 and is used

to indicate the complexity of a program. It is a quantitative

measure of the complexity of programming instructions. It

directly measures the number of linearly independent paths

through a program’s source code. It is one of the metric based

on not program size but more on information/control flow.

 The Cyclomatic Complexity is software metric that provides

quantitative measures of logical complexity of a program.

 Basic Concepts
The Cyclomatic complexity of a section of source code is the

count of the number of linearly independent paths through the

source code. For instance, if the source code contained no

decision points such as IF through the code. If the code had a

single IF statement containing a single condition, there would

be two paths through the code: one path where the IF

statement is evaluated as TRUE and one path where the IF

statement is evaluated as FALSE.

1.1 What is Cyclomatic Complexity?

Cyclomatic complexity is a software metric used to measure

the complexity of a program. These metric, measures

independent paths through program source code. Independent

path is defined as a path that has at least one edge which has

not been traversed before in any other paths. Cyclomatic

complexity can be calculated with respect to functions,

modules, methods or classes within a program.

This metric was developed by Thomas J. McCabe in 1976 and

it is based on a control flow representation of the program.

Control flow depicts a program as a graph which consists of
Nodes and Edges.

In the graph, Nodes represent processing tasks while edges
represent control flow between the nodes. fig 1 [1]

1.2 Flow graph notation for a program:

Flow Graph notation for a program is defines. Several nodes

connected through the edges. Below are Flow diagrams for

statements like if-else, While, until and normal sequence of
flow. fig.2 Reference [1]

http://www.ijcat.com/
https://www.guru99.com/images/1.jpg
https://www.guru99.com/images/2(1).png

International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 153-156, 2019, ISSN:-2319–8656

www.ijcat.com 154

1.3 How to Calculate Cyclomatic

Complexity?

The Cyclomatic Complexity is computed in one of five ways:

 The number of regions of the flow graph

corresponds to the Cyclomatic complexity.

 The Cyclomatic complexity, V(G), for a graph G is

defined as V(G) = E – N + 2

 Where E is the number of flow graph edges and N is

the number of flow graph nodes.

 The Cyclomatic complexity, V(G), for a graph G is

defined as V(G) = E – N + 2P

 Where E is the number of flow graph edges, N is the

number of flow graph nodes and P is connected

components.

 The Cyclomatic complexity, V(G), for a graph G is

also defined as V(G) = P + 1

 Where P is the number of predicate nodes contained

in the flow graph G. The predicate node is a node

that has of out degree two i.e. Binary node.

 The Cyclomatic complexity, V (G), for a graph G is

also defined as total number of independent path of
flow graph.

For Example:

i = 0;

n=4; //N-Number of nodes present in the graph

while (i<n-1) do

j = i + 1;

while (j<n) do

if A[i]<A[j] then

swap (A[i], A[j]);

end do;

i=i+1;

end do;

Flow graph for this program will be fig3 [1]

1.4 Computing mathematically,

 . V(G) = 9 - 7 + 2 = 4

 V(G) = 3 + 1 = 4 (Condition nodes are 1,2 and 3

nodes)

 Basis Set - A set of possible execution path of a

program

 1, 7

 1, 2, 6, 1, 7

 1, 2, 3, 4, 5, 2, 6, 1, 7

 1, 2, 3, 5, 2, 6, 1, 7

2. PROPERTIES OF CYCLOMATIC

COMPLEXITY:

Following are the properties of Cyclomatic complexity:

1. V (G) is the maximum number of independent paths

in the graph

2. V (G) >=1

3. G will have one path if V (G) = 1
4. Minimize complexity to 10

2.1 How this metric is useful for software

testing?

Basis Path testing is one of White box technique and it

guarantees to execute at least one statement during testing. It

checks each linearly independent path through the program,

which means number test cases, will be equivalent to the
Cyclomatic complexity of the program.

This metric is useful because of properties

of Cyclomatic complexity (M) -

1. M can be number of test cases to achieve branch

coverage (Upper Bound)

2. M can be number of paths through the graphs.
(Lower Bound)

Consider this example -

If (Condition 1)

Statement 1

Else

Statement 2

If (Condition 2)

Statement 3

Else

http://www.ijcat.com/
https://www.guru99.com/images/3(1).png

International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 153-156, 2019, ISSN:-2319–8656

www.ijcat.com 155

Statement 4

Cyclomatic Complexity for this program will be 9-7+2=4.

As complexity has calculated as 4, four test cases are

necessary to the complete path coverage for the above
example.

Steps to be followed:

The following steps should be followed for computing

Cyclomatic complexity and test cases design.

Step 1 - Construction of graph with nodes and edges from the
code

Step 2 - Identification of independent paths

Step 3 - Cyclomatic Complexity Calculation

Step 4 - Design of Test Cases

Once the basic set is formed, TEST CASES should be written
to execute all the paths.

More on V (G):

Cyclomatic complexity can be calculated manually if the

program is small. Automated tools need to be used if the

program is very complex as this involves more flow graphs.

Based on complexity number, team can conclude on the
actions that need to be taken for measure.

Table 1 : Overview on the complexity number and

corresponding meaning of v (G):

1.4 Complexity

Number

1.5 Meaning

1.6 1-10 1.7 Structured and well

written code

High Testability

Cost and Effort is less

1.8 10-20 1.9 Complex Code

Medium Testability

Cost and effort is Medium

1.10 20-40 1.11 Very complex Code

Low Testability

Cost and Effort are high

1.12 >40 1.13 Not at all testable

Very high Cost and Effort

3 TOOLS FOR CYCLOMATIC

COMPLEXITY CALCULATION:

Many tools are available for determining the complexity of

the application. Some complexity calculation tools are used

for specific technologies. Complexity can be found by the

number of decision points in a program. The decision points

are if, for, for-each, while, do, catch, case statements in a

source code.

Examples of tools are

 OCLint - Static code analyzer for C and Related

Languages

 devMetrics - Analyzing metrics for C# projects

 Reflector Add In - Code metrics for .NET

assemblies

 GMetrics - Find metrics in Java related applications

 NDepends - Metrics in Java applications

4 USES OF CYCLOMATIC

COMPLEXITY:

Cyclomatic Complexity is a very common buzz word in the

Development community. This technique is mainly used to

determine the complexity of a piece of code or functionality

[1].

The technique was developed by MaCabe and helps to

identify the below 3 questions for the programs / features

 Is the feature / program testable?

 Is the feature/ program understood by every one?

 Is the feature / program reliable enough?

As a QA we can use this technique to identify the “level” of

our testing. It is a practice that if the result of Cyclomatic

complexity is more or a bigger number, we consider that piece

of functionality to be of complex nature and hence we

conclude as a tester; that the piece of code / functionality

requires an in-depth testing. On the other hand if the result of

the Cyclomatic Complexity is a smaller number, we conclude

as QA that the functionality is of less complexity and decide

the scope accordingly.

Cyclomatic Complexity can prove to be

very helpful in

 Helps developers and testers to determine

independent path executions

 Developers can assure that all the paths have been

tested atleast once

 Helps us to focus more on the uncovered paths

 Improve code coverage in Software Engineering

 Evaluate the risk associated with the application or

program

 Using these metrics early in the cycle reduces more
risk of the program

http://www.ijcat.com/
https://github.com/oclint/oclint
https://devmetrics.co/
https://www.guru99.com/c-tutorial.html
https://github.com/dx42/gmetrics
https://www.guru99.com/java-tutorial.html
https://www.ndepend.com/

International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 153-156, 2019, ISSN:-2319–8656

www.ijcat.com 156

5. CONCLUSION:

Cyclomatic Complexity is software metric useful for White

Box and structured testing in Software development. It is

mainly used to evaluate complexity of a program. If the

decision points are more, then complexity of the program is

more. If program has high complexity number, then

probability of error is high with increased time for
maintenance and trouble shoot.

6. ACKNOWLEDGMENTS:

We are thankful to our President West Khandesh

Bhagini Seva Mandals Mr. Atul R. Ajmera , College

Director Dr. Rajeev B. Kharat, Dr. Jagdish Kute,Centre

coordinator Mr.Sanjay Mali, College Liberian Mr. Atul

Khairnar , Our College OS Mr.M.D.Pathak, Mrs.Megha

V.Kamerkar,Mr.Neeraj Dhaghe, faculty member Miss.

Jayshri Deore, Miss. Gayatri Sharma and office Staff of

the WKBSM Dr. Suryakanta R. Ajmera MCA College

for Women Dhule Maharashtra, India for motivation

and encouragement which helped us to complete this

research paper.

7. REFERENCES:

 [1] https://www.guru99.com

 [2] Pressman Roger, Software, Engineering: A

Practitioner’s Approach Tata McGraw Hill, New Delhi.

 [3] A Review and Analysis on Cyclomatic

Complexity by Ramesh Patelia and Shipan vyas.

 [4] https://www.softwaretestinghelp.com/ Cyclomatic-

complexity/

 [5] Software Engineering by K K Agrawal New Age

Publication

 [6] Somerville, Software Engineering, Addison-Wesley.

http://www.ijcat.com/
https://www.guru99.com/white-box-testing.html
https://www.guru99.com/white-box-testing.html
https://www.guru99.com/
https://www.softwaretestinghelp.com/%20cyclomatic-complexity/
https://www.softwaretestinghelp.com/%20cyclomatic-complexity/

