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1. INTRODUCTION 
In this paper we consider the initial-value problem of the 

following linear plate equation with memory term in multi-

dimensional space ℝ𝑛with n ≥ 1: 

                    𝑢𝑡𝑡 + 𝛥
2𝑢 − 𝛥𝑢 + 𝑔 ∗ 𝛥𝑢 = 0            (1.1)  

with the initial data 

              𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥).          (1.2) 

Here 𝑢 = 𝑢(𝑥, 𝑡) is the unknown function of 𝑥 = (𝑥1,⋅⋅⋅, 𝑥𝑛) ∈
ℝ𝑛 and 𝑡 > 0, and represents the transversal displacement of 

the plate at the point 𝑥  and the time 𝑡 . The term 𝑔 ∗ 𝛥𝑢 =

∫ 𝑔
𝑡

0
(𝑡 − 𝜏)𝛥𝑢(𝜏)𝑑𝜏  equivalent to the memory term and 𝑔 

satisfies: 

 

Assumption [1] 
1) 𝑔 ∈ 𝐶2(ℝ+) ∩𝑊2,1(ℝ+), 
2) 𝑔(𝑠) > 0,  −𝐶0𝑔(𝑠) ≤ 𝑔

′(𝑠) ≤ −𝐶1𝑔(𝑠),  
    |𝑔″(𝑠)| ≤ 𝐶2𝑔(𝑠),  ∀𝑠 ∈ 𝑅

+, 

3) 1 − ∫ 𝑔
𝑡

0
(𝑠)𝑑𝑠 ≥ 𝐶3,  ∀𝑡 ∈ ℝ

+, 

where 𝐶𝑖(𝑖 = 1,2,3) are positive constants. 

The inertial model of quasilinear dissipative plate 

equation, whose linear part is given by: 

                  𝑢𝑡𝑡 − 𝛥𝑢𝑡𝑡 + 𝛥
2𝑢 + 𝑢𝑡 = 0.              (1.3) 

here −𝛥𝑢𝑡𝑡 corresponds to the rotational inertia and 𝑢𝑡  is the 

linear dissipative term. In [1], Da-Luz and Char�̃�o studied a 

semi-linear dissipative plate equation (1.3). They proved the 

global existence of solutions and a polynomial decay of the 

energy by exploiting an energy method. However their result 

was restricted to the lower dimensional case  1 ≤ 𝑛 ≤ 5. This 

restriction on the space dimension was removed by Sugitani 

and Kawashima by making use of the sharp decay estimates for 

the equation (1.3) in [2]. In [3], Liu and Kawashima obtained 

the global existence and asymptotic behavior of solutions by 

employing the time-weighted energy method combined with a 

semi-group argument. In this paper the plate equation with 

memory (1.1) is also of regularity-loss property, just like the 

inertial model of dissipative plate equation (1.3) in [2, 3]. The 

decay structure of the regularity-loss is characterized by the 

property 

𝜌(𝜉) =
|𝜉|2

(1 + |𝜉|2)2
, 

where 𝜌(𝜉) is introduced in the point-wise estimate in the 

Fourier space of solutions to the linear problem. It is evident 

that the decay structure is very weak in the higher-frequency 

domain since 𝜌(𝜉) → 0 as 𝜉 → ∞. The decay structure of the 

regularity-loss type was also observed in [4,5,6,7]. For more 

studies on various aspects of dissipation of plate equations, we 

refer to [8,9,10,11]. Also, as for the study of decay properties 

for hyperbolic systems of memory-type dissipation, we refer 

to [12,13,14,15,16]. 

The main aim of this paper is to study decay estimates of 

solutions to the initial value problem (1.1) and (1.2). Firstly, by 

using Fourier transform and Laplace transform, we obtain the 

solution 𝑢 to the linear problem (1.1) and (1.2) given by (2.4) 

and the solution operators G(t)∗ and H(t)∗. Secondly, by 

employing the energy method in the Fourier space, we obtain 

the pointwise estimate in the Fourier space of solutions to the 

linear problem (1.1) and (1.2), appealing to which we obtain 

the point-wise of solution operators and their properties. 

Finally, the decay estimates of solutions to (1.1), (1.2) are 

achieved. 

The contents of the paper are as follows. Solution formula 

are obtained in section 2. In section 3, we obtain the estimates 

and properties of solutions operators, which is based on the 

point-wise estimate in the Fourier space of solutions to the 

linear problem. In the last section, we prove the decay estimates 

of solutions to the linear problem by virtue of the properties of 

solution operator. 

Before closing this section, we give some notations to be 

used below.  

Let ℱ[𝑓] denote the Fourier transform of 𝑓 defined by 

ℱ[𝑓] = 𝑓(𝜉) : =
1

(2𝜋)
𝑛
2

∫ 𝑒−𝑖𝑥⋅𝜉

ℝ𝑛
𝑓(𝑥)𝑑𝑥, 
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and we denote its inverse transform as ℱ−1. 

𝐿𝑝 = 𝐿𝑝(ℝ𝑛)(1 ≤ 𝑝 ≤ ∞)  is the usual Lebesgue space 

with the norm ∥⋅∥𝐿𝑝 . 𝑊𝑚,𝑝(ℝ𝑛), 𝑚 ∈ 𝑍+ , 𝑝 ∈ [1,∞) denote 

the usual Sobolev space with its norm 

∥ 𝑓 ∥𝑊𝑚,𝑝: = (∑ ∥

𝑚

𝑘=0

𝜕𝑥
𝑘𝑓 ∥𝐿𝑝

𝑝
)
1
𝑝. 

In particular, we use 𝑊𝑚,2 = 𝐻𝑚. Here, for a nonnegative 

interger 𝑘, 𝜕𝑥
𝑘 denotes the totality or each of all the 𝑘-th order 

derivatives with respect to 𝑥 ∈ ℝ𝑛 . Also, 𝐶𝑘(𝐼; 𝐻𝑚(ℝ𝑛)) 
denotes the space of 𝑘 -times continuously differentiable 

functions on the interval 𝐼 with values in the Sobolev space 

𝐻𝑚 = 𝐻𝑚(ℝ𝑛). 

Finally, in this paper, we denote every positive constant 

by the same symbol 𝐶  or 𝑐  without confusion. [⋅]  is Gauss 

symbol. 

 

2. Solution Formula 
In this section, we try to obtain the solution formula for 

the problem (1.1) and (1.2). Assume that 𝐺(𝑥, 𝑡) and 𝐻(𝑥, 𝑡) 
are the solutions to the following problem: 

 

{
𝐺𝑡𝑡 + ∆

2𝐺 − ∆𝐺 + 𝑔 ∗ ∆𝐺 = 0,

𝐺(𝑥, 0) = 𝛿(𝑥),
𝐺𝑡(𝑥, 0) = 0.

                   (2.1) 

{
𝐻𝑡𝑡 + 𝛥

2𝐻 − 𝛥𝐻 + 𝑔 ∗ 𝛥𝐻 = 0,
𝐻(𝑥, 0) = 0,
𝐻𝑡(𝑥, 0) = 𝛿(𝑥).

                (2.2) 

Apply Fourier transform and Laplace transform to (2.1) and 

(2.2), then we can obtain �̂�(𝜉, 𝑡) and �̂�(𝜉, 𝑡). 

Now we compute  �̂�(𝜉, 𝑡), First, apply Fourier transform 

to (2.1), we can obtain the following equation: 

{

�̂�𝑡𝑡 + |𝜉|
4�̂� + |𝜉|2�̂� − |𝜉|2𝑔 ∗ �̂� = 0,

�̂�(𝜉, 0) = �̂�(𝜉) = 𝐶,

�̂�𝑡(𝜉, 0) = 0.

 

then apply Laplace transform to above equation, we can get 

∫ �̂�𝑡𝑡

∞

0

𝑒−𝜆𝑡𝑑𝑡 + (|𝜉|2 + |𝜉|4)∫ �̂�
∞

0

𝑒−𝜆𝑡𝑑𝑡 − |𝜉|2∫ (
∞

0

𝑔

∗ �̂�)𝑒−𝜆𝑡𝑑𝑡 = 0, 

by computing, we have that 

−𝐶𝜆 + (𝜆2 + |𝜉|2 + |𝜉|4)ℒ[�̂�](𝜆) − |𝜉|2ℒ[𝑔](𝜆) ⋅ ℒ[�̂�](𝜆) = 0, 

So 

ℒ[�̂�](𝜆) =
𝐶𝜆

𝜆2 + |𝜉|2 + |𝜉|4 − |𝜉|2ℒ[𝑔](𝜆)
 

Similarly, 

ℒ[�̂�](𝜆) =
𝐶

𝜆2 + |𝜉|2 + |𝜉|4 − |𝜉|2ℒ[𝑔](𝜆)
. 

finally, we have formally that 

�̂�(𝜉, 𝑡) = 𝐶ℒ−1[
𝜆

𝜆2 + |𝜉|2 + |𝜉|4 − |𝜉|2ℒ[𝑔](𝜆)
](𝜉, 𝑡), 

�̂�(𝜉, 𝑡) = 𝐶ℒ−1[
1

𝜆2 + |𝜉|2 + |𝜉|4 − |𝜉|2ℒ[𝑔](𝜆)
](𝜉, 𝑡). 

Here 𝐶 is a constant determined by the initial data in (2.1) 

and (2.2). 

Lemma 2.1. �̂�(𝜉, 𝑡) and �̂�(𝜉, 𝑡)exist. 

Proof. We only prove �̂�(𝜉, 𝑡)exists; similarly we could prove 

�̂�(𝜉, 𝑡)  exists. Denote 𝐹(𝜆) := 𝜆2 + |𝜉|2 + |𝜉|4 −

|𝜉|2ℒ[𝑔](𝜆). To proveℒ−1[
𝜆

𝐹(𝜆)
]exists, we need to consider the 

zero points of 𝐹(𝜆). Denote 𝜆 = 𝜎 + 𝑖𝜈, 𝜎 > −𝐶1, 𝐶1 is same 

as that in Assumption [1] 2), then ℒ[𝑔](𝜆) exists. Assume that 

𝜆1 = 𝜎1 + 𝑖𝜈1  is a zero point of 𝐹(𝜆) and 𝜎1 > −𝐶1, then 𝜎1 

and 𝜈1 satisfy 

{
 
 

 
 Re𝐹(𝜆1) = 𝜎1

2 − 𝜈1
2 + |𝜉|2 + |𝜉|4 − |𝜉|2∫ cos

∞

0

(𝜈1𝑡)𝑒
−𝜎1𝑡𝑔(𝑡)𝑑𝑡 = 0 ,

Im𝐹(𝜆1) = 2𝜎1𝜈1 + |𝜉|
2∫ sin

∞

0

(𝜈1𝑡)𝑒
−𝜎1𝑡𝑔(𝑡)𝑑𝑡 = 0 .

 

（2.3） 

If 𝜉 = 0, from(2.3), we know that 𝜎1 = 0, 𝜈1 = 0. 

If 𝜉 ≠ 0, we claim that 𝜎1 < 0. Now we prove the claim 

by contradiction. 

Assume that 𝜎1 ≥ 0. If 𝜈1 = 0, then in view of ∫ 𝑔
∞

0
(𝑡)𝑑𝑡 <

1, we obtain that  

Re𝐹(𝜆1) = 𝜎1
2 + |𝜉|2 + |𝜉|4 − |𝜉|2∫  

∞

0

𝑒−𝜎1𝑡𝑔(𝑡)𝑑𝑡 > 0 

it yields contradiction with(2.3)1. 

If 𝜈1 ≠ 0, then we have that 

Im𝐹(𝜆1) = 𝜈1(2𝜎1 + |𝜉|
2∫

sin(𝜈1𝑡)

𝜈1

∞

0

𝑒−𝜎1𝑡𝑔(𝑡)𝑑𝑡). 

Next we prove that ∫
sin(𝜈1𝑡)

𝜈1

∞

0
𝑒−𝜎1𝑡𝑔(𝑡)𝑑𝑡 > 0. Denote 𝑎𝑚 =

∫
sin|𝜈1𝑡|

|𝜈1|

2𝑚𝜋

|𝜈1|

0
𝑒−𝜎1𝑡𝑔(𝑡)𝑑𝑡 , and we will prove {𝑎𝑚}𝑚=1

∞  is a 

convergent sequence. By direct computation, we have that 

𝑎1 = ∫
sin|𝜈1𝑡|

|𝜈1|

𝜋
|𝜈1|

0

(𝑒−𝜎1𝑡𝑔(𝑡) − 𝑒
−𝜎1(𝑡+

𝜋
|𝜈1|

)
𝑔(𝑡 +

𝜋

|𝜈1|
))𝑑𝑡. 

Since 𝜕𝑡(𝑒
−𝜎1𝑡𝑔(𝑡)) < 0 , we have that 0 < 𝑎1 <

∫ 𝑡

𝜋

|𝜈1|

0
𝑒−𝜎1𝑡𝑔(𝑡)𝑑𝑡. Similarly, 

𝑎𝑚+1 − 𝑎𝑚 = ∫
sin|𝜈1𝑡|

|𝜈1|

2𝑚𝜋+𝜋
|𝜈1|

2𝑚𝜋
|𝜈1|

(𝑒−𝜎1𝑡𝑔(𝑡) − 𝑒
−𝜎1(𝑡+

𝜋
|𝜈1|

)
𝑔(𝑡 +

𝜋

|𝜈1|
))𝑑𝑡, 

so we have that 0 < 𝑎𝑚+1 − 𝑎𝑚 < ∫ 𝑡

2𝑚𝜋+𝜋

|𝜈1|
2𝑚𝜋

|𝜈1|

𝑒−𝜎1𝑡𝑔(𝑡)𝑑𝑡. 

It yields that 

0 < 𝑎𝑚 < ∫ 𝑡

2𝑚𝜋
|𝜈1|

0

𝑒−𝜎1𝑡𝑔(𝑡)𝑑𝑡 ≤
𝑔(0)

(𝜎1 + 𝐶1)
2, 

so {𝑎𝑚}𝑚=1
∞  is a bounded and monotonic increasing sequence. 

Since 𝑎1 > 0 , 𝑎(𝜆1) := lim
𝑚→∞

𝑎𝑚 > 0 . Thus we proved that 
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∫
sin|𝜈1𝑡|

|𝜈1|

∞

0
𝑒−𝜎1𝑡𝑔(𝑡)𝑑𝑡 > 0.  Also, because 𝜎1 ≥ 0, 𝜉 ≠ 0  and 

𝜈1 ≠ 0 , it results that Im𝐹(𝜆1) ≠ 0 . This contradicts with 

(2.3)2. Thus by contradiction we proved the claim 𝜎1 < 0. 

Combining the two cases, we know that 
𝜆

𝐹(𝜆)
 is analytic in 

{𝜆 ∈ ℂ; Re(𝜆) > 0} if 𝜉 = 0 and in {𝜆 ∈ ℂ; 𝑅𝑒(𝜆) ≥ 0} if 𝜉 ≠
0. Take 𝜆 = 𝜎 + 𝑖𝜈, 𝜎 > max{Re𝜆𝑠}, here {𝜆𝑠} is the set of all 

the singular points of 𝐹(𝜆), then we have that 

ℒ−1 [
𝜆

𝐹(𝜆)
] (𝑡) = ∫

𝜆𝑒𝜆𝑡

𝐹(𝜆)

𝜎+𝑖∞

𝜎−𝑖∞

= ∫
𝑖(𝜎 + 𝑖𝜈)𝑒(𝜎+𝑖𝜈)𝑡

𝐹(𝜎 + 𝑖𝜈)

+∞

−∞

𝑑𝜈     

= ∫  
 

{𝜈;|𝜈|≤𝑅}

+∫ =: 𝐽1 + 𝐽2 
 

{𝜈;|𝜈|>𝑅}

 

𝐽1 converges, so we only need to consider 𝐽2. Notice that 
𝜆

𝐹(𝜆)
=

1

𝜆
−
|𝜉|2+|𝜉|4−|𝜉|2ℒ[𝑔](𝜆)

𝜆𝐹(𝜆)
 and |ℒ[𝑔](𝜆)| ≤ 𝐶 , then it is not 

difficult to prove that 𝐽2  converges. The constant 𝐶  in the 

expression of �̂�(𝜉, 𝑡)  is determined by the initial data of 

𝐺(𝑥, 𝑡). So far we complete the proof. 

In view of Lemma 2.1 and Duhamel principle, the solution 

to the problem (1.1) and (1.2) could be expressed as following: 

             𝑢(𝑡) = 𝐺(𝑡) ∗ 𝑢0 + 𝐻(𝑡) ∗ 𝑢1.              （2.4） 

 

3. Decay Properties of Solution Operators  
In this section, our goal is to get the decay estimates of the 

solution operators 𝐺(𝑡) ∗  and 𝐻(𝑡) ∗ in the solution formula 

(2.4). 

Proposition 3.1. Let 𝑘  and 𝑙  be integers, 𝜑 ∈
𝐻𝑠+1(ℝ𝑛)⋂𝐿𝑝(ℝ𝑛) , 𝜓 ∈ 𝐻𝑠−1(ℝ𝑛)⋂𝐿𝑝(ℝ𝑛) , 1 ≤ 𝑝 ≤ 2 , 

then the following estimates hold: 

 

1) ∥ 𝜕𝑥
𝑘𝐺(𝑡) ∗ 𝜑 ∥𝐿2≤ 𝐶(1 + 𝑡)

−
𝑘

2
−
𝑛

2
(
1

𝑝
−
1

2
)
∥ 𝜑 ∥𝐿𝑝 

                                        +𝐶(1 + 𝑡)−
𝑙

2 ∥ 𝜕𝑥
𝑘+𝑙𝜑 ∥𝐿2, 

for 𝑘 ≥ 0, 𝑙 ≥ 0, 𝑙 + 𝑘 ≤ 𝑠 + 1. 

2) ∥ 𝜕𝑥
𝑘𝐺𝑡(𝑡) ∗ 𝜑 ∥𝐿2≤ 𝐶(1 + 𝑡)

−
𝑘+1

2
−
𝑛

2
(
1

𝑝
−
1

2
)
∥ 𝜑 ∥𝐿𝑝 

                                        +𝐶(1 + 𝑡)−
𝑙

2 ∥ 𝜕𝑥
𝑘+𝑙+2𝜑 ∥𝐿2,for 𝑘 ≥ 0, 

𝑙 ≥ 0, 𝑙 + 𝑘 ≤ 𝑠 − 1. 

3) ∥ 𝜕𝑥
𝑘𝐻(𝑡) ∗ 𝜓 ∥𝐿2≤ 𝐶(1 + 𝑡)

−
𝑘−1

2
−
𝑛

2
(
1

𝑝
−
1

2
)
∥ 𝜓 ∥𝐿𝑝 

                                         +𝐶(1 + 𝑡)−
𝑙+2

2 ∥ 𝜕𝑥
𝑘+𝑙𝜓 ∥𝐿2, 

for 𝑘 ≥ 1, 𝑙 + 2 ≥ 0, 0 ≤ 𝑙 + 𝑘 ≤ 𝑠 − 1. 

4) ∥ 𝜕𝑥
𝑘𝐻𝑡(𝑡) ∗ 𝜓 ∥𝐿2≤ 𝐶(1 + 𝑡)

−
𝑘

2
−
𝑛

2
(
1

𝑝
−
1

2
)
∥ 𝜓 ∥𝐿𝑝 

                                          +𝐶(1 + 𝑡)−
𝑙

2 ∥ 𝜕𝑥
𝑘+𝑙𝜓 ∥𝐿2, 

for 𝑘 ≥ 0, 𝑙 ≥ 0, 𝑙 + 𝑘 ≤ 𝑠 − 1. 

To prove proposition 3.1, the key point is to obtain the 

point-wise estimates of the fundamental solutions in the Fourier 

space. In fact this could be achieved by using the following 

point-wise estimate of solutions to the linear problem (1.1) and 

(1.2). 

Lemma 3.1. Assume 𝑢 is the solution of (1.1) and (1.2), then it 

satisfies the following point-wise estimate in the Fourier space: 

|�̂�𝑡(𝜉, 𝑡)|
2 + (|𝜉|2 + |𝜉|4)|�̂�(𝜉, 𝑡)|2 + |𝜉|2(𝑔□�̂�)(𝜉, 𝑡)

≤ 𝐶𝑒−𝐶𝜌(𝜉)𝑡(|�̂�1(𝜉)|
2 + (|𝜉|2 + |𝜉|4)|�̂�0(𝜉)|

2),
 

（3.1） 

here 𝜌(𝜉) =
|𝜉|2

(1+|𝜉|2)2
.  

To prove Lemma 3.1, we denote some notations. For any 

real or complexvalued function 𝑓(𝑡), we define 

(𝑔 ∗ 𝑓)(𝑡) := ∫ 𝑔
𝑡

0

(𝑡 − 𝜏)𝑓(𝜏)𝑑𝜏, 

(𝑔 ⋄ 𝑓)(𝑡) := ∫ 𝑔
𝑡

0

(𝑡 − 𝜏)(𝑓(𝜏) − 𝑓(𝑡))𝑑𝜏, 

(𝑔□𝑓)(𝑡) := ∫ 𝑔
𝑡

0

(𝑡 − 𝜏)|𝑓(𝑡) − 𝑓(𝜏)|2𝑑𝜏. 

We have the following lemma rely on direct calculation, which 

is useful in obtaining our point-wise estimate of solution in the 

Fourier space. 

Lemma 3.2. For any function k ∈ C(ℝ) , and any ϕ ∈
W1,2(0, T), it holds that 

1) (𝑘 ∗ 𝜙)(𝑡) = (𝑘 ⋄ 𝜙)(𝑡) + (∫ 𝑘
𝑡

0
(𝜏)𝑑𝜏)𝜙(𝑡), 

2) 2𝑅𝑒{(𝑘 ∗ 𝜙)(𝑡)𝜙
𝑡
(𝑡)} = −𝑘(𝑡)|𝜙(𝑡)|2 + (𝑘′□𝜙)(𝑡) −

                                        
𝑑

𝑑𝑡
{(𝑘□𝜙)(𝑡) − (∫ 𝑘

𝑡

0
(𝜏)𝑑𝜏)|𝜙(𝑡)|2}, 

3) |(𝑘 ⋄ 𝜙)(𝑡)|2 ≤ (∫ |
𝑡

0
𝑘(𝜏)|𝑑𝜏)(|𝑘|□𝜙)(𝑡). 

Next we will come to get the point-wise estimates of 

solutions to the problem (1.1), (1.2) in the Fourier space. 

Proof of Lemma 3.1 

Step 1: Apply Fourier transform to (1.1), we have that 

       �̂�𝑡𝑡 + (|𝜉|
2 + |𝜉|4)�̂� − |𝜉|2𝑔 ∗ �̂� = 0                     (3.2) 

By multiplying (3.2) by �̂�𝑡 and taking the real part, we have 

that 

{
1

2
|�̂�𝑡|

2 +
1

2
(|𝜉|2 + |𝜉|4)|�̂�|2}

𝑡
− |𝜉|2𝑅𝑒{𝑔 ∗ �̂��̂�𝑡} = 0.  (3.3) 

Use Lemma 3.2. 2) To the term 𝑅𝑒{𝑔 ∗ �̂��̂�𝑡} in （3.3）, we 

have that 

𝑅𝑒{𝑔 ∗ �̂��̂�𝑡} = −
1

2
𝑔(𝑡)|�̂�|2 +

1

2
(𝑔′□�̂�)(𝑡) 

                −
1

2

𝑑

𝑑𝑡
{(𝑔□�̂�)(𝑡) − ∫ 𝑔

𝑡

0

(𝜏)𝑑𝜏|�̂�|2}. 

We denote 

𝐸1(𝜉, 𝑡) = |�̂�𝑡|
2 + (|𝜉|2 + |𝜉|4)|�̂�|2 + |𝜉|2𝑔□�̂� 

−|𝜉|2 (∫ 𝑔
𝑡

0

(𝑠)𝑑𝑠) |�̂�|2, 

𝐹1(𝜉, 𝑡) = |𝜉|
2(𝑔|�̂�|2 − 𝑔′□�̂�), 

then we have that 

                   
𝜕

𝜕𝑡
𝐸1(𝜉, 𝑡) + 𝐹1(𝜉, 𝑡) = 0.                   （3.4） 

Step 2: By multiplying （3.2） by {−(𝑔 ∗ �̂�)𝑡} and taking the 

real part, we have that 

{
1

2
|𝜉|2|𝑔 ∗ �̂�|2}

𝑡
− 𝑅𝑒{�̂�𝑡𝑡(𝑔 ∗ �̂�)𝑡} − 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 8–Issue 07, 279-281, 2019, ISSN:-2319–8656 

 

www.ijcat.com  307 

 

𝑅𝑒{(|𝜉|2 + |𝜉|4)�̂�(𝑔 ∗ �̂�)𝑡} = 0.            （3.5

） 

Since (𝑔 ∗ �̂�)𝑡 = 𝑔(0)�̂� + 𝑔′ ∗ �̂�, the second term in （3.5） 

yields that 

−𝑅𝑒{�̂�𝑡𝑡(𝑔 ∗ �̂�)𝑡} = −𝑅𝑒{�̂�𝑡(𝑔 ∗ �̂�)𝑡}𝑡 + 𝑅𝑒{�̂�𝑡(𝑔 ∗ �̂�)𝑡𝑡}

= −𝑅𝑒{�̂�𝑡(𝑔 ∗ �̂�)𝑡}𝑡 + 𝑅𝑒{�̂�𝑡(𝑔(0)�̂�𝑡 + (𝑔′ ∗ �̂�)𝑡)}

= −𝑅𝑒{�̂�𝑡(𝑔 ∗ �̂�)𝑡}𝑡 + 𝑅𝑒{𝑔(0)|�̂�𝑡|
2 + �̂�𝑡(𝑔′ ∗ �̂�)𝑡}.

 

We denote 

𝐸2(𝜉, 𝑡) =
1

2
|𝜉|2|𝑔 ∗ �̂�|2 − 𝑅𝑒{�̂�𝑡(𝑔 ∗ �̂�)𝑡}, 

𝐹2(𝜉, 𝑡) = 𝑔(0)|�̂�𝑡|
2, 

𝑅2(𝜉, 𝑡) = 𝑅𝑒{−�̂�𝑡(𝑔′ ∗ �̂�)𝑡 + (|𝜉|
2 + |𝜉|4)�̂�(𝑔 ∗ �̂�)𝑡}, 

then obtain that 

                
𝜕

𝜕𝑡
𝐸2(𝜉, 𝑡) + 𝐹2(𝜉, 𝑡) = 𝑅2(𝜉, 𝑡).               （3.6） 

Step 3: By multiplying （3.2） by �̂� and taking the real part, 
we have that 

𝑅𝑒{�̂�𝑡�̂�}𝑡 − |�̂�𝑡|
2 + (|𝜉|2 + |𝜉|4)|�̂�|2 − |𝜉|2𝑅𝑒{𝑔 ∗ �̂��̂�} = 0.  

（3.7） 

Due to Lemma 3.2 1), we obtain that 

𝑅𝑒{𝑔 ∗ �̂��̂�} = (∫ 𝑔
𝑡

0

(𝑠)𝑑𝑠) |�̂�|2 + 𝑅𝑒{𝑔 ⋄ �̂��̂�}. 

We denote 

𝐸3(𝜉, 𝑡) = 𝑅𝑒{�̂�𝑡�̂�}, 

𝐹3(𝜉, 𝑡) = (|𝜉|
2 + |𝜉|4)|�̂�|2 − |𝜉|2 (∫ 𝑔

𝑡

0

(𝑠)𝑑𝑠) |�̂�|2, 

𝑅3(𝜉, 𝑡) = |�̂�𝑡|
2 + |𝜉|2𝑅𝑒{𝑔 ⋄ �̂��̂�}, 

Then (3.7) yields that 

                 
𝜕

𝜕𝑡
𝐸3(𝜉, 𝑡) + 𝐹3(𝜉, 𝑡) = 𝑅3(𝜉, 𝑡).          (3.8) 

Define 𝜌(𝜉) =
|𝜉|2

(1+|𝜉|2)2
, and denote 

𝐸(𝜉, 𝑡) = 𝐸1(𝜉, 𝑡) + 𝜌(𝜉)(𝛼𝐸2(𝜉, 𝑡) + 𝛽𝐸3(𝜉, 𝑡)), 

𝐹(𝜉, 𝑡) = 𝐹1(𝜉, 𝑡) + 𝜌(𝜉)(𝛼𝐹2(𝜉, 𝑡) + 𝛽𝐹3(𝜉, 𝑡)), 

𝑅(𝜉, 𝑡) = 𝜌(𝜉)(𝛼𝑅2(𝜉, 𝑡) + 𝛽𝑅3(𝜉, 𝑡)), 

where 𝛼, 𝛽  are positive constants, then (3.4), (3.6) and (3.8) 

yield that 

    
𝜕

𝜕𝑡
𝐸(𝜉, 𝑡) + 𝐹(𝜉, 𝑡) = 𝑅(𝜉, 𝑡).        （3.9） 

We introduce Lyapunov functions: 

𝐸0(𝜉, 𝑡) = |�̂�𝑡|
2 + (|𝜉|2 + |𝜉|4)|�̂�|2 + |𝜉|2𝑔□�̂�. 

𝐹0(𝜉, 𝑡) = 𝑔□�̂� + 𝑔|�̂�|
2. 

By the definitions of 𝐸1(𝜉, 𝑡) and 𝐹1(𝜉, 𝑡), we know that there 

exist some positive constants 𝑐𝑖  (i=1,2,3) such that the 

following inequalities hold: 

𝑐1𝐸0(𝜉, 𝑡) ≤ 𝐸1(𝜉, 𝑡) ≤ 𝑐2𝐸0(𝜉, 𝑡),  𝐹1(𝜉, 𝑡) ≥ 𝑐3|𝜉|
2𝐹0(𝜉, 𝑡). 

（3.10） 

On the other hand, 

|𝐸2(𝜉, 𝑡)| ≤ 𝐶|�̂�𝑡|
2 + 𝐶(1 + |𝜉|2)(|�̂�|2 + 𝑔□�̂�), 

|𝐸3(𝜉, 𝑡)| ≤ 𝐶(|�̂�𝑡|
2 + |�̂�|2), 

|𝜌(𝜉)(𝛼𝐸2(𝜉, 𝑡) + 𝛽𝐸3(𝜉, 𝑡))| 

       ≤ 𝐶(𝛼 + 𝛽){|�̂�𝑡|
2 + |𝜉|2(|�̂�|2 + 𝑔□�̂�)} 

                        ≤ 𝑐4(𝛼 + 𝛽)𝐸0(𝜉, 𝑡). 

Choose 𝛼, 𝛽  appropriately small such that 𝑐4(𝛼 + 𝛽) ≤

𝑚𝑖𝑛(
𝑐1

2
,
𝑐2

2
), from （3.10） we have that 

             
𝑐1

2
𝐸0(𝜉, 𝑡) ≤ 𝐸(𝜉, 𝑡) ≤

3𝑐2

2
𝐸0(𝜉, 𝑡).              （3.11） 

In consideration of（3.10） and the fact that 0 ≤ ∫ 𝑔
𝑡

0
(𝑠)𝑑𝑠 ≤

1, it is not difficult to verify that 

𝐹(𝜉, 𝑡) ≥ 𝑐3|𝜉|
2𝐹0(𝜉, 𝑡) + 𝜌(𝜉){𝛼𝑔(0)|�̂�𝑡|

2 + 𝛽|𝜉|4|�̂�|2}. 

（3.12） 

By virtue of Lemma 3.2 , we have that 

∣ 𝑅2(𝜉, 𝑡)| ≤ 𝜀|�̂�𝑡|
2 + 𝛿(|𝜉|2 + |𝜉|4)|�̂�|2 

                     +𝐶𝜀,𝛿(|𝜉|
2 + |𝜉|4)𝐹0(𝜉, 𝑡), 

and 

|𝑅3(𝜉, 𝑡)| ≤ |�̂�𝑡|
2 + 𝛾|𝜉|2|�̂�|2 + 𝐶𝛾|𝜉|

2𝑔□�̂�, 

where 𝜀, 𝛿, 𝛾 are positive constants, we have 

|𝑅(𝜉, 𝑡)| ≤ 𝜌(𝜉){(𝛼𝜀 + 𝛽)|�̂�𝑡|
2 + (𝛼𝛿 + 𝛽𝛾)(|𝜉|2 + |𝜉|4)|�̂�|2

+𝛼𝐶𝜀,𝛿(|𝜉|
2 + |𝜉|4)𝐹0(𝜉, 𝑡) + 𝛽𝐶𝛾|𝜉|

2𝑔□�̂�}

≤ (𝛼𝜀 + 𝛽)𝜌(𝜉)|�̂�𝑡|
2 + (𝛼𝛿 + 𝛽𝛾)|𝜉|2|�̂�|2 + (𝛼 + 𝛽)𝐶𝜀,𝛿,𝛾|𝜉|

2𝐹0(𝜉, 𝑡).

 

We claim that there exist 𝛾, 𝜀, 𝛿, 𝛼, 𝛽 such that 

                         |𝑅(𝜉, 𝑡)| ≤
1

2
𝐹(𝜉, 𝑡).                        （3.13） 

First choose 𝛾 =
1

4
, 𝜀 =

1

4
𝑔(0) , 𝛿 =

1

16
𝑔(0) , 𝛽 =

1

4
𝛼𝑔(0) , 

then the next three inequalities hold: 

(𝛼 + 𝛽)𝐶𝜀,𝛿,𝛾 ≤
1

2
𝑐3, 

 𝛼𝜀 + 𝛽 ≤
1

2
𝛼𝑔(0),  

𝛼𝛿 + 𝛽𝛾 ≤
1

2
𝛽, 

In order to certify (3.13) (here (3.11) is also considered), it 

suffices to choose α suitably small such that 

𝛼 + 𝛽 = (1 +
1

4
𝑔(0))𝛼 ≤ 𝑚𝑖𝑛{

𝑐3
2𝐶𝜀,𝛿,𝛾

,
𝑐1
2𝑐4

,
𝑐2
2𝑐4

} 

Due to (3.9) and (3.13), we get that 

                 
𝜕

𝜕𝑡
𝐸(𝜉, 𝑡) +

1

2
𝐹(𝜉, 𝑡) ≤ 0.                  （3.14） 

On the other hand, due to (3.11) and (3.12) we obtain that 

                𝐹(𝜉, 𝑡) > 𝑐𝜌(𝜉)𝐸(𝜉, 𝑡).                       （3.15） 

From (3.14) and (3.15), we have that 

                  𝐸(𝜉, 𝑡) ≤ 𝑒−𝐶𝜌(𝜉)𝑡𝐸(𝜉, 0).                （3.16） 

By virtue of (3.11) and (3.16), we have that 

|�̂�𝑡|
2 + (|𝜉|2 + |𝜉|4)|�̂�|2 + |𝜉|2𝑔□�̂� ≤ 
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     𝐶𝑒−𝐶𝜌(𝜉)𝑡(|�̂�1(𝜉)|
2 + (|𝜉|2 + |𝜉|4)|�̂�0(𝜉)|

2), 

so, we obtain the point-wise estimates of solutions to (1.1), 

(1.2) in the Fourier space. 

As a simple corollary of Lemma 3.1, we have the 

following point-wise estimates of the fundamental 

solutions 𝐺(𝑥, 𝑡) and 𝐻(𝑥, 𝑡)  in the Fourier space. 

Lemma 3.3.𝐺(𝑥, 𝑡) and 𝐻(𝑥, 𝑡) satisfy 

1) |�̂�(𝜉, 𝑡)| ≤ 𝐶𝑒−𝐶𝜌(𝜉)𝑡, 

2) |�̂�𝑡(𝜉, 𝑡)| ≤ 𝐶𝑒
−𝐶𝜌(𝜉)𝑡(|𝜉|2 + |𝜉|4)

1

2, 

3) |�̂�(𝜉, 𝑡)| ≤ 𝐶𝑒−𝐶𝜌(𝜉)𝑡(|𝜉|2 + |𝜉|4)−
1

2, 

4) |�̂�𝑡(𝜉, 𝑡)| ≤ 𝐶𝑒
−𝐶𝜌(𝜉)𝑡, 

where 𝜌(𝜉) =
|𝜉|2

(1+|𝜉|2)2
. 

Proof. Putting (2.4) with 𝑢1 = 0 in (3.1), it results that 

|�̂�𝑡(𝜉, 𝑡)|
2 + (|𝜉|2 + |𝜉|4)|�̂�(𝜉, 𝑡)|2 ≤ 𝐶𝑒−𝐶𝜌(𝜉)𝑡(|𝜉|2 + |𝜉|4). 

It yields 1) and 2) of Lemma 3.3. 

Putting (2.4) with  𝑢0 = 0 in (3.1), it results that 

|�̂�𝑡(𝜉, 𝑡)|
2 + (|𝜉|2 + |𝜉|4)|�̂�(𝜉, 𝑡)|2 ≤ 𝐶𝑒−𝐶𝜌(𝜉)𝑡. 

It yields 3) and 4) of Lemma 3.3.  

Now we use Lemma 3.3 to prove Proposition 3.1. 

 Proof of Proposition 3.1. In view of Lemma 3.3 1), we have 

that 

∥ 𝜕𝑥
𝑘𝐺𝑡(𝑡) ∗ 𝜑 ∥𝐿2

2 ≤ 𝐶∫ |
𝑅𝑛

𝜉|2𝑘𝑒−𝐶𝜌(𝜉)𝑡|�̂�(𝜉)|2𝑑𝜉

≤ 𝐶∫ |
{𝜉:|𝜉|≤1}

𝜉|2𝑘𝑒−
𝐶
4
|𝜉|2𝑡|�̂�|2𝑑𝜉 + 𝐶∫ |

{𝜉:|𝜉|≥1}

𝜉|2𝑘𝑒
−

𝐶𝑡
4|𝜉|2|�̂�(𝜉)|2𝑑𝜉

≤ 𝐶(1 + 𝑡)
−𝑛(

1
𝑝
−
1
2
)−𝑘

∥ 𝜑 ∥𝐿𝑝
2 + 𝐶(1 + 𝑡)−𝑙 ∥ 𝜕𝑥

𝑘+𝑙𝜑 ∥𝐿2
2 ,

 

here 𝑘 ≥ 0, 𝑙 ≥ 0, 𝑙 + 𝑘 ≤ 𝑠 + 1. Thus 1) is proved. 

Due to Lemma 3.3 2) , it results that 

∥ 𝜕𝑥
𝑘𝐺𝑡(𝑡) ∗ 𝜑 ∥𝐿2

2 ≤ 𝐶∫ |
𝑅𝑛
𝜉|2𝑘(|𝜉|2 + |𝜉|4)𝑒−𝐶𝜌(𝜉)𝑡|�̂�(𝜉)|2𝑑𝜉

≤ 𝐶∫ |
{𝜉:|𝜉|≤1}

𝜉|2𝑘+2𝑒−
𝐶
4|𝜉|

2𝑡|�̂�(𝜉)|2𝑑𝜉 + 𝐶∫ |
{𝜉:|𝜉|≥1}

𝜉|2𝑘+4𝑒
−

𝐶𝑡
4|𝜉|2|�̂�(𝜉)|2𝑑𝜉

≤ 𝐶(1 + 𝑡)
−𝑛(

1
𝑝−

1
2)−𝑘−1 ∥ 𝜑 ∥𝐿𝑝

2 + 𝐶(1 + 𝑡)−𝑙 ∥ 𝜕𝑥
𝑘+𝑙+2𝜑 ∥𝐿2

2 ,

 

here 𝑘 + 1 ≥ 0, 𝑙 ≥ 0, 𝑘 + 𝑙 + 2 ≤ 𝑠 + 1. Thus 2) is proved. 

Next we prove 3) and 4). It follows from Lemma 3.3 3) 

that 

∥ 𝜕𝑥
𝑘𝐻(𝑡) ∗ 𝜓 ∥2≤ 𝐶∫ |

𝑅𝑛
𝜉|2𝑘(|𝜉|2 + |𝜉|4)−1𝑒−𝐶𝜌(𝜉)𝑡|�̂�(𝜉)|2𝑑𝜉

≤ 𝐶∫ |
{𝜉:|𝜉|≤1}

𝜉|2𝑘−2𝑒−
𝐶
4|𝜉|

2𝑡|�̂�(𝜉)|2𝑑𝜉 + 𝐶∫ |
{𝜉:|𝜉|≥1}

𝜉|2𝑘|𝜉|−4𝑒
−
𝐶𝑡

4∣𝜉 ∣
2

|�̂�(𝜉)|2𝑑𝜉

≤ 𝐶(1 + 𝑡)
−𝑛(

1
𝑝−

1
2)−𝑘+1 ∥ 𝜓 ∥𝐿𝑝

2 + 𝐶(1 + 𝑡)−𝑙−2 ∥ 𝜕𝑥
𝑘+𝑙𝜓 ∥𝐿2

2 ,

 

here 𝑘 ≥ 1, 𝑙 ≥ −2, 0 ≤ 𝑘 + 𝑙 ≤ 𝑠 − 1. Thus 3) is proved. 

Lemma 3.3 2) , yields that 

∥ 𝜕𝑥
𝑘𝐻𝑡(𝑡) ∗ 𝜓 ∥

2≤ 𝐶∫ |
𝑅𝑛

𝜉|2𝑘𝑒−𝐶𝜌(𝜉)𝑡|�̂�(𝜉)|2𝑑𝜉

≤ 𝐶(1 + 𝑡)
−𝑛(

1
𝑝
−
1
2
)−𝑘

∥ 𝜓 ∥𝐿𝑝
2 + 𝐶(1 + 𝑡)−𝑙 ∥ 𝜕𝑥

𝑘+𝑙𝜓 ∥𝐿2
2 ,

 

here 𝑘 ≥ 0, 𝑙 ≥ 0, 𝑘 + 𝑙 ≤ 𝑠 − 1. thus 4) is proved. 

4. Decay Estimates for Linear Problem. 
In this section we study the decay estimates of solutions to the 

linear problem (1.1) and (1.2). 

Theorem 4.1. Let 𝑠 ≥ 1  be an integer. Assume that 𝑢0 ∈
𝐻𝑠+1(ℝ𝑛) and 𝑢1 ∈ 𝐻

𝑠−1(ℝ𝑛), and put 

𝐼0 =∥ 𝑢0 ∥𝐻𝑠+1 +∥ 𝑢1 ∥𝐻𝑠−1 . 

Then the solution u to the problem (1.1) and (1.2) given by (2.4) 

satisfies 

𝜕𝑥𝑢 ∈ 𝐶
0([0,∞)); 𝐻𝑠(ℝ𝑛)); 𝑢 ∈ 𝐶1([0,∞); 𝐻𝑠−1(ℝ𝑛)) 

and the following energy estimate: 

∥ 𝑢𝑡(𝑡) ∥𝐻𝑠−1
2 +∥ 𝜕𝑥𝑢 ∥𝐻𝑠

2 +∫ ∥
𝑡

0

𝜕𝑥𝑢𝑡(𝜏) ∥𝐻𝑠−3
2 +∥ 𝜕𝑥

2𝑢(𝜏) ∥𝐻𝑠−2
2 𝑑𝜏 ≤ 𝐶𝐼0

2. 

Proof. We have obtained the solution u of (1.1) and (1.2) given 

by (2.4) and proved that it satisfies the point-wise estimate (3.1) 

in the Fourier space. 

From (3.14) and (3.15) we have that 

   
𝜕

𝜕𝑡
𝐸(𝜉, 𝑡) + 𝐶𝜌(𝜉)𝐸(𝜉, 𝑡) ≤ 0.                

Integrate the inequality with respect to t and appeal to （3.11

）, then we obtain 

𝐸0(𝜉, 𝑡) + ∫ 𝜌
𝑡

0
(𝜉)𝐸0(𝜉, 𝜏)𝑑𝜏 ≤ 𝐶𝐸0(𝜉, 𝑡).       （4.1） 

Multiply (4.1) by (1 + |ξ|2)s−1  and integrate the resulting 

inequality with respect to ξ ∈ ℝn, then we have that 

∥ ut(t) ∥Hs−1
2 +∥ ∂xu ∥Hs

2 + ∫ ∥
t

0
∂xut(τ) ∥Hs−3

2 +∥ ∂x
2u(τ) ∥Hs−2

2 dτ ≤ CI0
2.                 

（4.2） 

(4.2) guarantees the regularity of the solution (2.4). So far we 

complete the proof of Theorem 4.1.  

By using Proposition 3.1 with p = 2, we obtain the following 

decay estimate of 𝑢 given by（ 2.4） , if initial data u0 ∈

Hs+1(ℝn) and u1 ∈ H
s−1(ℝn).  

Theorem 4.2. Under the same assumption as in Theorem 4.1, 

then 𝑢 given by (2.4) satisfies the decay estimate: 

∥ 𝜕𝑥
𝑘𝑢(𝑡) ∥𝐻𝑠+2−2𝑘≤ 𝐶𝐼0(1 + 𝑘)

−
𝑘−1

2 , 1 ≤ 𝑘 ≤ [
𝑠+2

2
].  （ 4.3

） 

Proof. Let 𝑘 ≥ 1, 𝑚 ≥ 0  be integers, In view of (2.4), by using 

1) and 3) of Proposition 3.1 with 𝑝 = 2，we have that 

‖𝜕𝑥
𝑘+𝑚𝑢(𝑡)‖ ≤ ‖𝜕𝑥

𝑘+𝑚𝐺(𝑡) ∗ 𝑢0‖𝐿2 + ‖𝜕𝑥
𝑘+𝑚𝐻(𝑡) ∗ 𝑢1‖𝐿2 
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                             ≤ 𝐶(1 + 𝑡)
− 
𝑘+𝑚
2

−
𝑛
2
(
1
𝑝
−
1
2
)
‖𝑢0‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑙1
2‖𝜕𝑥

𝑘+𝑚+𝑙1𝑢0‖𝐿2

+ 𝐶(1 + 𝑡)
− 
𝑘−1+𝑚

2
−
𝑛
2
(
1
𝑝
−
1
2
)
‖𝑢1‖𝐿2

+ 𝐶(1 + 𝑡)
−
𝑙2+2
2

‖𝜕𝑥
𝑘+𝑚+𝑙2𝑢1‖

𝐿2

≤ 𝐶(1 + 𝑡)− 
𝑘
2‖𝑢0‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑘−1
2 ‖𝑢1‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑙1
2‖𝜕𝑥

𝑘+𝑚+𝑙1𝑢0‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑙2+2
2 ‖𝜕𝑥

𝑘+𝑚+𝑙2𝑢1‖𝐿2

≤ 𝐶(1 + 𝑡)− 
𝑙1
2‖𝜕𝑥

𝑘+𝑚+𝑙1𝑢0‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑙2+2
2 ‖𝜕𝑥

𝑘+𝑚+𝑙2𝑢1‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑘−1
2 ‖(𝑢0, 𝑢1)‖𝐿2 

here 𝑘 ≥ 1 , 𝑘 + 𝑚 + 𝑙1 ≤ 𝑠 + 1 , 𝑘 + 𝑚 + 𝑙2 ≤ 𝑠 − 1 . 

Choose the minimal integers 𝑙1 and 𝑙2 satisfying 

𝑙1
2
≥
𝑘 − 1

2
,   
𝑙2 + 2

2
≥
𝑘 − 1

2
, 

i.e. 𝑙1 = 𝑘 + 1, 𝑙2 = 𝑙1 − 2, Then we obtain that 

∥ 𝜕𝑥
𝑘+𝑚𝑢(𝑡) ∥𝐿2≤ 𝐶𝐼0(1 + 𝑡)

−
𝑘−1
2 , 

with 0 ≤ 𝑚 ≤ 𝑠 + 2 − 2𝑘. Take sum with 0 ≤ 𝑚 ≤ 𝑠 + 2 −

2𝑘, we obtain （4.3）. Thus Theorem （4.2） is proved. 

Remark 4.1. Under the same assumption as in Theorem 4.1, 𝑢 

given by (2.4) also satisfies the following decay estimate: 

∥ 𝜕𝑥
𝑘𝑢𝑡(𝑡) ∥𝐻𝑠−1−2𝑘≤ 𝐶𝐼0(1 + 𝑘)

−
𝑘

2, 0 ≤ 𝑘 ≤ [
𝑠−1

2
]. （4.4） 

If we assume the initial data belong to 𝐿1(ℝ), then by 

using Proposition （3.1） with 𝑝 = 1, we have the following 

sharp decay estimates.  

Theorem 4.3. Let 𝑠 ≥ 1 be an integer. Assume that 𝑢0 ∈
𝐻𝑠+1(ℝ𝑛)⋂𝐿1(ℝ𝑛) and 𝑢1 ∈ 𝐻

𝑠−1(ℝ𝑛)⋂𝐿1(ℝ𝑛), and put 

𝐼1 =∥ 𝑢0 ∥𝐻𝑠+1 +∥ 𝑢1 ∥𝐻𝑠−1 +∥ (𝑢0, 𝑢1) ∥𝐿1 . 

Then the solution 𝑢 to (1.1) and (1.2) given by (2.4) satisfies 

the following decay estimates: 

∥ 𝜕𝑥
𝑘𝑢(𝑡) ∥

𝐻
𝑠+2−2𝑘−[

𝑛+1
2 ]
≤ 𝐶𝐼1(1 + 𝑡)

−
𝑘−1

2
−
𝑛

4 , 𝑘 ≥ 1.  （4.5） 

Proof. Let 𝑘 ≥ 1, 𝑚 ≥ 0 be integers, In view of （2.4）, by 

using 1) and 3) of Proposition 3.1 with 𝑝 = 1, we have that 

‖𝜕𝑥
𝑘+𝑚𝑢(𝑡)‖ ≤ ‖𝜕𝑥

𝑘+𝑚𝐺(𝑡) ∗ 𝑢0‖𝐿2 + ‖𝜕𝑥
𝑘+𝑚𝐻(𝑡) ∗ 𝑢1‖𝐿2 

                     ≤ 𝐶(1 + 𝑡)
− 
𝑘+𝑚
2

−
𝑛
2
(
1
𝑝
−
1
2
)
‖𝑢0‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑙1
2‖𝜕𝑥

𝑘+𝑚+𝑙1𝑢0‖𝐿2     

+ 𝐶(1 + 𝑡)
− 
𝑘−1+𝑚

2
− 
𝑛
2
(
1
𝑝
−
1
2
)
‖𝑢1‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑙2+2
2 ‖𝜕𝑥

𝑘+𝑚+𝑙2𝑢1‖𝐿2 

 ≤ 𝐶(1 + 𝑡)−
𝑘
2
−
𝑛
4‖𝑢0‖𝐿2 

                     +𝐶(1 + 𝑡)−
𝑘−1
2
−
𝑛
4‖𝑢1‖𝐿2 

                                    +𝐶(1 + 𝑡)− 
𝑙1
2‖𝜕𝑥

𝑘+𝑚+𝑙1𝑢0‖𝐿2

+ 𝐶(1 + 𝑡)− 
𝑙2+2
2 ‖𝜕𝑥

𝑘+𝑚+𝑙2𝑢1‖𝐿2 

                            ≤ 𝐶(1 + 𝑡)−
𝑙1
2‖𝜕𝑥

𝑘+𝑚+𝑙1𝑢0‖𝐿2

+ 𝐶(1 + 𝑡)−
𝑙2+2
2 ‖𝜕𝑥

𝑘+𝑚+𝑙2𝑢1‖𝐿2

+ 𝐶(1 + 𝑡)−
𝑘−1
2
−
𝑛
4‖(𝑢0, 𝑢1)‖𝐿2 

here 𝑙1 ≥ 0, 𝑙2 ≥ −2, 𝑘 + 𝑚 + 𝑙1 ≤ 𝑠 + 1, 0 ≤ 𝑘 +𝑚 + 𝑙2 ≤
𝑠 − 1 . 

Choose the smallest integers 𝑙1 and 𝑙2 satisfying 

𝑙1
2
≥
𝑘 − 1

2
+
𝑛

4
,   
𝑙2 + 2

2
≥
𝑘 − 1

2
+
𝑛

4
, 

It yield that 𝑙1 = 𝑘 − 1 + [
𝑛+1

2
] , 𝑙2 = 𝑙1 − 2 . 

Thus 𝑚 satisfies 0 ≤ 𝑚 ≤ 𝑠 + 2 − 2𝑘 − [
𝑛+1

2
]. Take sum with 

0 ≤ 𝑚 ≤ 𝑠 + 2 − 2𝑘 − [
𝑛+1

2
], we obtain that 

∥ 𝜕𝑥
𝑘𝑢(𝑡) ∥

𝐻𝑠+2−2𝑘−[
𝑛+1
2
]
≤ 𝐶𝐼1(1 + 𝑡)

−
𝑘−1
2
−
𝑛
4 , 𝑘 ≥ 1. 

Thus Theorem 4.3 is proved. 

Remark 4.2. Apart from the above decay estimates, by similar 

computation we also have the following estimate : 

∥ 𝜕𝑥
𝑘𝑢𝑡(𝑡) ∥

𝐻𝑠−1−2𝑘−[
𝑛+1
2 ]
≤ 𝐶𝐼1(1 + 𝑡)

−
𝑘
2
−
𝑛
4 , 𝑘 ≥ 0. 

Remark 4.3. The estimates in Theorem 4.2 and Theorem 4.3 

indicate that the decay structure of solutions to the linear 

problem (1.1), (1.2) is of regularityloss type. 
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