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Abstract: In this paper we focus on the initial-value problem of linear plate equations with memory in multi-dimensions, the decay 

structure of which is of regularity-loss property. We obtain fundamental solutions by using Fourier transform and Laplace transform. 

By virtue of the point-wise estimate of solutions in the Fourier space, we gain estimates and properties of solution operators, by 

utilizing which decay estimates of solutions to the linear problem are obtained and the decay rate can be as large as desired if the initial 

data are sufficiently smooth. 
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1. INTRODUCTION 
In this paper we consider the initial-value problem of the 

following linear plate equation with memory term in multi-

dimensional space 
nR ( 1n  ): 

2(1 ) 0,ttu u g u        (1.1) 

with the initial data 

0 1( ,0) ( ), ( ,0) ( ).tu x u x u x u x     (1.2) 

Here ( , )u u x t  is the unknown function of 

1( ,..., ) n

nx x x R   and 0t  , and represents the 

transversal displacement of the plate at the point x  and the 

time t . The term 
0

( ) ( )
t

g u g t u d        

accords with the memory term which reflects that the stress at 

an instant relies on the whole history of the strains the 

material has suffered, and g  satisfies: 

[ ]:Assumption A  

a) 
2 2,1( ) ( )g C R W R   ,  

b) 0 1( ) 0, ( ) ( ) ( ),g s C g s g s C g s      

2| ( ) | ( ), ,g s C g s s R     

c) 
3

0
1 ( ) , ,

t

g s ds C t R     

where ( 1,2,3)iC i   are positive constants. 

 
In [8], Liu and S. Kawashima learned the decay property of a 

semi-linear plate equation with memory-type dissipation, 

whose linear part is given by: 
2 0,ttu u u g u              (1.3) 

here the dissipation is given by the memory term g u . In 

that paper, the authors obtained the global existence and the 

optimal decay estimates of solutions by introducing a set of 

time-weighted Sobolev spaces and using the contraction 

mapping theorem. They also showed that the dissipative 

structure is characterized by the function  
2

1 4

| |
( ) ,

1


 




∣∣
 

here 1( )   is introduced in the point-wise estimate in the 

Fourier space of solutions to the corresponding linear problem. 

1( )   decides that the energy restricted in the either lower-

frequency or higher-frequency domains decays polynomially 

and the decay property is of regularity-loss type 

 

In [13], Liu and W. Wang studied the point-wise estimate of 

solutions to a dissipative wave equation 

0,tt tu u u           (1.4) 

and they showed that the dissipative structure in (1.4) is 

characterized by the function 

2

2 2

| |
( ) .

1


 




∣∣
 

This 2 ( )   determines that the energy restricted in the 

lower-frequency domain decays polynomially and 

exponentially in the higher-frequency domain and the decay 

property is of standard type instead of regularity-loss type. For 

more studies of such decay structure, we refer to [5, 6, 7, 15, 

16, 17]. 

 

To have a better comparison of the dissipative structures, we 

study the equation (1.1). 

Same as the above memory plate equation (1.3), the plate 

equation (1.1) is also of regularity-loss property. The decay 

structure of the regularity-loss type is characterized by the 

property 
4

1
( ) ,

1
 




∣∣
where ( )   is introduced in 

the point-wise estimate in the Fourier space (3.1) of solutions 

to the linear problem. It is obvious that the decay structure is 

very weak in the higher-frequency domain since 

( ) 0    as   . In fact ( )   determines that 

the energy restricted in the lower-frequency domain decays 
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exponentially and polynomially in the higher-frequency 

domain and the decay property is of regularity-loss type. 

There is one point worthy to be mentioned. The solutions in 

[8], [13] and this paper all decay polynomially. However, the 

dissipative structures are different. The decay rates in [8] and 

[13] are fixed, while the decay rate in this paper can be as 

large as desired if only the initial data are sufficiently smooth. 

For more studies on aspects of dissipation of plate equations, 

we refer to [1, 2, 9, 10]. Also, as for the study of decay 

properties for hyperbolic systems of memory-type dissipation, 

we refer to [3, 4, 11, 12, 14]. 

 

The prime objective of this paper is to study the decay 

estimates of solution to the initial-value problem (1.1)-(1.2). 

For our problem, due to the existence of memory term, it is a 

difficult task to obtain precisely the solution operator or its 

Fourier transform. While, by using Fourier transform and 

Laplace transform, we obtain the solution u  to the linear 

problem (1.1)-(1.2) given by (2.4) and the solution operators 

( )G t   and ( ) .H t   Furthermore, by employing the 

energy method in the Fourier space, we gain the point-wise 

estimate in the Fourier space of solutions to the problem (1.1)-

(1.2). Appealing to this point-wise estimate, we obtain the 

point-wise of solution operators and their properties. 

Therefore, the decay estimates of solutions to (1.1)-(1.2) are 

achieved. 

 

The contents of the paper are as follows. Solution formula are 

obtained in section 2. In section 3, we obtain the estimates and 

properties of solutions operators, which is based on the point-

wise estimate in the Fourier space of solutions to the linear 

problem. In the last section, we prove the decay estimates of 

solutions to the linear problem by virtue of the properties of 

solution operators. 

 

Before the end of this section, we give some notations to be 

used below. Let the Fourier transform of f  indicated as 

[ ]fF  : 

2

1ˆ[ ]( ) ( ) : ( ) ,

(2 )

n

ix

n R
f f e f x dx 



   F  

and we denote its inverse transform as 
1F . 

 

Let the Laplace transform of f  indicated as [ ]fL  : 

0
[ ]( ) : ( ) ,tf e f t dt


 L  

and we denote its inverse transform as 
1L . 

 

( )(1 )p p nL L R p     is the usual Lebesgue space 

with the norm pL
P P .  

Z  denotes the totality of all the non-negative integers.  

, ( )m p nW R , m Z , [1, ]p   denote the usual 

Sobolev space with its norm 

,

1

0

: ( ) .m p p

m
k p p

xW L
k

f f


 P P P P  

In particular, we use 
,2m mW H . Here, for a nonnegative 

integer k , 
k

x  denotes the totality or each of all the k -th 

order derivatives with resect to 
nx R . Also, 

( ; ( ))k m nC I H R  denotes the space of k -times 

continuously differentiable functions on the interval I  with 

values in the Sobolve space ( )m m nH H R . 

 

Finally, in this paper, we denote every positive constant by the 

same symbol C  or c  without confusion. [ ]  is Gauss' 

symbol. 

 

 

2. Solution formula 
In this section, our purpose is to obtain the solution formula of 

the problems (1.1)-(1.2). Suppose ( , )G x t  and ( , )H x t  

are solutions to the following problems, 

2(1 ) 0,

( ,0) ( ),

( ,0) 0.

tt

t

G G g G

G x x

G x



      



 

        (2.1) 

2(1 ) 0,

( ,0) 0,

( ,0) ( ).

tt

t

H H g H

H x

H x x

      



 

      (2.2) 

Apply Fourier transform and Laplace transform to (2.1) and 

（2.2）, then we have formally that  

1

4 2
ˆ ( , ) [ ]( , ),

1 [ ]( )
G t C t

g


 

  


  ∣∣

L
L

1

4 2

1ˆ ( , ) [ ]( , ).
1 [ ]( )

H t C t
g

 
  


  ∣∣

L
L

 

here C  is the constant determined by the initial data in (2.1) 

and (2.2). 

 

Now we just compute ˆ ( , )G t , similarly we could get 

ˆ ( , )H t . First, apply Fourier transform to (2.1), we can 

obtain the following equation: 

¶

µ

4 ˆ ˆ(1 ) 0,

ˆ ˆ( ,0) ( ),

( ,0) 0.

tt

t

G G g G

G

G



  



     







∣∣

 

then apply Laplace transform to above equation, we can get 

¶ 4

0 0

ˆ(1 )t t

ttG e dt Ge dt 
 

   ∣∣  

0

ˆ( ) 0,tg G e dt


    

by computing, we have that 

4 2 ˆ(1 ) [ ]( )C G      ∣∣ L  

ˆ[ ]( ) [ ]( ) 0,g G   L L  
so 
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4 2
ˆ[ ]( )

1 [ ]( )

C
G

g




  


  ∣∣
L

L
, 

finally, we have formally that 

1

4 2
ˆ ( , ) [ ]( , ).

1 [ ]( )
G t C t

g


 

  


  ∣∣

L
L

 

Similarly, 

1

4 2

1ˆ ( , ) [ ]( , ),
1 [ ]( )

H t C t
g

 
  


  ∣∣

L
L

 

here C  is a constant determined by the initial data in (2.1). 

.Lemma2 1  

ˆ ( , )G t  and ˆ ( , )H t  exist. 

Proof. 

We only prove ˆ ( , )G t  exists; similarly we could prove 

ˆ ( , )H t  exists.  

Denote 
2 4( ) : 1 | | [ ]( )F g      L . 

To prove 
1[ ]

( )F





L  exists, we need to consider the zero 

points of ( )F  . Denote i    , 1C   , 1C  is 

same as that in Assumption [A] b), then [ ]( )g L  exists. 

Assume that 1 1 1i     is a zero point of ( )F   and 

1 1C   , then 1  and 1  satisfy 

1

1

2 2 4

1 1 1

1
0

1 1
0

1 1

Re ( ) 1 | |

cos( ) ( ) 0,

Im ( ) sin( ) ( )

2 0.

t

t

F

t e g t dt

F t e g t dt





   



 

 







     

 

 

  




(2.3) 

We claim that 1 0  . Now we prove the claim by 

contradiction.  

 

Assume that 1 0  . If 1 0  , then in view of 

0
( ) 1g t dt



 , we obtain that  

12 4

1 1
0

Re ( ) 1 | | ( ) 0,tF e g t dt  


      

it yields contradiction with 1(2.3) . 

 

If 1 0  , then we have that  

11
1 1 1

0
1

sin( )
Im ( ) 2 ( ) .( )tt

F e g t dt
  




    

Next we prove that 11

0
1

sin( )
( ) 0.tt

e g t dt




   

Denote 11

2

1| |

0
1

sin | |
( )

| |

m

t

m

t
a e g t dt








  , and we will 

prove 1{ }m ma 

  is a convergent sequence. By direct 

computation, we have that 

1a   

1
1 11

( )
| |1| |

0
1 1

sin | |
( ) ( ) .

| | | |
( )

t
tt

e g t e g t dt

 
 

 

 

 
    

Since 1 ( ) 0( )t

t e g t  , we have that  

11| |
1

0
0 ( )ta te g t dt


    . 

Similarly,  

1

1

2

| | 1
21

1| |

sin | |

| |

m

mm m

t
a a

 












   

1
1 1

( )
| |

1

( ) ( ) ,
| |

( )
t

te g t e g t dt




  



 
    

so we have that  

11

1

2

| |

21

| |

0 ( )

m

t

mm ma a te g t dt

 










    . 

It yields that 

11

2

| |
20

1 1

(0)
0 ( ) ,

( )

m

t

m

g
a te g t dt

C






  
  

so 1{ }m ma 

  is a bounded and monotonic increasing sequence. 

Since 1 0a  , 1( ) : lim 0m
m

a a


  . Thus we proved 

that 11

0
1

sin( )
( ) 0.tt

e g t dt




   Also, because  

1 0   and 1 0  , 

it results that 1Im ( ) 0F   . This contradicts with 2(2.3) . 

Thus by contradiction we proved the claim 1 0  . 

 

Combining the two cases, we know that 
( )F




 is analytic in 

{ ;Re( ) 0}  £ . Take i    , 

max{Re }s  , here { }s  is the set of all the singular 

points of ( )F  , then by standard calculation we can prove  

that 
1 ( )

( )
t

F





  
 
 

L  converges. 

 The constant C  in the expression of ˆ ( , )G t  and   are 

determined by the initial data of ( , )G x t . So far we 

complete the proof.                                                         W 
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In consideration of Lemma 2.1 and Duhamel principle, the 

solution to the problem (1.1)-(1.2) can be expressed as 

following： 

0 1( ) ( ) ( ) .u t G t u H t u      (2.4) 

3. Decay properties of solution operators 
In this section, we think of a way to obtain the next decay 

estimates of the solution operators ( )G t   and ( )H t   

arising in the solution formula (2.4). 

 

Proposition 3.1 

Let k  and l  be integers, 
1( )s nH R  , 

1( )s nH R  , then the next estimates hold: 

1) 2( )k

x L
G t  P P  

2 2
4(1 ) ,
l

Ct l k

xL L
Ce C t 


    P P P P  

for 0k  , 0l  , 1l k s   . 

2) 2( )k

x t L
G t  P P  

2 2

24(1 ) ,
l

Ct l k

xL L
Ce C t 


     P P P P  

for 0k  , 0l  , 1.l k s    

3) 2( )k

x L
H t  P P  

2 2

1

4 2(1 )
l

Ct l k

xL L
Ce C t 

 
    P P P P , 

for 0k  , 2 0l   , 0 1.l k s     

4) 2( )k

x t L
H t  P P  

2 2
4(1 )
l

Ct l k

xL L
Ce C t 


    P P P P , 

for 0k  , 0l  , 1.l k s    

 

To testify Proposition 3.1, the most important step is to gain 

the point-wise estimates of the fundamental solutions in the 

Fourier space. In fact we can obtain this by using the 

following point-wise estimate of solutions to the linear 

problem (1.1)-(1.2). 

 

Lemma 3.2 

 Assume u  is the solution of (1.1)-(1.2), then it satisfies the 

following point-wise estimate in the Fourier space: 

µ 2 4 2

( ) 2 4 2

1 0

ˆ ˆ( , ) (1 ) ( , ) ( )( , )

ˆ ˆ( ) (1 ) ( ) ,( )
t

C t

u t u t g u t

Ce u u 

   

  

  

  

W∣ ∣ ∣∣∣ ∣

∣ ∣ ∣∣∣ ∣
 

here 
4

1
( )

1
 




∣∣
. 

 

To prove Lemma 3.2, we denote some notations. For any real 

or complex-valued function ( )f t , we define 

0
( )( ) : ( ) ( ) ,

t

g f t g t f d      

0
( )( ) : ( )( ( ) ( )) ,

t

g f t g t f f t d       

2

0
( )( ) : ( ) ( ) ( ) .

t

g f t g t f t f d    W ∣ ∣  

We have the following lemma by direct calculation, which is 

useful in obtaining our point-wise estimate of solution in the 

Fourier space. 

 

Lemma 3.2 

For any function ( )k C R , and any 
1,2 (0, )W T  , it 

holds that 

 

1) 
0

( )( ) ( )( ) ( ) ( )
t

k t k t k d t        , 

 

2) Re{( )( ) ( )}tk t t   

21 1
( ) ( ) ( )( )

2 2
k t t k t    W∣ ∣  

2

0

1
{( )( ) ( ( ) ) ( ) }

2

td
k t k d t

dt
     W ∣ ∣ , 

 

3) 
2

0
( ) ( ( ) )( )( )

t

k k d k t      W∣ ∣ ∣ ∣ ∣∣ . 

 

Next we will obtain the point-wise estimates in the Fourier 

space of solutions to the problem  (1.1)-(1.2). 

 

Proof of Lemma 3.2. 

Step1: By using Fourier transform to (1.1) we get the 

following equality: 
4ˆ ˆ ˆ(1 ) 0.ttu u g u    ∣∣   (3.2) 

Multiplying (3.2) by ˆ
tu  we obtain the next equality by taking 

the real part, 

4ˆ ˆ ˆ ˆ(1 ) 0.{ ( )}t ttRe u u u g u    ∣∣  

It yields that 

2 4 21 1
ˆ ˆ ˆ ˆ{ (1 ) } { } 0.

2 2
t t tu u Re g uu    ∣ ∣ ∣∣∣∣  

                                                                   (3.3) 

To the term ˆ ˆ{ }tRe g uu  in (3.3) apply 2) in Lemma 3.3 

we have that 

21 1
ˆ ˆ ˆ ˆ{ } ( ) ( )( )

2 2
tRe g uu g t u g u t    W∣∣  

2

0

1
ˆ ˆ( )( ) ( ) .

2
{ }

td
g u t g d u

dt
   W ∣∣  

We denote 

2 4 2 2

1
0

ˆ ˆ ˆ ˆ( , ) (1 ) ( ( ) ) ,
t

tE t u u g u g s ds u      W∣ ∣ ∣∣∣∣ ∣∣

2

1
ˆ ˆ( , ) ,F t g u g u   W∣∣  

then we have that 

1 1( , ) ( , ) 0.E t F t
t

 


 


            (3.4) 

Step 2:  Multiplying (3.2) by ˆ{ ( ) }tg u   and we obtain 

the next equality by taking the real part, 
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4ˆ ˆ ˆ ˆ( ) (1 ) 0.{ }{ }t ttRe g u u u g u      ∣∣  

It results that 

21
ˆ ˆ ˆ{ } {( ) }

2
t t ttg u Re g u u  ∣ ∣

4 ˆ ˆ{(1 ) ( ) } 0.tRe u g u   ∣∣ (3.5) 

Due to ˆ ˆ ˆ( ) (0)tg u g u g u    , the second term in 

(3.5) yields that 

ˆ ˆ{ ( ) }tt tRe u g u 

ˆ ˆ ˆ ˆ{ ( ) } { ( ) }t t t t ttRe u g u Re u g u      

ˆ ˆ ˆ ˆ ˆ{ ( ) } (0) ( ){ ( )}t t t t t tRe u g u Re u g u g u     

2ˆ ˆ ˆ ˆ ˆ{ ( ) } { (0) ( ) }.t t t t t tRe u g u Re g u u g u     ∣ ∣

 
We denote 

2

2

1
ˆ ˆ ˆ( , ) { ( ) },

2
t tE t g u Re u g u    ∣ ∣

2

2
ˆ( , ) (0) ,tF t g u  ∣ ∣  

4

2
ˆ ˆ ˆ ˆ( , ) { ( ) (1 ) ( ) },t t tR t Re u g u u g u      ∣∣

then obtain that 

2 2 2( , ) ( , ) ( , ).E t F t R t
t

  


 


        (3.6) 

Step 3: Multiplying (3.2) by û  and we obtain the next 

equality by taking the real part, 

4ˆ ˆ ˆ ˆ{ ( (1 ) )} 0.ttRe u u u g u    ∣∣  

It yields that 

2 4 2ˆ ˆ ˆ ˆ| | (1 | | ) | |{ }t t tRe u u u u     

ˆ ˆ 0.{ }Re g uu    (3.7) 

Due to 1) in Lemma 3.3 , we obtain that 

2

0
ˆ ˆ ˆ ˆ ˆ{ } ( ( ) ) { }.

t

Re g uu g s ds u Re g uu    ∣∣  

We denote 

3
ˆ ˆ( , ) { },tE t Re u u 

4 2 2

3
0

ˆ ˆ( , ) (1 ) ( ( ) ) ,
t

F t u g s ds u    ∣∣∣∣ ∣∣

2

3
ˆ ˆ ˆ( , ) { },tR t u Re g uu   ∣ ∣  

then (3.7) yields that 

3 3 3( , ) ( , ) ( , ).E t F t R t
t

  


 


   (3.8) 

Define 
4

1
( )

1
 




∣∣
, and denote 

1 2 3( , ) ( , ) ( )( ( , ) ( , )),E t E t E t E t         

1 2 3( , ) ( , ) ( )( ( , ) ( , )),F t F t F t F t           

2 3( , ) ( )( ( , ) ( , )),R t R t R t         

where ,   are positive constants, then (3.4), (3.6) and (3.8) 

yield that 

( , ) ( , ) ( , ).E t F t R t
t

  


 


    (3.9) 

We introduce Lyapunov functionals: 
2 4 2

0
ˆ ˆ ˆ( , ) | | (1 | | ) | | ,tE t u u g u     W

2

0
ˆ ˆ( , ) .F t g u g u  W ∣∣  

We know that there exist some positive constants ic  (i=1,2,3) 

from the definitions of 1( , )E t  and 1( , )F t , such that 

the following inequalities hold: 

1 0 1 2 0

1 3 0

( , ) ( , ) ( , ),

( , ) ( , ).

c E t E t c E t

F t c F t

  

 

 



  (3.10) 

On the other hand, 
2 2

2
ˆ ˆ ˆ| ( , ) | (| | | | ),tE t C u u g u    W

2 2

3
ˆ ˆ| ( , ) | (| | | | ),tE t C u u    

2 3| ( )( ( , ) ( , )) |E t E t       

4 0( ) ( , ).c E t     

Choose ,   properly small such that 

1 2
4 ( ) ( , )

2 2

c c
c min   ,  

from (3.10) we have that 

1 2
0 0

3
( , ) ( , ) ( , ).

2 2

c c
E t E t E t     (3.11) 

By virtue of (3.10) and noticing that 
0

0 ( ) 1
t

g s ds  , it 

is not hard to prove that 

3 0( , ) ( , )F t c F t    

2 4 2ˆ ˆ( ) (0) | | (1 | | ) | | .
2

{ }tg u u


    

                                                (3.12) 
By virtue of Lemma 3.3, we have that  

2 4 2

2
ˆ ˆ| ( , ) | | | (1 | | ) | |tR t u u        

4

, 0(1 | | ) ( , ),C F t     

and 
2 2

3
ˆ ˆ ˆ| ( , ) | | | | | ,tR t u u C g u    W  

where , ,    are positive constants. Then it is easy to get 

that 
2ˆ| ( , ) | ( ){( ) | |tR t u       

4 2ˆ( )(1 | | ) | |u    
4

, 0
ˆ(1 | | ) ( , ) }C F t C g u        W  

2 2ˆ ˆ( ) ( ) | | ( ) | |tu u        

, , 0( ) ( , ).C F t       

.We claim that there exist , , , ,      such that 

1
| ( , ) | ( , ).

2
R t F t        (3.13) 
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First choose 
1

8
  , 

1
(0)

4
g  , 

1
(0)

32
g  , 

1
(0)

4
g  , then the next three inequalities hold: 

1
,

4
   

1
(0) ,

2
g   

3 , ,

1
( ) .

2
c C      

So as to prove (3.13) (here (3.10) is also considered), it 

suffices to choose   suitably small such that 

3 1 2

, , 4 4

1
(1 (0)) { , , }.

4 2 2 2

c c c
g min

C c c  

   

Due to (3.13) and (3.9), we get that 

1
( , ) ( , ) 0.

2
E t F t

t
 


 


   (3.14) 

On the other hand, due to (3.11) and (3.12) we obtain that 

( , ) ( ) ( , ).F t c E t             (3.15) 
From (3.14) and (3.15), we have that 

( )( , ) ( ,0).C tE t e E           (3.16) 
By virtue of  (3.11) and (3.16), we have that 

2 4 2ˆ ˆ ˆ| | (1 | | ) | |tu u g u   W

( ) 2 4 2

1 0
ˆ ˆ| ( ) | (1 | | ) | ( ) | ,( )C tCe u u        

so, we obtain the point-wise estimates of solutions to  (1.1)-

(1.2) in the Fourier space.   W 

 

As a simple corollary of Lemma 3.2, we have the following 

point-wise estimates of the fundamental solutions ( , )G x t  

and ( , )H x t  in the Fourier space. 

 

Lemma 3.4 

 ( , )G x t  and ( , )H x t  satisfy 

 

1). 
( )ˆ| ( , ) | C tG t Ce    ; 

 

2). 

1

( ) 4 2ˆ| ( , ) | (1 | | )C t

tG t Ce     ; 

 

3). 

1

( ) 4 2ˆ| ( , ) | (1 | | )C tH t Ce   


  ; 

 

4). 
( )ˆ| ( , ) | C t

tH t Ce    , 

where 
4

1
( )

1 | |
 





. 

 

Proof. 

Putting (2.4) with 1 0u   in (3.1), it results that 

2 4 2ˆ ˆ| ( , ) | (1 | | ) | ( , ) |tG t G t     
( ) 4(1 | | ),C tCe      

it yields 1) and 2). 

Putting (2.4) with 0 0u   in (3.1), it results that 

2 4 2 ( )ˆ ˆ| ( , ) | (1 | | ) | ( , ) | ,C t

tH t H t Ce         

it yields 3) and 4).  W 

 

Next we use Lemma 3.4  to prove Proposition 3.1 

 

Proof of  Proposition 3.1: With a view of 1) in Lemma 

3.4 , we have that 

2

2( )k

x L
G t  P P

2 ( ) 2ˆ| | | ( ) |
n

k C t

R
C e d     

2 22

{ :| | 1}
ˆ| | | |

C
t

kC e d
 

  



           

42 22| |

{ :| | 1}
ˆ| | | ( ) |

Ct

kC e d

 
   




 

2 2

2 22(1 ) ,
l

Ct k l

xL L
Ce C t 


    P P P P  

here 0k  , 0l  , 1l k s   . Thus 1) is proved. 

By virtue of 2), 3) and 4) in Lemma (3.4) ,  2), 3) and 4) in 

Proposition 3.1 can be similarly proved.  W 

 

All material on each page should fit within a rectangle of 18 x 

23.5 cm (7" x 9.25"), centered on the page, beginning 2.54 cm 

(1") from the top of the page and ending with 2.54 cm (1") 

from the bottom.  The right and left margins should be 1.9 cm 

(.75”). The text should be in two 8.45 cm (3.33") columns 

with a .83 cm (.33") gutter. 

4. Decay estimates for linear problem  
In this section, we study the decay estimates of solutions of 

the linear problem  (1.1)-(1.2). 

Theorem 4.1. 

Let 1s   be an integer. Suppose that 
1

0 ( )s nu H R  

and 
1

1 ( )s nu H R , and set 

1 10 0 1: .s sH H
I u u  P P P P Then the solution u  of the 

problem  (1.1)-(1.2) given by (2.4) satisfies that 
0 1 1 1([0, ); ( )) ([0, ); ( )),s n s nu C H R C H R    

and the following energy estimate: 

1 1

2 2( ) ( )s st H H
u t u t P P P P

3 1

2 2 2

0
0
( ( ) ( ) ) .s s

t

t H H
u u d CI      P P P P    

Proof. We have obtained the solution u  of (1.1)-(1.2) given 

by (2.4) and proved that it satisfies the point-wise estimates 

(3.1) in the Fourier space. Due to (3.14) and (3.15) we obtain 

that 

( , ) ( ) ( , ) 0.E t C E t
t

   


 


Integrate the above 

inequality with respect to t  and use the inequality (3.11), so 

we have that 

0 0 0
0

( , ) ( , ) ( , ) ( ,0).
t

E t t E d CE        (4.1) 

Multiply (4.1) by 
2 1(1 )s ∣∣  and integrate the resulting 

inequality with respect to 
nR  , then we obtain that 
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2 1

0(1 ) ( , )
n

s

R
E t d   ∣∣

2 1

0
0

(1 ) ( , ) ( , )
n

t
s

R
t E d d        ∣∣

2 1

0(1 ) ( ,0) ,
n

s

R
C E d    ∣∣  

it yields that 

1 1

2 2( ) ( )s st H H
u t u t P P P P

3 1

2 2 2

0
0
( ( ) ( ) ) .s s

t

t H H
u u d CI      P P P P  (4.2) 

(4.2) guarantees the regularity of the solution (2.4). So far we 

complete the proof of Theorem 4.1.  W 

 

By using Proposition 3.1 we obtain the following decay 

estimates of u  given by (2.4), if initial data 

1

0 ( )s nu H R  and 
1

1 ( )s nu H R . 

 

Theorem 4.2. 

With the same conditions as Theorem 4.1, if d Z , then 

u  given by (2.4) satisfies the following decay estimate: 

1
4

0( ) (1 ) ,s k d

d

k

x H
u t CI t  



  P P   (4.3) 

here 0k  , 0d  , 1k d s   ; 

if d Z , the following decay estimate holds: 

[ ]
4

0( ) (1 ) ,s k d

d

k

x H
u t CI t 



  P P      (4.4) 

for 0k  , 0d  , [ ]k d s  . 

 

Proof. 

Assume 0k  , 0m   are integers. By using (2.4) and 

applying 1) and 3) in Proposition 3.1, we have that 

2( )k m

x L
u tP P

2 20 1( ) ( )k m k m

x xL L
G t u H t u      P P P P  

1

1
2 2

( 1) 4
0 0(1 )

l

k m lC t

xL L
Ce u C t u


     P P P P

2

2
2 2

1

( 1) 4 2
1 1( 1)

l

k m lC t

xL L
Ce u C t u

 
     P P P P  

2

(1 )

0 1( , )C t

L
Ce u u  P P  

1

1
2

4
0(1 )

l

k m l

x L
C t u


   P P

2

2
2

1

4 2
1(1 ) ,

l

k m l

x L
C t u

 
   P P  (4.5) 

here 1 0l  , 2 2,l    1 1k m l s    , 

20 1k m l s     . 

Choose the minimal integers 1l  and 2l  satisfying 

1 2 1
, ,

4 4 4 2 4

l ld d
    

 
i.e. 

1 2 1

, ;
, 2.

[ ] 1, ,

d d Z
l l l

d d Z






  

 
 

At the same time, the next inequality holds: 

(1 ) 4(1 ) .
d

C te C t


     

So if d Z , we obtain from (4.5) that 

2
4

0( ) (1 ) ,
d

k m

x L
u t CI t


  P P  

for 0 1m s k d     . Take sum with 

0 1m s k d     , we get (4.3). 

If d Z , we obtain from (4.5) that 

2
4

0( ) (1 ) ,
d

k m

x L
u t CI t


  P P  

for 0 [ ]m s k d    . Take sum with 

0 [ ]m s k d    , then we get (4.4). W 
 

Remark 1. With the same conditions as Theorem 4.1, through 

the similar proof to Theorem 4.2 we have the following 

estimates: 

if d Z , 1
4

0( ) (1 ) ,s k d

d

k

x t H
u t CI t  



  P P    

for 0k  , 0d  , 1k d s   ; 

if d Z , 2 [ ]
4

0( ) (1 ) ,s k d

d

k

x t H
u t CI t  



  P P   

for 0k  , 0d  , [ ] 2k d s   . 

Remark 2. In the special case d k  in Theorem 4.2, we 

obtain the following estimate: 

1 2
4

0( ) (1 ) ,s k

k

k

x H
u t CI t 



  P P    

here 0k  , 2 1k s  . 

Remark 3. The estimates in Theorem 4.1 and Theorem 4.2 

indicate that the decay structure of solutions to the linear 

problem (4.1)-(4.2) is of regularity-loss type. To have 
4

d
-

order decay, we have to lose d -order regularity. 

Remark 4. The condition c) in Assumption [A] plays a key 

role to obtain the dissipative structure in this paper. If c) is 

weakened to 
0

1 ( ) 0
t

g s ds  , then the dissipative 

structure would be totally different. Take memory kernels 

1( ) tg t a e    and 2 ( ) tg t e    ( 1a   and   

are constants) as examples, by direct calculation we can see 

the difference between the two dissipative structures, which in 

some way reflects the optimality of the dissipative structure in 

this paper. 
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