
International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 196-200, 2019, ISSN:-2319–8656

www.ijcat.com 196

A Model for Code Restructuring, A Tool for Improving

Systems Quality In Compliance With Object Oriented

Coding Practice

Moses Kibet Yegon Ngetich

Student

School of Computing and

Information Technology

JKUAT

Nairobi, Kenya

Dr Collins Otieno

Lecturer

School of Computing and

Information Technology

JKUAT

Nairobi, Kenya

Dr Michael Kimwele

Senior Lecturer

School of Computing and

Information Technology

JKUAT

Nairobi, Kenya

Abstract: A major goal of software restructuring is to preserve or increase the value of a piece of software. Restructuring a system

may make it possible to add more features to the existing system or make the software more reusable in other systems. Software

restructuring approaches have become increasingly attractive as the cost of programmer time relative to computer time has increased.

Various code restructuring models are often used during software maintenance, where the lack of software structure often is most

evident and expensive. However, some models can also be applied in the earlier design and development phases. This research

presents a code restructuring model and its associated architecture for improving the quality of object-oriented legacy system and

existing ones to a new target system structure. This research reviewed existing literature on code restructuring models and their

limitations, this helped in the identification of research gap. Data is collected through outsourcing codes with ‘bad smell’ from

dreamin.net website and observable behaviour of the sample model is recorded after subjecting it to these codes. Data collected is

validated, edited and coded then analysed using observable behaviours. The literature on existing restructuring models, techniques and

algorithm, frameworks and tools were reviewed and used to determine the nature of the model. Findings revealed that the existing

models did not effectively take care of proper restructuring. Finally, the proposed model was developed and validated. The validation

process revealed that the model would assist greatly in achieving effective restructuring and therefore the research recommended a

restructuring model described in this report.

Keywords: (Restructuring, software maintenance, code restructuring, object-oriented legacy, observable behaviour)

1. INTRODUCTION

Many existing software systems can benefit from code

restructuring models to reduce maintenance cost and improve

reusability. Yet, intuition-based, ad hoc restructuring can be

difficult and expensive, and can even make software structure

worse. Code restructuring is one of the software

reengineering activities. It is where the source code is

analyzed and violations of structured programming practices

are noted and repaired, the revised code also needs to be

reviewed and tested.A wide variety of models have been

proposed and used to deal with restructuring and

restructuring. These include the various techniques and

methods for code restructuring processes that have been

applied in the development of code restructuring models that

can be applied to specific code or to group legacy software.

Although various code restructuring models and frameworks

that have been proposed before can be used to perform

restructuring of various software paradigm, most of these

models are limited to a specific restructuring methods and

techniques, language paradigm or specific part of the software

code and did not meet the intended restructuring objectives.

Most authors of these developments also leave an open

window for future research of their work

2. RESEARCH OBJECTIVES

The main objective of this study was to develop a code

restructuring model to improve the quality of systems in

compliance with object-oriented systems. Other specific

objectives are;

1 To review related work with regard to existing code

restructuring models in Object Oriented Programming

2 To identify weaknesses and challenges of existing

code restructuring models in Object Oriented

Programming

3 To propose a model for code restructuring based on

Object Oriented Programming.

4 To automate the model for code restructuring in

compliance with Object Oriented Programming best

practice

5 To validate the proposed code restructuring model

3. RESEARCH QUESTIONS

The study was guided by the following research questions;

RQ1 What are the existing code restructuring Models in

Object Oriented Programming?

RQ2 What are the weaknesses and challenges of existing

code restructuring models in Object Oriented

Programming?

RQ3 How can we automate the model for code restructuring

in Object Oriented Programming

RQ4 How does the proposed code restructuring model

perform in comparison to existing code restructuring

models?

International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 196-200, 2019, ISSN:-2319–8656

www.ijcat.com 197

4. RESEARCH METHODOLOGY

4.1 Research Design

The study used experimental design which involved a series

of model experiments during the research work. The study

employed a quantitative research approach using primary data

collected during the experiments and observations.

4.2 Target Population

The target population should fit a certain specification which

the researcher is studying. For the purpose of this study, the

target population will be the object oriented systems and the

users. Users are programmers who are involved in the day to

day coding of the systems, and are therefore able to provide

answers to the research questions.

4.3 Sampling Design and Sample Size

The study will use 10 object oriented systems for the purpose

of this study. This is because the greater the sample size, the

smaller the sampling error and the more representative the

sample becomes (Mugenda & Mugenda, 2003) a sample of

30% is representative.

4.4 Data Collection Method

This research study used primary data. Primary data was

collected by use of experiments and observable behavior of

the sample systems. The experiments will be conducted using

sampled systems in a controlled environment so that the

researcher will have ample time to record all results and note

down any observable behavior of the system under study at

their own convenient time.

Both primary and secondary data will be used. The secondary

data about code restructuring models will be collected from

external sources, such as websites and books

4.5 Data Analysis and Presentation

The collected data was thoroughly examined and checked for

completeness and comprehensibility. Data collected was

validated, edited and coded then analyzed using Poison

Distribution Model. This distribution is used quite frequently

in reliability analysis. It can be considered an extension of the

binomial distribution when n is infinite. It can be used to

approximate the binomial distribution when n > 20 and p <

0.05.

If events are Poisson distributed, they occur at a constant

average rate and the number of events occurring in any time

interval are independent of the number of events occurring in

any other time interval. For example, the number of failures in

a given time would be given by:

Where x is the number of failures and a is the expected

number of failures. For the purpose of reliability analysis, this

becomes:

Where:

λ = failure rate

t = length of time being considered

x = number of failures

The reliability function, R(t), or the probability of zero

failures in time t is given by:

or the exponential distribution.

In the case of redundant equipment, the R(t) might be desired

in terms of the probability of r or fewer failures in time t. For

that case

5. FRAMEWORK DEVELOPMENT

Proposed Framework Architecture and Control Flow. The

classes of the input Java project are parsed through the AST

Parser. The detection process is done in two phases: During

the initial phase, ROOC tool parses each class to gather

statistical data by visiting each AST node and creates an array

list of the method and variable names for each class. ROOC

tool also creates a list of all the class names used during the

detection for “Data Class” smell. During the second phase, the

ROOC tool uses the gathered statistical data and the AST to

identify the code smells requested by the user. The detected

code smells are then presented to the user. ROOC tool also

provides the option of applying restructuring technique(s) step

by step. The user can choose to accept or discard the

restructuring suggestions.

5.1 Restructuring Object-Oriented Code

TOOL
The proposed tool parses the source code and categorizes

those into low, moderate or highly restructured using the

metrics

Figure 1. Architecture of ROOC Tool

Object

Oriented

Code

AST Parser AST

Tree

Statis

tical

Anal

ysis

User

Spec

ified

Crite

ria

Bad

Smell

Detec

tion

Smell

Visuali

zation

Restruct

uring

Suggesti

on

Unchanged

Code

Restruc

tured

Code

International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 196-200, 2019, ISSN:-2319–8656

www.ijcat.com 198

Defined in Table 2 of Section 4.1. The system consists of four

components:

1. Parser

2. Analyzer

Figure 1. Illustrates its components

5.2 Proposed Framework Coding
The architectural design of the proposed framework as

depicted in Figure 1 consists a number of components with

simple interface and with a pipe and filter architectural style.

Each component (filter) processes its input data in the form of

a file (pipe) and stores the results in another file for the next

component.

i) Pre-Process Components

ii) Analysis Components

iii) Post-Process Components

6. Framework Implementation

6.3 Implementation Platform

ROOC tool is implemented in Java and uses the Abstract

Syntax Tree (AST) parser.

▪ Abstract syntax tree is the tree structure representation of

the source code in any programming language.
▪ Each node of the syntax tree represents a part of the

abstract syntactic structure of the source code.
▪ The IDE used for the development is Eclipse SDK 3.4.0.
▪ For refactoring, ROOC tool uses the built in refactoring

API of Eclipse, which is a part of Language Toolkit

(LTK). The input of the ROOC tool is a Java project

folder.

6.4 Proposed Model Validation and Test

Results
ROOC tool was tested against 10 projects sourced from the

internet. The selected java codes seem to have been developed

by experienced Java developers, so the complexities of these

codes are considerable.

Each project has an average of 13 classes. These test codes

have a good level of complexity. During the design phase,

ROOC tool interface was provided to different users from the

technical as well as non-technical background to access the

user-friendliness of GUI.

Figure 3. ROOC tool Main Interface menu

The feedbacks were used to improvise the GUI. To test the

usability, performance and the code optimization feature of

ROOC tool, three different tests were conducted.

1. Identify smells present in each project.

2. Time taken to understand code logic before and after

restructuring.

3. Time taken to add functionality in the code before and after

restructuring.

6.5 Identify Smells Present in Each Project
During this test, the ROOC tool was run across each of the

project and the output was recorded (whether the project

contains the specific smell or not). Later we crosschecked to

verify correctness of the smell identified by the tool. Even

other classes of the projects were skimmed through to identify

other cases which the tool might have missed. The smells

identified by ROOC tool in individual projects are represented

in the tabular format in Table 3. The table cell marked “Yes”

Fil

e
Parsor Syntax

Tree

Class

Method()

Class

Identification

Syntax

Method

Identification

Syntax

Searc

her

Long Class

Restructuring

Long Method

Restructuring

Long Parameter

List Restructuring

Switch Case

Restructuring

Poorly Named

Methhod

Highly Coupled

Classes

ROOC TOOL – Main Menu

Data Class

Restructuring

SELECT
TOOL

FOR

RESTRU
CTURING

International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 196-200, 2019, ISSN:-2319–8656

www.ijcat.com 199

represents the detected code smell in the project enlisted in

column 1.

7. Proposed framework User Validation

and Tests

Time Taken to Understand Code Logic before and After

Refactoring. For this test, four Java developers were chosen

ranging from two to three years of experience. The experience

of the users ensured that they had sufficient background

knowledge of Java to understand the logic. Three projects

(named Project 1, Project 2, and Project 3) from the 10 of the

above projects were selected having different difficulty level.

The details of each of the three projects are shown in Table 4.

8. CONCLUSIONS AND

RECOMMENDATIONS

The notion of a “finished product” is rare because existing

software constantly evolve. In practice, new features,

modifications and adaptations are permanently requested. A

consequence is that no initial design, however good, can

accommodate all the possible future changes in a real-world

project. The agile methodology takes this fact as granted and

proposes tools that aim in coping with change rather than

defending against it. One category of these tools is

restructuring, or changing an existing design. Restructuring

has led to restructuring tools, which helps in adapting the

existing code automatically in order to be kept synchronized

with a change of the design. Restructuring tools, like any

software, also evolve over the years. Hence they need to be

restructured themselves. This paper discussed an evolution of

restructuring tools, namely the evolution toward more

complex transformations and consequently presented a

generic code restructuring tool for object oriented systems.

The need for an evolution was motivated by a complex

restructuring: forming a template method. Exploring this

restructuring model showed that the existing models and

techniques were not suitable to solve some of the restructuring

problem. New models and algorithms had to be introduced,

such as the code differentiation process. Hence it was

necessary to restructure existing algorithms toward more

complex ones. Other processes on the other hand had to be

restructured toward simpler versions that are more suitable to

the restructuring process, such as the data and control flow

analyses used for method extraction. In Chapter 1, we

motivated the need for restructuring and explained the broader

context in which it is used. Restructuring is not a new process,

and the state of the art regarding automated implementations

was presented in the literature review. Extensions of existing

approaches as well as new approaches have been presented,

discussing the restructuring model development, testing and

validation in chapter four. Here we proposed an interoperable

code restructuring implementations on object oriented codes

and demonstrated how to automatically solve minor problems

rather than systematically reporting them as errors to the user.

Analyses, models and transformations have been used to

implement our case study. However they also have other

applications in many other areas. Conversely, other areas,

such as web programming, still seek for additional research.

We continue by summarizing our contributions, making a

critical analysis of our work, and highlighting future work.

8.1 Recommendations

We have explored a more generic restructuring as a case

study: forming a restructuring model. This model is further

decomposed into other, smaller restructuring activities

discussed in chapter Four, section 4.3. There are of course

many other restructuring techniques and methods to explore

that have not yet been implemented, and this could be a future

research direction. In particular, our case study has shown that

existing techniques are not sufficient to implement the

interoperable code restructuring implementations on object

oriented codes, and required extensions. It is however too

early to say whether and to what extent the new introduced

approaches can or cannot be reused for other, even more

complex restructuring. Finally, we took a pragmatic

approach to the problem, which allowed the project to get a

working solution. On the other hand, a more formal approach

would be necessary to discuss our algorithm in terms of its

properties (preconditions and post conditions) and

correctness. Formal approaches may eventually find out that

parts of our algorithms are wrong or suboptimal, or may just

need adjustments and extensions to cope with future

programming languages. Following the Agile development

philosophy, this would not be a problem: as with any real-

world application, in such a case this thesis and the underlying

research would just need to be researched on further.

8.2 Acknowledgement

I have learned a lot and really enjoyed while working on this

thesis. I would like to sincerely thank all those who helped me

with their valuable support during the entire process of this

proposal. I am deeply indebted to the entire Jomo Kenyatta

University of Agriculture & Technology fraternity for their

valuable guidance, stimulating suggestions, patience and for

encouraging me to go ahead with my thesis. I would like to

express my gratitude to my family for the love, affection and

support. Special thanks for my kind friends for making this

work possible.

9. REFERENCES

[1] Gligoric, M., Behrang, F., Li, Y., Overbey, J., Hafiz, M.,

Marinov, D.: Systematic Testing of Restructuring

Engines on Real Software Projects. In: Castagna, G.

(ed.): Proceedings of the 27th European Conference on

Object-Oriented Programming (ECOOP'13). LNCS, Vol.

7920. Springer-Verlag, Berlin Heidelberg, 629-653. (July

2013)

[2] Massoni T., Gheyi R., Borba P. (2008) Formal Model-

Driven Program Restructuring. In: Fiadeiro J.L.,

Inverardi P. (eds) Fundamental Approaches to Software

Engineering. FASE 2008. Lecture Notes in Computer

Science, vol 4961. Springer, Berlin, Heidelberg

[3] HAMIOUD, Sohaib. "UneApprochedirigée par les

Modèles pour les Architectures Logicielles." (2016).

[4] Arendt, Thorsten, Enrico Biermann, Stefan Jurack,

Christian Krause, and Gabriele Taentzer. "Henshin:

advanced concepts and tools for in-place EMF model

transformations." Model Driven Engineering Languages

and Systems (2010): 121-135.

International Journal of Computer Applications Technology and Research

Volume 8–Issue 05, 196-200, 2019, ISSN:-2319–8656

www.ijcat.com 200

[5] Schaefer, M. and De Moor, O., 2010, October.

Specifying and implementing restructurings. In ACM

Sigplan Notices (Vol. 45, No. 10, pp. 286-301). ACM.

[6] Moha, N., Mahé, V., Barais, O. and Jézéquel, J.M., 2009,

October. Generic model restructurings. In International

Conference on Model Driven Engineering Languages

and Systems (pp. 628-643). Springer Berlin Heidelberg.

[7] Shonle, M., Griswold, W.G. and Lerner, S., 2007,

September. Beyond restructuring: a framework for

modular maintenance of crosscutting design idioms. In

Proceedings of the the 6th joint meeting of the European

software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering

(pp. 175-184). ACM.

[8] S. Tichelaar, FAMIX Java language plug-in 1.0,

Technical, Report, University of Berne, September 1999.

[9] Raul Marticorena, “Analysis and Definition of a

Language Independent Restructuring Catalog”, 17th

Conference on Advanced Information

SystemsEngineering (CAiSE 05). Portugal., page 8, jun

2005.

[10] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge

Demeyer. “Enabling and using the UML for model

driven restructuring”. 4th International Workshop

onObject-Oriented Reengineering (WOOR), (Germany),

July 21st, 2003.

[11] Technical Report 2003-07 of the University of Antwerp

(Belgium), Department of Mathematics & Computer

Science, 2003.

[12] Tom Mens, Tom Tourwe,“A Survey of Software

Restructuring”, IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 30, NO. 2,

FEBRUARY 2004

[13] 31Days of Restructuring, “Useful restructuring

techniques you have to know” October 2009Sean

Chambers, Simone ChiarettaAnshu et al., International

Journal of Advanced Research in Computer Science and

Software Engineering 2 (12), December - 2012, pp. 256-

260

