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1. INTRODUCTION

In this paper we consider the initial-value problem of the
following linear plate equation with memory term in multi-
dimensional space R™with n > 1:

Uy +A%u—Au+g*Au=0 (1.1
with the initial data
u(x, 0) = ug(x), ueg(x,0) = uq (x). 1.2)

Here u = u(x, t) is the unknown function of x = (x,-,x,,) €
R™ and t > 0, and represents the transversal displacement of
the plate at the point x and the time t. The term g * Au =

fotg (t — t)Au(r)dr equivalent to the memory term and g
satisfies:

Assumption [1]

1) g € C2(R*) n W2L(R™),

2) g(s) >0, =Cog(s) < g'(s) < —C1g(s),
lg"(s)] < C29(s), Vs € RY,

3)1- [ g(s)ds = Cs, Vt ERY,

where C;(i = 1,2,3) are positive constants.

The inertial model of quasilinear dissipative plate
equation, whose linear part is given by:

Upe — AUy + A%u + up = 0. (1.3)
here —Au,, corresponds to the rotational inertia and u, is the
linear dissipative term. In [1], Da-Luz and Chardo studied a
semi-linear dissipative plate equation (1.3). They proved the
global existence of solutions and a polynomial decay of the
energy by exploiting an energy method. However their result
was restricted to the lower dimensional case 1 <n < 5. This
restriction on the space dimension was removed by Sugitani
and Kawashima by making use of the sharp decay estimates for
the equation (1.3) in [2]. In [3], Liu and Kawashima obtained
the global existence and asymptotic behavior of solutions by
employing the time-weighted energy method combined with a
semi-group argument. In this paper the plate equation with
memory (1.1) is also of regularity-loss property, just like the
inertial model of dissipative plate equation (1.3) in [2, 3]. The
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decay structure of the regularity-loss is characterized by the
property
E

p() a+ e
where p(§) is introduced in the point-wise estimate in the
Fourier space of solutions to the linear problem. It is evident
that the decay structure is very weak in the higher-frequency
domain since p(¢) — 0 as &€ — oo. The decay structure of the
regularity-loss type was also observed in [4,5,6,7]. For more
studies on various aspects of dissipation of plate equations, we
refer to [8,9,10,11]. Also, as for the study of decay properties
for hyperbolic systems of memory-type dissipation, we refer
to [12,13,14,15,16].

The main aim of this paper is to study decay estimates of
solutions to the initial value problem (1.1) and (1.2). Firstly, by
using Fourier transform and Laplace transform, we obtain the
solution u to the linear problem (1.1) and (1.2) given by (2.4)
and the solution operators G(t)* and H(t)x. Secondly, by
employing the energy method in the Fourier space, we obtain
the pointwise estimate in the Fourier space of solutions to the
linear problem (1.1) and (1.2), appealing to which we obtain
the point-wise of solution operators and their properties.
Finally, the decay estimates of solutions to (1.1), (1.2) are
achieved.

The contents of the paper are as follows. Solution formula
are obtained in section 2. In section 3, we obtain the estimates
and properties of solutions operators, which is based on the
point-wise estimate in the Fourier space of solutions to the
linear problem. In the last section, we prove the decay estimates
of solutions to the linear problem by virtue of the properties of
solution operator.

Before closing this section, we give some notations to be
used below.

Let F[f] denote the Fourier transform of f defined by

" 1 .
FIN =f©i=—— [ e fx,
(2m)2 /R™
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and we denote its inverse transform as F 1.

LP = LP(R™M)(1 < p < ) is the usual Lebesgue space
with the norm |-l ,». W™P(R™), m € Z,, p € [1, ) denote
the usual Sobolev space with its norm

m 1
1 F Tmoi= ) NOEF 1P,
k=0

In particular, we use W™?2 = H™, Here, for a nonnegative
interger k, 0% denotes the totality or each of all the k-th order
derivatives with respect to x € R™. Also, C¥(I; H™(R™))
denotes the space of k -times continuously differentiable
functions on the interval I with values in the Sobolev space
H™ = H™(RM).

Finally, in this paper, we denote every positive constant
by the same symbol C or ¢ without confusion. [-] is Gauss
symbol.

2. Solution Formula

In this section, we try to obtain the solution formula for
the problem (1.1) and (1.2). Assume that G(x,t) and H(x, t)
are the solutions to the following problem:

Gee + A%G — AG + g + AG = 0,
G(x,0) = 8(x), 2.1
G,(x,0) = 0.

Hy + A2H — AH + g x AH = 0,
H(x,0) =0, (2.2)
H:(x,0) = §(x).

Apply Fourier transform and Laplace transform to (2.1) and
(2.2), then we can obtain G (¢,t) and H(¢, t).

Now we compute G(¢&,t), First, apply Fourier transform
to (2.1), we can obtain the following equation:

Gee + 1E1*G + €126 — |€]2g + G =0,
G0 =481@=C,
G.(£,0) = 0.

then apply Laplace transform to above equation, we can get

[ werar v qer g [ gerac-ig [ o
’ * G)eMdt =00, ’
by computing, we have that
—CA+ (% + 1 + EIMLIGIA) — IE1PL[g] () - LIG1(D) = 0,
So

CcA
+ €17 + 1E1* = I§17£[g] (D

LG =

Similarly,
_ C
TR+ €2+ €1 - [EPLLg]D)

finally, we have formally that

LA
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_ ) 1
668 = L e e et
. 1

HE ) =CL™ 1. ).

22+ 812+ [€1* = IE1PL[g1 (D)

Here C is a constant determined by the initial data in (2.1)
and (2.2).

Lemma 2.1. G(&,t) and H(E, t)exist.
Proof. We only prove G (&, t)exists; similarly we could prove
H(,t)  exists.  Denote  F(A):=2%2+ |82+ |&|* -

I£12L[g](A). To proveL‘l[ﬁ]exists, we need to consider the

zero points of F(4). Denote A = ¢ + iv, ¢ > —Cy, C; is same
as that in Assumption [1] 2), then L[g](1) exists. Assume that
A1 = 01 + ivy is a zero point of F(A) and oy > —Cy, then gy
and v, satisfy

f oo
[ReF(A)) = of = v + |57 + |§]* — Is‘lzf cos (v, t)e 1t g(t)dt = 0,
0
{kImF(ll) =20, + |§’|2f sin(vyt)e ttg(t)dt = 0.
0

(2.3
If & = 0, from(2.3), we know that o; = 0,v; = 0.

If & # 0, we claim that o; < 0. Now we prove the claim
by contradiction.
Assume that oy > 0. If v; = 0, then in view of [” g ()dt <
1, we obtain that
ReF(L) = o + [£12 +161* = |57 [ etg(0)de >0
0

it yields contradiction with(2.3);.
If v; # 0, then we have that

ImF (4,) = v, (20, + |€|? J’wmeﬂ’lty(t)dt).
0

Next we prove that |
2mm

G _ _
0'”1'%e aitg(t)dt, and we will prove {a,}%_, is a
1

convergent sequence. By direct computation, we have that

sinivlt) e—oltg(t)dt > (. Denote a,,, =
1

s
il sin|vyt ~01 (t+ T
a = f|V1| | 1 | (e_o-ltg(t) —e 0'1(t+lvll)g(t + —))dt
o Il Ival

Since d.(e%fg(t)) <0 , we have that 0<a; <

fO\th e~%tg(t)dt. Similarly,

2mn+m | | t| -
fval  sin|v, ot oy (e s
Ay — Ay = —— (e t'g(t) —e il g(t +—))dt,
w=an = [ S g0 9+ )
[val
2mmn+m
so we have that 0 < 41 — G < fouet! te %1tg(t)dt.

[vil
It yields that
2mm

Tl _ g(0)
0<a <f te %itg(t)dt < —————,
" 0 90 (o1 + C1)?

S0 {a,, }m=1 IS @ bounded and monotonic increasing sequence.
Since a; > 0, a(4;) := lim a,, > 0. Thus we proved that
m-—oo
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fow%e“’lfg(t)dt > 0. Also, because g, = 0,¢ # 0 and

vy # 0, it results that ImF(4,) # 0. This contradicts with
(2.3),. Thus by contradiction we proved the claim o; < 0.

Combining the two cases, we know that % is analytic in

{AeCRe(d)>0}ifé=0and in{A €CRe(1) =0}if¢ #
0. Take A = o + iv, 0 > max{ReA,}, here {4} is the set of all
the singular points of F (A1), then we have that

L—l[ 2 ](t) 3 J-¢r+ioo Aem 3 f+oo i(o.+iv)e(a+iv)td
FOIY ) W FD "L, T Fe+my

=f +f =1t/
{v;lvIsR} {vilvI>R}

J1 converges, so we only need to consider J,. Notice that 2=

F(A)
1P+ E1PLLg(A) Lo
7 T and |L[g](A)| < C, then it is not

difficult to prove that J, converges. The constant C in the
expression of G(&,t) is determined by the initial data of
G(x,t). So far we complete the proof.

In view of Lemma 2.1 and Duhamel principle, the solution
to the problem (1.1) and (1.2) could be expressed as following:

u(t) = G(t) *ug + H(t) * uy. (2.4)

3. Decay Properties of Solution Operators
In this section, our goal is to get the decay estimates of the
solution operators G (t) * and H(t) =in the solution formula
(2.4).

Proposition 3.1. Let k and [ be integers, ¢ €

HSTLRMNLP(RY) , Y € HS"Y(RMHNLP(RY) , 1<p<2,
then the following estimates hold:

k nf1 1

DI okGE) * ¢ llz< C(A + t)‘E‘?(TE) Il Nl

1
+CA+ )72 1 05 Il 2,
fork=0,1=20,l+k<s+1.

k+1 n(l 1

4 ) Mo lle

L
+C(A+ )72 || 382 ||,2,for k = 0,
l=20,l+k<s-—-1.

) IIAXH@®) * P ll2< CA+ t)‘T‘E(E‘E) Iy Nl

+2
+C(A+ )7z Il 9% 0 |l 2,
fork>1,142>20,0<l+k<s-1.

k n1 1

B EH,(E) * 9 llo< CL+ )5 2072) |1

A
+C(A+ )72 | 3+ 2,
fork=0,1=20,l+k<s-—1.

To prove proposition 3.1, the key point is to obtain the
point-wise estimates of the fundamental solutions in the Fourier
space. In fact this could be achieved by using the following
point-wise estimate of solutions to the linear problem (1.1) and
(1.2).
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Lemma 3.1. Assume u is the solution of (1.1) and (1.2), then it
satisfies the following point-wise estimate in the Fourier space:

1€, O + (1517 + 1E1D1E 012 + 112 (gud) (&, )

< Cem PO ()17 + (817 + 18112 ()1,
(3.D

1§12
@+g1H

here p($) =

To prove Lemma 3.1, we denote some notations. For any
real or complexvalued function f(t), we define

t
@+ := f g (t—Df(dr,
. 0
@o O := f 9t - D@ - (),
t
(o)) : = fo (- DIF () - F@)|2dr.

We have the following lemma rely on direct calculation, which
is useful in obtaining our point-wise estimate of solution in the
Fourier space.

Lemma 3.2. For any function k € C(R), and any ¢ €
W12(0,T), it holds that

1) (k * $)(®) = (k © 9)(O) + (J k (dDP(D),
2) 2Re{(k * ) ()b, (D)} = —k(D)|PD)]* + (K'DP) (1) -
L {((kag) () — (J k @D,

3) |(k e p)(O)I2 < ([, | k(2)Ide)(IKe|op) (L).

Next we will come to get the point-wise estimates of
solutions to the problem (1.1), (1.2) in the Fourier space.

Proof of Lemma 3.1
Step 1: Apply Fourier transform to (1.1), we have that

Qe + (12 +[EIDA— 1§29 * 2= 0 3.2)

By multiplying (3.2) by @I, and taking the real part, we have
that

(G182 + 30817 + 1191012} — 1¢12Refg = 28} = 0. (3.3)

Use Lemma 3.2. 2) To the term Re{g * 4@} in (3.3) , we
have that

Refg + 2} = —3 901 + 3 (9’00
1d(
3 w00
We denote

Ei(§,1) = [T|? + (€17 + 1§19)12)? + €12 gon

t
e ( [ (s)ds) e,
Fi(§,t) = [§1°(gla|? — g'om),
then we have that
%El(f, t)+ F (& t) = 0. (3.4)
Step 2: By multiplying (3.2) by {—(g * @)} and taking the
real part, we have that

t

g (T)d‘r|ﬁ|2}.

1 —
(1619 2P} — Refteto + D) -
t
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Re{(I§)? + £D)a(g * D)} = 0. (35
)
Since (g * )¢ = g(0)@ + g’ * @, the second term in  (3.5)
yields that

—Re{tl, (g * ?)t}t + Re{ti, (g * 52“} _
—Re{t,(g * )}, + Re{tl, (9(0)2 + (9" * D))}
—Re{li,(g * ).} + Re{g(0) |1, + (g * W) }-

—Re{l,.(g * E)t}

We denote
Ey(§1) =%|€|2|g * 02 — Re{fl, (g * D¢},
Fy(§,t) = g(0)[a,[?,
Ry(§,t) = Re{—2(g' * ), + (€% + |€|M)a(g * D).},
then obtain that

2 E(E 1) + Fa(6,8) = Ry(6, ). (3.6)

Step 3: By multiplying (3.2) by @ and taking the real part,
we have that

Re{@, i1}, — |0 + (I€]? + €102 — |€|?Re{g » @} = 0.
(3.7)

Due to Lemma 3.2 1), we obtain that

Re{g * a0} = ( f
0
We denote

t
g (s)ds) || + Re{g o a1}

Es(&,t) = Re{fl, @1},
t
Fs(&,t) = (K2 + €190 — |€]? (f g (s)ds> 122,
0

R3(£,1) = |f1c|? + |€|?Re{g o 01},
Then (3.7) yields that

SEED+RED =RED. (38)

Define p(¢) = EI* _ and denote

(1+E1H?
EG ) = E1(§,t) + p(H)(aEz(S,t) + BE5 (S, 1)),
F@§,t) = F1(§,0) + p(§)(aF2(§, 1) + BF5(5, 1)),
R(S, 1) = p(H)(aRz($,t) + BR3(S, 1)),

where a, § are positive constants, then (3.4), (3.6) and (3.8)
yield that

2EE ) +F(E L) = RED. (3.9)
We introduce Lyapunov functions:
Eo(§,t) = [@)* + (1§17 + EIMIal® + 1§12 goi.
Fo(&,t) = god + g|d|>.

By the definitions of E,(,t) and F; (¢, t), we know that there
exist some positive constants ¢; (i=1,2,3) such that the
following inequalities hold:

aEo(&,t) S Ei(§,t) < uEo(§,0), F1(§,t) = c3|¢|2Fo (€, t).
(3.10)
On the other hand,
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|E2(§, )| < Clae|* + C(A + [§1P) (2] + gow),
|E3(§, )| < C(1a|* + |al?),
< C(a+ (Il + 1§17 (1a)* + go)}
< c(a + BEy (€, 1)
Choose a,B appropriately small such that c,(a+pB) <
min(%l,%z), from (3.10) we have that
LE(E D) S EE ) < 22Ey (6 0). (3.11)

In consideration of (3.10) and the fact that 0 < fotg (s)ds <
1, itis not difficult to verify that

F@E, 1) 2 c3[§1PFo (&, t) + p(H){ag (0] + BISI* [0l
(3.12)
By virtue of Lemma 3.2 , we have that
| Ry (S, 0] < elfie]* + 81§17 + [§1D)1al?
+Ces (1517 + 1§1MFo (€, 1),
and
[Rs (&, )] < 1% + yI§I12121? + CyI¢1° gD,

where ¢, §,y are positive constants, we have

[RE O < p@®f(as+PIi|* + (@b + B US> + 1E1DIA?
+aCes (1517 + EIDFE,0) + BC, [§12 goit}
< (ag + PO |* + (a8 + BNIEIP A + (@ + B)Cesy [§12Fo (5, 1)

We claim that there exist y, €, §, &, B such that
IRG,0) < 3FE,0). (3.13)

First choose y =, & =2g(0), 6 =--g(0), B = ;ag(0),

then the next three inequalities hold:
1
(a + ﬁ)Cs,&y < ECB’
1
ac+p < Eag(O),

1
ad + By < E'B'
In order to certify (3.13) (here (3.11) is also considered), it
suffices to choose a suitably small such that

C3 G O
2C.5, " 2¢4" 2¢4

1 .
a+ﬁ=<1+zg(0))agmm{ }

Due to (3.9) and (3.13), we get that
2EE ) +3F(ED <0, (3.14)
On the other hand, due to (3.11) and (3.12) we obtain that

F(&,t) > cp(O)E(, ). (3.15)
From (3.14) and (3.15), we have that
E(§,t) < e CPOLE(E,0). (3.16)
By virtue of (3.11) and (3.16), we have that
1@ |? + (1§17 + 151D 1al? + 1§17 goa <
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Ce™ POy ()1 + (I€1% + €18 ()1,

so, we obtain the point-wise estimates of solutions to (1.1),
(1.2) in the Fourier space.

As a simple corollary of Lemma 3.1, we have the
following point-wise estimates of the fundamental
solutions G(x, t) and H(x,t) inthe Fourier space.

Lemma 3.3.G (x, t) and H(x, t) satisfy
1) G, t)| < Ce=CPO),

2) 16 (&,6)] < Ce=SPOL(IE? + |]4)z,

3) |A(E, D) < Ce=POL(IE2 + 1617,

4) |H,(£,6)] < Ce=CP®I,

h _ 8P
wnere p(f) - (1+|§|2)2'

Proof. Putting (2.4) with u; = 0in (3.1), it results that

1Ge(8, 17 + (€17 + E1DIGE, D17 < Ce PO + [81%).

It yields 1) and 2) of Lemma 3.3.
Putting (2.4) with uy = 0 in (3.1), it results that
IH:(E, 017 + (€17 + [E1HE 0| < CemPO,
It yields 3) and 4) of Lemma 3.3. ]
Now we use Lemma 3.3 to prove Proposition 3.1.

Proof of Proposition 3.1. In view of Lemma 3.3 1), we have
that

I 0¥ G () * ¢ II72< Cf |§24e~ PO p()]*dg
RT

c _ct
c [§17ke~a|p|2dg + C [€1%ke €7 |@(9)[*dE

{§:1¢1=1} {§:1§121}
11
CA+0)D 27 g 12+ CA+ )7 1 9f g 1%,

IN

IN

herek >0,1>0,l+k <s+ 1. Thus 1) is proved.
Due to Lemma 3.3 2) , it results that

119G (D) * @ I72< Cfnl EIPRUER + 181Me~ O p(9) 12 dg

IN

{§:161=1}
—nG-D-k-1 2 -1 k+1+2 2
CA+O)TP 27 g 1B+ CcA+ )7 Ao 112,

IN

herek+1>0,1>0,k+1+2 <5+ 1. Thus 2) is proved.

Next we prove 3) and 4). It follows from Lemma 3.3 3)
that

I OFH(®) * P I°< Cfnl PRSI + 1€ e PO (9|2 dg

IA

:|§121}
1 1
CA+ D2 1y 12,4 C(L+ )2 N 9F Y 117,

IN

herek>1,1>—-2,0<k+1<s—1.Thus 3) is proved.
Lemma 3.3 2) , yields that

I 0% He(8) * ¥ I12< Cf |§17*e PO P2 dE
R‘n

11
< ca+DTP 2y G4+ ca+ o ak Y 1%,
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c __ct_
c | §7kr2e 381 o) 2dg + Cf [E[%*te 47| p()|*dE
161213

et
cf jerceap@pas e[ jgpigrte w©Pds
{§:181s1} i3

herek > 0,1 >0,k +1 <s— 1. thus 4) is proved.

4. Decay Estimates for Linear Problem.
In this section we study the decay estimates of solutions to the
linear problem (1.1) and (1.2).

Theorem 4.1. Let s > 1 be an integer. Assume that u, €
HST(R™) and u; € H5~1(R"™), and put

10 =]l Uy ||Hs+1 +I Uy ||Hs—1.

Then the solution u to the problem (1.1) and (1.2) given by (2.4)
satisfies

dxu € C°([0,0)); H(R™); u € C*([0,00); H¥H(R™)

and the following energy estimate:

t
12t () 1Zss +Il Dt 3+ f 19,14 () Wss +1 02u(2) 1352 dT < CI3.
0

Proof. We have obtained the solution u of (1.1) and (1.2) given
by (2.4) and proved that it satisfies the point-wise estimate (3.1)
in the Fourier space.

From (3.14) and (3.15) we have that

%E(é"’ )+ Cp(HEE,t) < 0.

Integrate the inequality with respect to t and appeal to (3.11
), then we obtain

Eo(&,) + f, p (O)Eo(£,T)dT < CEg(§,8).  (4.1)

Multiply (4.1) by (1 + |§|®)S! and integrate the resulting
inequality with respect to & € R", then we have that
I ue(®) PZsos +1 9 W2+ f 105u,(T) W65 +1 92u(T) 126 dt < CI3.

(4.2)

(4.2) guarantees the regularity of the solution (2.4). So far we
complete the proof of Theorem 4.1.

By using Proposition 3.1 with p = 2, we obtain the following
decay estimate of ugiven by (2.4) , if initial data u, €
HS*1(R™) and u; € HS"1(R™).

Theorem 4.2. Under the same assumption as in Theorem 4.1,
then u given by (2.4) satisfies the decay estimate:

k1 s+2

k
I 0}5u(t) ||Hs+2—2kS Clo(l + k)_ 2,1<k< [T] (4.3
)

Proof. Let k = 1, m > 0 be integers, In view of (2.4), by using
1) and 3) of Proposition 3.1 with p = 2, we have that

o+ mu@] < [[0f*™G () * uo| . + [0 ™H(E®) * wy| .
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_H_m_n(l_z)
<CA+t) 2z 2w 2l

l
+C(1+ t)‘il||6,’f+m”1uo||Lz

_M_E(l_l)
+C(A+t) 2 22

Ly +2|| Jk+m+l
ER

+Cc(1+t) 2z

[l ]l 2
LZ
_k
< CA+ ) 2|lugll,z
k-1
+CA+ 672 Nl
1
+C(1+ t)‘il||6,’f+m”1uo||Lz
_bt2
+CA+DT 7 oy |,
l
< CA+072]|af ™ |,
_kt2
+CA+0)7 2 oy |,
k-1
+CA+6) 77 I (uo, unll,2

here k=1, k+m+l;<s+1, k+m+1,<s—-1.
Choose the minimal integers [, and [, satisfying

L k-1 L+2 k-1

== , = :
2 2 2 2
ie.ly =k+1,1, =1; — 2, Then we obtain that
k—1

| aXF™u(e) < Clo(1+ )" 2,

with0<m<s+2—-2k. Take sumwith0<m<s+2—
2k, we obtain (4.3) . Thus Theorem (4.2) is proved.

Remark 4.1. Under the same assumption as in Theorem 4.1, u
given by (2.4) also satisfies the following decay estimate:

k
I 05U (£) llys-1-2< Clo(1+ k) 72,0 < k < [=3]. (4.4)

"2
If we assume the initial data belong to L'(R), then by

using Proposition (3.1) with p = 1, we have the following
sharp decay estimates.

Theorem 4.3. Let s > 1 be an integer. Assume that u, €
HSTLRMNLY(R™) and u; € HS~Y(R®)NLL(R™), and put
I =l ug llgs+r +ll uqg llys-2 + (uo,ul) Il2.

Then the solution u to (1.1) and (1.2) given by (2.4) satisfies
the following decay estimates:

k-1 n
< CL(+0)7 2 5,k>1. (45)

[ETCY I

Proof. Let k = 1, m = 0 be integers, In view of (2.4) , by
using 1) and 3) of Proposition 3.1 with p = 1, we have that

o+ u@]| < [[0fF ™G (©) * uo |, + [|0X™H(E) * wy | .

kam n 1)
sCA+0) 2 2% Yuglle

l
+C(+ 072 [0 |,
_M_E(l_l)
+CA+t) 2 2% Pyl

_lt2
+CA+6)7 2 [|oy ™ |,
kn
S CA+ 072 luoll

I
+C(A+ 072 Hlugll2
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l
+C(1+ 07 Z[[9f " g,

+C(1+ t)‘lZT+2||a,’f+m“2u1||Lz

1
< CO+ 072k |,
1,42
+Cc+ t)‘%”(’),’C‘J“"“rlzul||L2
kein
+CA+ )2 4w, u)ll 2

herel; 20, L, >-2,k+m+1;<s+1,0<k+m+1[, <
éhoc1>se the smallest integers ; and [, satisfying '
l_1>k—1+ﬁ‘ lz+2>k—1+z‘
27 2 4 2 = 2 4
It yield that L=k—1+[7 , =1 —2
Thus m satisfies0 <m < s + 2 — 2k — [nT“]. Take sum with
0<m<s+2-2k- ["T“],We obtain that

k-1 n
Il 9ku(t) "Hs+2-2k-[”T“JS CL+t)" 2z %k=>1

Thus Theorem 4.3 is proved.

Remark 4.2. Apart from the above decay estimates, by similar
computation we also have the following estimate :

k n

0% ue(t) I oy mey < CL(L+ )72 5k 2 0.

Remark 4.3. The estimates in Theorem 4.2 and Theorem 4.3
indicate that the decay structure of solutions to the linear
problem (1.1), (1.2) is of regularityloss type.
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