
International Journal of Computer Applications Technology and Research 

Volume 8–Issue 08, 327-330, 2019, ISSN:-2319–8656 

DOI:10.7753/IJCATR0808.1007 

 

www.ijcat.com  327 

Comparative Study of Dynamic Programming and 

Greedy Method 

  

San Lin Aung 

Information Technology, Supporting and Maintenance Department 

University of Computer Studies (Mandalay) 

Myanmar 

 

 

 
Abstract: This paper discusses relationships between two approaches to optimal solution to problems: Greedy algorithm and dynamic 

programming.  Greedy algorithm has a local choice of the sub-problems whereas Dynamic programming would solve the all sub-

problems and then select one that would lead to an optimal solution. Greedy algorithm takes decision in one time whereas Dynamic 

programming takes decision at every stage. This paper discuss about Dynamic Programming and Greedy Algorithm to solve the 

Knapsack Problem where one has to maximize the benefit of items in a knapsack without extending its capacity. The paper discusses 

the comparison of each algorithm in terms of time different Item values. The comparison result of two algorithms are described with 

the best local result produced by the algorithm against the real exact optimal result. 

 

 

Keywords: Greedy Algorithm, Dynamic Programming, 0/1 Knapsack, Algorithm 

 

 

1. INTRODUCTION 
 
The Knapsack problem is a combinatorial optimization 

problem where one has to maximize the benefit of objects in a 

knapsack without exceeding its capacity. The objective of the 

paper is to present a comparative study of the dynamic 

programming, and greedy algorithms. The 0-1 Knapsack 

Problem is vastly studied in importance of the real world 

applications. The KP is a: given an arrangement of items, each 

with weight and a value, decide the number of each item to 

include in a capacity so that the total weight is little than a 

given capacity and the total value must as large as possible.  

Greedy strategy is to point out the initial state of the 

problem, through each of the greedy choice and get the 

optimal value of a problem solving method [8]. Dynamic 

programming is an optimization approach that transforms a 

complex problem into a sequence of simpler problems; its 

essential characteristic is the multistage nature of the 

optimization procedure. More so than the optimization 

techniques described previously, dynamic programming 

provides a general framework for analyzing many problem 

types. Within this framework a variety of optimization 

techniques can be employed to solve particular aspects of a 

more general formulation [2]. 

The paper is organized as follows: section 2 

describes The Knapsack Problem (KP). Section 3 expresses 

Dynamic Programming and Greedy algorithm. This section 

also includes example of dynamic algorithm and the basic 

idea of the greedy algorithm.  Section 4 presents Experimental 

Results and Section 5 illustrates the Conclusion. 

 

2. THE KNAPSACK PROBLEM (KP) 
 
The Knapsack Problem is an example of a combinatorial 

optimization problem, which seeks for a best solution from 

among many other solutions. Given a set of items, each with a 

mass and a value, determine the number of each item to 

include in a collection so that the total weight is less than or 

equal to a given limit and the total value is as large as 

possible. We have n of items. Each of them has a value Vi and 

a weight Wi.  

The 0-1 Knapsack Problem is vastly studied in importance 

of the real world applications that build depend it discovering 

the minimum inefficient approach to cut crude materials 

seating challenge of speculations and portfolios seating 

challenge of benefits for resource supported securitization, A 

few years ago the generalization of knapsack problem has 

been studied and many algorithms have been suggested [1]. 

Advancement Approach for settling the multi-objective0-1 

Knapsack Problem is one of them, and there is numerous 

genuine worked papers established in the writing around 0-1 

Knapsack Problem and about the algorithms for solving them.  

The 0-1 KP is extremely well known and it shows up in the 

real life worlds with distinctive application. The most extreme 

weight that we can convey the knapsack is C. The 0 – 1 KP is 

an uncommon case of the original KP problem in which each 

item can't be Sub separated to fill a holder in which that input 

part fits. The 0 – 1 KP confines the quantity of each kind of 

item xj to 0 or 1. Mathematically the 0 – 1 KP can be 

formulated as: [1, 3, 4] 

 



International Journal of Computer Applications Technology and Research 

Volume 8–Issue 08, 327-330, 2019, ISSN:-2319–8656 

DOI:10.7753/IJCATR0808.1007 

 

www.ijcat.com  328 

3. DYNAMIC PROGRAMMING AND 

GREEDY ALGORITHM 
 
Dynamic algorithm is an algorithm design method, which can 

be used, when the problem breaks down into simpler sub 

problems; it solves problems that display the properties of 

overlapping sub problems. In general, to solve a problem, it’s 

solved each sub problems individually, then join all of the sub 

solutions to get an optimal solution [2, 5].  

The dynamic algorithm solve each sub problem 

individually, once the solution to a given sub problem has 

been computed, it will be stored in the memory, since the next 

time the same solution is needed, it's simply looked up. 

Distinctly, a Dynamic algorithm guarantees an optimal 

solution.  

Dynamic Programming is a technique for solving problems 

whose solutions satisfy recurrence relations with overlapping 

subproblems. Dynamic Programming solves each of the 

smaller subproblems only once and records the results in a 

table rather than solving overlapping subproblems over and 

over again. To design a dynamic programming algorithm for 

the 0/1 Knapsack problem, we first need to derive a 

recurrence relation that expresses a solution to an instance of 

the knapsack problem in terms of solutions to its smaller 

instances. Consider an instance of the problem defined by the 

first i items, 1<=  i<= N, with:  

 

weights w1, ... , wi,  

values v1, ... , vi,  

and knapsack capacity j, 1<= j<= Capacity. 

 

3.1 Algorithm Dynamic Programming 

ALGORITHM Dynamic Programming 

 (Weights [1 ... N], Values [1 ... N], Table [0 ... N, 0 ... 

Capacity])  

//Input:  Array Weights contains the weights of all  

             items  

Array Values contains the values of all items  

Array Table is initialized with 0s; it is used to store the 

results from the dynamic programming algorithm.  

// Output: The last value of array Table (Table [N,  

 Capacity])  

contains the optimal solution of the problem for   

the given Capacity  

for i = 0 to N do  

for j = 0 to Capacity  

   if j < Weights[i] then Table[i, j]  Table[i-1, j]  

else Table[i, j]  maximum { Table[i-1, j] AND 

Values[i] + Table[i-1, j – Weights[i]]  

return Table [N, Capacity] 

 

3.2 An Elementary Example 

 
In order to introduce the dynamic-programming approach to 

solving multistage problems, in this section we analyze a 

simple example. Figure 1 represents a street map connecting 

homes and downtown parking lots for a group of commuters 

in a model city. The arcs correspond to streets and the nodes 

correspond to intersections. The network has been designed in 

a diamond pattern so that every commuter must traverse five 

streets in driving from home to downtown. The design 

characteristics and traffic pattern are such that the total time 

spent by any commuter between intersections is independent 

of the route taken. However, substantial delays, are 

experienced by the commuters in the intersections. The 

lengths of these delays in minutes, are indicated by the 

numbers within the nodes. We would like to minimize the 

total delay any commuter can incur in the intersections while 

driving from his home to downtown. [6, 7] 

 

Figure1.  Street map with intersection delays. 

 

Figure 1 provides a compact tabular representation for the 

problem that is convenient for discussing its solution by 

dynamic programming. In this figure, boxes correspond to 

intersections in the network. In going from home to 

downtown, any commuter must move from left to right 

through this diagram, moving at each stage only to an 

adjacent box in the next column to the right. We will refer to 

the ‘‘stages to go," meaning the number of intersections left to 

traverse, not counting the intersection that the commuter is 

currently in.  

 

 
Figure 2. Compact representation of the network. 

 
 



International Journal of Computer Applications Technology and Research 

Volume 8–Issue 08, 327-330, 2019, ISSN:-2319–8656 

DOI:10.7753/IJCATR0808.1007 

 

www.ijcat.com  329 

The most naive approach to solving the problem would 

be to enumerate all 150 paths through the diagram, selecting 

the path that gives the smallest delay. Dynamic programming 

reduces the number of computations by moving 

systematically from one side to the other, building the best 

solution as it goes. Suppose that we move backward through 

the diagram from right to left. If we are in any intersection 

(box) with no further intersections to go, we have no decision 

to make and simply incur the delay corresponding to that 

intersection. The last column in Figure 2 summarizes the 

delays with no (zero) intersections to go [6, 7]. 

3.3 Greedy algorithm 
 
A greedy algorithm is a straight forward design technique, 

which can be used in much kind of problems. Mainly, a 

greedy algorithm is used to make a greedy decision, which 

leads to a feasible solution that is maybe an optimal solution. 

Clearly, a greedy algorithm can be applied on problems those 

have ‘N’ number of inputs and we have to choose a subset of 

these input values those satisfy some preconditions.  

Where, the next input will be chosen if it is the most input 

that satisfies the preconditions with minimizes or maximizes 

the value needed in the preconditions. A greedy algorithm is a 

straight forward design technique, which can be used in much 

kind of problems. Mainly, a greedy algorithm is used to make 

a greedy decision, which leads to a feasible solution that is 

maybe an optimal solution [4, 8]. 

 

3.4 The basic idea of the greedy algorithm 
 
Greedy algorithm is a step by step, according to a certain 

optimization measure; each step should be able to ensure that 

the local optimal solution can be obtained. If the next data and 

partial optimal solution is no longer feasible solution, then the 

data cannot be added to the partial optimal solution until all 

the data are enumerated or cannot be added so far.  

The hierarchical processing method of the optimal solution 

which can be obtained by some kind of measure is called the 

greedy strategy. If you want to use the greedy strategy to 

solve the problem, it is necessary to solve the following two 

problems: [4, 8] 

(1) Whether the problem can be solved by greedy 

strategy; 

(2) How to determine the greedy choice strategy, to get 

the best or better solution. 

 

3.5 Algorithm Greedy Algorithm 

 

ALGORITHM GreedyAlgorithm (Weights [1 ... N], Values [1 

... N])  

// Input: Array Weights contains the weights of all items  

Array Values contains the values of all items  

// Output: Array Solution which indicates the items are  

included in the knapsack (‘1’) or not (‘0’)  

Integer CumWeight  

Compute the value-to-weight ratios ri = vi / wi, i =  

1, ..., N, for the items given Sort the items in non-

increasing order of the value-to-weight ratios for all 

items do 

if the current item on the list fits into the  

knapsack  

then  place it in the knapsack  

else  proceed to the next one 

 

4. COMPARISON RESULTS  
 

KP is a well-known optimization problem, which has 

restriction of the value either 0 (leave it) or 1 (take it), for a 

given collection of items, where each has a weight and a 

value, that to determine the items to be included in a sets, then 

the total cost is less or equal to a given capacity and the total 

profit is as max as possible.  

For testing, different file sizes are generated integers 

representing the weight and value of each item. We are test all 

of them using different array size but with the same Capacity 

size on 50, 100, 200, and 500. Sample result of testing for 

capacity = 50 is as shown in table 1 and figure 3. 

 

Table 1 Comparison for Capacity = 50 

 

Number of 

Items 

Total Value 

GA 

Total Value 

DP 

100 1360 1385 

200 3100 3320 

300 5400 5600 

400 8250 8535 

500 13500 13700 

 

 
 

Figure 3 Comparison of Dynamic Programming 

and Greedy Algorithm 

 
 



International Journal of Computer Applications Technology and Research 

Volume 8–Issue 08, 327-330, 2019, ISSN:-2319–8656 

DOI:10.7753/IJCATR0808.1007 

 

www.ijcat.com  330 

5. CONCLUSION 
 
We can conclude that dynamic programming algorithms 

outperform and the greedy and genetic algorithm in term of 

the total value it generated.  Greedy algorithm lacks with 

parallelism property whereas Dynamic Algorithm are exposed 

to parallelism. Both Greedy and Dynamic programming 

algorithm try to find out the optimal solution.  

In both algorithm an optimal solution to the problem 

contains within it optimal solutions to sub-problems. Greedy 

method work efficiently for some problems like Minimum 

Spanning tree while it is not best suited for some problem like 

Travelling Sales man ,0/1 Knapsack. Dynamic method always 

generates optimal solution but they are less efficient than 

Greedy algorithm. As Greedy algorithm are generally fast. 

Hence, paper presents a comparative study of the Greedy 

and dynamic methods. It also gives complexity of each 

algorithm with respect to time and space requirements. A 

feasible solution that does this is called an optimal solution. In 

order to solve a given problem, each problem has N inputs 

and requires finding a feasible solution that either maximizes 

or minimizes a given objective function that satisfies some 

constraints. 

 

REFERENCES 

 

[1] AuGallo, G.; Hammer, P. L.; Simeone, B. (1980). 

"Quadratic knapsack problems". Mathematical 

Programming Studies 12: 132–149. 

[2] Kleywegt, D.Papastavrou, “The Dynamic and 

Stochastic knapsack Problem,” Opns. Res, pp. 17–35, 

1998.  

[3] M. Hristakeva, D. Shrestha, “Solving the 0-1 Knapsack 

Problem with Genetic Algorithms,” IEEE Transl. 

Beijing, Science & Math Undergraduate Research 

Symposium, Indianola, Iowa, Simpson College June 

2004.  

[4] M.Lagoudakis, “The 0–1 knapsack problem—an 

introductory survey citeseer.nj.nec.com/151553.html, 

1996.  

[5] S. Martello, D. Pisinger, P. Toth “Dynamic 

Programming and Strong Bounds for the 0-1 Knapsack 

Problem,” Management Science, vol. 45, pp. 414–424, 

1999  

[6] http://en.wikipedia.org/wiki/Dynamic_programming 

[7] http://www.geeksforgeeks.org/dynamic-

programmingset-23-bellman-ford-algorithm/ 

[8] http://en.wikipedia.org/wiki/Greedy_algorithm 

 


