
International Journal of Computer Applications and Technology (2278 - 8298) 

Volume 1– Issue 1, 2012, 13-19 

 

13 

 

 

Design Analysis of Autonomous Air Traffic Flight 

Control System 

D. Vasumathi 

Department of Computer 

Science and Engineering,  

JNTU Hyderabad,  

India. 

P. Rajarajeswari 

Department of Computer 

Science and Engineering, 

Madanapalle Institute of 

Technology and Science, 

Madanapalle, India 

A. Ramamohan Reddy 

Department of Computer 

Science and Engineering, 

S.V.University, Tirupathi, India 

 

Abstract: Software architectural design, also known as top-level design, describes the software top-level structure and organization 

and identifies the various components. The concept of an automated air traffic flight control system which controls airplanes requires a 

high degree of operational integrity and availability. One possible solution to alleviate air travel congestion could be the automation of 

air traffic control and allowing it to have direct control over airplane flight paths. Such a system would, in theory, reduce the workload 

of the flight crew and the air traffic controllers, as well as increase traffic flow. This paper presents several analyses of such a 

conceptual system from a “net-centric” perspective. First, the system‟s operation is described from the context of a flight, to provide a 

basis for the discussion of various system models and views. Spiral development model stages as well as related events which occur 

during system design give an idea of how the system would be developed incrementally. Formal methods can be used to improve 

software security but can be costly and also have limitations of scale, training, and applicability. To compensate for the limitations of 

scale, formal methods can be applied to selected parts or properties of a software project, in contrast to applying them to the entire 

system.  The concept of object-oriented development (OOD) has gradually matured from being presented. The OOD can still be 

regarded as one of the mainstream development models.  UML includes a standardized graphical notation used to create an abstract 

model of a system, referred to as a UML model. We describe AATFCS system with UML modeling techniques. AADL is an 

extensible and allows us to introduce new properties; we can define a set of properties specific to the data state variable. In this paper 

we present the AADL language for AATFCS system. 

Keywords: Software Architecture, Autonomous Air traffic Flight control system, Spiral development, UML modeling analysis, 

Architecture analysis design language. 

 

1. INTRODUCTION 
The architectural design allocates requirements to components 

identified in the design phase. Architecture describes 

components at an abstract level, leaving their implementation 

details unspecified. Some components may be modeled, 

prototyped, or elaborated at lower levels of abstraction. Top-

level design activities include the design of interfaces among 

components in the architecture and can also include database 

design.  

Formal methods are the incorporation of mathematically 

based techniques for the specification, development, and 

verification of software. The OOD can still be regarded as one 

of the mainstream development models. Obviously we have 

approaches to describe software architecture according to such 

concept. As we know, in software engineering, the famous 

Unified Modeling Language (UML) (Booch, 2005) is a non-

proprietary specification language based on the concept of 

OOD for object modeling. The UML is an effort to create a 

standard, generic, graphical modeling language for software 

systems, as a general-purpose modeling language, UML 

includes a standardized graphical notation used to create an 

abstract model of a system, referred to as a UML model. A 

software designer can describe the system architecture 

employing UML and kinds of models. 

       Air traffic congestion is rapidly becoming one of the 

major commercial transportation challenges at the start of the 

21st century as more people take to the skies for their travel 

needs. “Forecasts indicate a significant increase in demand, 

ranging from a factor of two to three by 2025…. In short, U.S. 

competitiveness depends upon an air transportation system 

that can significantly expand capacity and flexibility, in the 

presence of weather and other uncertainties, while 

maintaining safety and protecting the environment”[1]. 

We describe Autonomous Air traffic flight control System in 

section 2. In section 3 we provide AATFCS System 

Architecture Modeling and Analysis. We present the design of 

architecture for an autonomous air traffic control system using 

Uml modeling techniques in section 4.In section 5 we provide 

AADL for an AATFCS system. We presented conclusions in 

section 6. 



International Journal of Computer Applications and Technology (2278 - 8298) 

Volume 1– Issue 1, 2012, 13-19 

 

14 

 

2. Autonomous Air Traffic Flight Control 

System Description 
Although the system description of the AATFCS System 

description provide the information is included here in order 

to give clarity and context for the analyses of this system. 

2.1 AATFCS System Overview 
The Automated Air Traffic flight Control System consists of 

two primary system element types: ground stations and 

airplanes. The two types are connected via an air-to-ground 

wireless network and are in constant communication with the 

other nodes in the network. Each system element type also 

communicates with other network members of its own type: 

ground stations within the vicinity of an airport are linked to 

each other and airplanes communicate with other airplanes 

within range. Ground stations have additional interfaces with 

secondary system elements such as external data sources. 

Airplanes possess their own internal networks which connect 

on-board subsystems to flight control computers. Each 

element and its architecture and interfaces are described in 

further detail in this section. A top-level diagram of the 

system is shown in Figure 1. 

The pilot is assumed to take control at this point for Free 

Flight during cruise for the reasons previously mentioned in 

the Background section. However, the pilot could decide to 

allow the automatic model to continue computing the flight 

vector and fly the plane based on the last valid commands 

received and its current position, with updates provided by 

any “waypoint” ground stations it connects to and 

authenticates with en route. The airplane does not attempt to 

connect with another airplane in an ad-hoc air-to-air network 

until it reaches its destination. As the airplane enters the 

airspace of the destination airport, it once again connects to 

and authenticates with the local air-to-ground and air-to-air 

networks. 

The system performs the same actions as during take-off, 

though in reverse. The pilot, if in command, relinquishes 

control of the airplane after the data from the local networks 

has been validated. The airplane then automatically slots itself 

for approach and landing, in accordance with the ground 

station‟s instructions. After landing, the airplane taxies off the 

runway and transitions back to pilot control before reaching 

the gate. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 – Automated Air Traffic Flight Control System 

 

3. AATFCS System Architecture Modeling 

Analysis 
Architectural modeling is an important enabler for the 

understanding and comprehension of a complex system 

because it can provide unambiguous representations or views 

of the system‟s architecture and behavior. One definition of a 

model is “a virtual or physical representation of an entity for 

purposes of presenting, studying and analyzing its 

characteristics such as appearance, behavior or performance 

for a prescribed set of operating environment conditions and 

scenarios.” Any system can be modeled from numerous points 

of view which are essentially projections of the system onto 

one or more operational domains. It should be noted, 

however, that although models may adequately represent the 

system for the purpose of further design and implementation, 

they are still a finite set of projections which limit their ability 

to exhaustively describe the system and its behavior because 

of the heuristic which states that “a model is not reality.” It is 

just as important to be aware of the models‟. 

Irrespective of their limitations, it is important to develop 

system models early in the development phase of a program in 

order for stakeholders – people with an interest in the 

development or outcome of the design – to develop a common 

understanding of what the system will look like and how it 

will operate. Without this, errors from misinterpreting or 

misunderstanding the system‟s characteristics creep into the 

design and create nontrivial problems (often very big 

problems) in terms of schedule and cost when the errors are 

discovered and need to be fixed. In fact, poor communications 

has been cited as the number. 

A picture is worth a thousand words‟ is a classic heuristic and 

a good set of system models can be worth their development 

cost by preventing errors which, if undiscovered, can 

propagate to later design, implementation and verification 

phases. 

3.1 Spiral Development Model Stages 
“The spiral model is a software development process 

combining elements of both design and prototyping-in-stages, 

in an effort to combine advantages of top-down and bottom-

up concepts.”[11]This approach allows for the iterative risk 

assessment of the design at various stages along the 

development path and “promotes quality assurance through 

prototyping at each stage in systems development.” [12]Each 

loop of the spiral represents a single iteration and each 

quadrant represents one of four stages of design: determining 

objectives, alternatives and Constraints; identifying and 

resolving risks; development testing and planning the next. As 

the spiral progresses outward from the origin, each successive 

loop builds on the previous iteration and provides incremental 

functionality and risk reduction prior to the next loop. The 

horizontal axis is labeled „review‟ to indicate the point in the 

spiral where a review is required before proceeding into the 

next loop and the vertical axis is labeled „cumulative cost‟ to 

show the accumulating cost per 

Ground Station 

Network 

Air to Ground 

Network 

(Mobile users 

fixed network) 

Ground Station 

Airplane 

to 

Airplane 

Networ

k 

Extern

al 

Data 

Ground Station 

Network 

Airplane 

Airplane 

Airplane 



International Journal of Computer Applications and Technology (2278 - 8298) 

Volume 1– Issue 1, 2012, 13-19 

 

15 

 

loop.

 

Fig. 2 – AATFCS Spiral Development Model 

 

Figure 2 shows the spiral development model for the 

AATFCS. The spiral does not start at the origin but instead 

starts already established in quadrant 1. This is to indicate that 

the first task to be done in the development of the system is an 

initial review and determination of objectives, alternatives and 

constraints at the very top level. The dashed radial line in 

quadrant2 is the dividing line between risk (left) and 

prototype development (right) for a given loop. This shows 

that the risks must be assessed and a “phase gate” type of 

evaluation must be passed inured to allow development to 

continue for that iteration or phase. If the evaluation does not 

meet its pre-determined criteria, development can be halted or 

terminated. 

 

4. Design of architecture for an 

autonomous air traffic flight control system 
System architecture is a set of design decisions. These 

decisions are technical and commercial in nature. To meet the 

functional and nonfunctional requirements of the above said 

ATFC system it is necessary to model the complete AATFC 

system by the use of UML. Different types of diagrams are 

Request departure clearanceDepartGrant departure clearance 

designed and described below in brief: UML is perhaps the 

most well-known commercial industry modeling language 

today. The unified Modeling Language is a method by which 

one can “describe a complex system rigorously and 

unambiguously…such that the integrated system design can 

be tested and verified to meet requirements before generating 

any code or designing any hardware,” for the reasons 

mentioned previously. System modeling takes place in task 3 

of the spiral development model, which is early enough to 

provide assurance that the mission requirements, the overall 

system architecture, and the subsequent hierarchical 

decomposition are communicated among and understood by 

the program stakeholders. 

The UML system architecture diagrams presented in this 

section are described from the use case perspective of an 

airplane‟s approach and landing. However, in order to model 

the system correctly, a brief discussion to provide 

understanding of the mission-level operations for this use case 

shall first be presented. 

4.1 Airplane Approach and Landing Description 

Some of the high-level description of an airplane‟s fault-free 

approach and landing has been previously mentioned in the 

discussion of the AATFCS system‟s operation. Additional 

details which describe the order of events can also be used to 

help establish the context for modeling the system properly 

using UML. It should be noted that understanding the 

system‟s fault response, which can be based on a system-level 

FMECA, is also required to generate a more complete model 

of the system.  

Use Case Diagram 

The use case diagram “provides a tool for organizing system 

requirements in order to understand interactions between: 

− “Actors” that make a request, and 

− “Activities” made in response by the system 

The AATFCS use case diagram in Figure 3 shows the “fault-

free arrival” use case for the AATFCS. 

External data 
src

...                                 AATFCS

update env.data

authenticate user

calculate flight cmds

Transmit flight cmds

connect to air-to-grond 
network

transmit received cmds

connect to air-to-air network

receive redundant cmd set 
from airplain

store non repudiation data

provide info assurance

fly airplane

disconnect from network

Ground station computer 
system

Ground station 
operator

Pilotmonitor system status

provide flight

receive flight cmds

disconnect AATFCS mode

Airplane mode 
ctrl

arm AATFCS mode

Airplane flight 
ctrl system

 

Fig.3 – AATFCS Fault-Free Airplane Arrival Use Case Diagram 

The actors and activities in the use case diagram back to the 

steps in the airplane landing sequence. Note that the Ground 

Station Operator actor, External Data Source external system 

and the Update Environmental Data and Provide Information 

Assurance. 

Class Diagram 

UML class diagrams “show the static structure of the system 

at an abstract level” [15].In object oriented programming; 

classes are abstract representations of software objects, which 

are, in turn, instantiations of the class. The class diagram in 

Figure 4 shows representations of the two primary object 

templates in the AATFCS, the AATFCS subsystem and the 

network. The highest, most abstracted level of the class 

hierarchy for net-centric systems would generally depict only 

a generic object type in the system and possible connection 

methods (i.e., the network(s)). Each class in the diagram has 

three fields; from top to bottom, they are the name of the 

class, the attributes associated with the class, and the methods 

associated with the class. Additionally, the connections in the 

hierarchy depict aggregation, inheritance and multiplicity. A 

closed (filled) diamond indicates that the parent class is 

comprised of N child level items, with N being a specific or 

unspecific number or range of numbers such as 1, 1..3 (1 to 

3), N, or 1..* (1 or more). The example shows that the 

AATFCS is comprised of 1 to 5 network types (air-to-air, air-

to-ground, ground station network, AATFCS data bus 

network, or actuation data bus network). 

There are three types of lower-level classes called ground 

control system, SWIM system and airplane connected to the 

subsystem class. These inherit the attributes and methods 

listed in the respective fields in their parent class; the 



International Journal of Computer Applications and Technology (2278 - 8298) 

Volume 1– Issue 1, 2012, 13-19 

 

16 

 

inheritance is shown by the open (unfilled) triangular arrows 

pointing up from the child classes to the parent class. Each of 

the three inherited classes has continuing levels of 

decomposition which are left out of the diagram for clarity 

except for a few key examples. Similarly, the network class 

has the five child classes which inherit characteristics from it, 

as previously described. The empty fields of the child classes 

indicate that they are not instantiatable – they are the 

equivalent of abstract classes in object-oriented programming. 

The SWIM system class is the only class which is 

decomposed in greater detail in this example; the other classes 

at this level all decompose to one or more levels further down 

in the overall hierarchy. The SWIM system class is shown to 

be comprised of SWIM flight data and system status. The 

flight data class contains attributes of weather data, airplane 

flight plan data and pilot authentication data, which are all 

“inputs” to the class and are annotated as private data (the 

minus sign preceding the name). Private attributes are not 

exposed to other classes. The fourth attribute, SWIM data, 

represents the outgoing message to the ground station and is 

considered public data (the plus sign preceding the name) 

because it would be exposed to other objects as part of the 

transmission process allocated to the public 

method“provideFlightPlanData ()”. In the system status class, 

the internal status methods and the data attributes are private 

and the message attributes, along with the display message 

method, are public. 

 

Fig. 4 – AATFCS Top-Level Class Diagram 

By continuing this process for all objects, we can derive a 

hierarchical representation of each object in the system which 

describes not only the data but also the actions performed on 

that data. 

Sequence diagram 

A UML sequence diagram will “model logic flow within a 

system in a visual manner, especially dynamic modeling of 

system behavior [14].The sequence diagram does this by 

showing interactions between objects at various points in 

time, in sequential order. Time is represented increasing from 

top to bottom and each entity (e.g., object, actor, etc.) will 

have a dashed vertical line beneath it which indicates its 

lifetime within the sequence. Objects in particular are shown 

as instantiations of their class; they are specified as OBJECT: 

CLASS. Object lifelines turn into a wider bar (an „activation‟) 

upon instantiation and return to the dashed lifeline when the 

object has been removed from the sequence (i.e., destroyed or 

de-allocated). “The activation represents an execution of an 

operation the object carries out. Each activity line contains the 

name of the message associated with the source object, along 

with data that is passed to the destination object, 

 

Fig. 6 – AATFCS Airplane Arrival Sequence Diagram 

Example 

5. Architecture Analysis and Design 

Language for an Autonomous Air traffic 

Flight control system 
A common way of modeling such meta-information in AADL 

is to associate AADL properties with the item in question and 

record information about the item. For example, the 

measurement unit and confidence of data may be recorded in 

properties. Since AADL is extensible and allows us to 

introduce new properties, we can define a set of properties 

specific to the data state variable. In some cases, this Meta 

information is communicated explicitly with the data and is 

checked by the application at runtime. In this case, the Meta 

information is declared to be part of the data representation, 

either just reflected in the increased size of the data type, or 

explicitly as a data subcomponent in a data component 

implementation declaration. State variables are communicated 

between Ground and Flight systems via telemetry. The data 

transport mechanism uses State Variables and State Variable 

Proxies. A State Variable represents the location in the 

deployment where the state is being locally estimated, and a 

Proxy State Variable represents a remote location that intends 

to utilize state variable content remotely. This deployment is 

shown in Figure 5. 



International Journal of Computer Applications and Technology (2278 - 8298) 

Volume 1– Issue 1, 2012, 13-19 

 

17 

 

 

  Fig 5 Deployment of State Variables 

The deployment of these data is such that Estimators in a 

deployment update their corresponding State Variables (SV). 

The data transport mechanism occasionally collects the value 

histories stored in these SVs and transports these histories to 

appropriate Proxy SVs in other deployments. The same data 

transport t mechanism is used to transport measurement 

histories and command histories between deployments (from 

Basis Hardware Adapters to Proxy Hardware Adapters). 

Systems engineers specify what information needs to be 

transported between deployments, and the regularity of proxy 

updates. 

The telemetry transport mechanism is used, then, to update 

the proxies with actual values with a specified periodicity or 

on demand. At a high level of abstraction of the AADL 

model, the state variable proxy notion can be encapsulated in 

the protocol used by the telemetry (Space Link) bus 

component. It is the responsibility of the protocol to distribute 

the state to the out data ports of components to other 

components. For data port connections across the Space Link 

bus, a different protocol is used to provide the desired caching 

strategy of the state variable proxy. The application model is 

agnostic to this proxy/caching scheme. 

             If it is desirable to explicitly model the proxy scheme, 

we can do so in two ways. We can model an implementation 

of the proxy/caching protocol of the telemetry bus component 

as a separate AADL model that is associated with the Space 

Link bus by property. This property is interpreted by the 

instance model generator to refine the bus abstraction by its 

implementation. Alternatively, we can model the proxies 

explicitly as application components (i.e., as threads that 

receive the original data port content by executing at a 

specified rate and make it available locally). In this case, users 

need to modify the model by inserting or removing the 

proxies as components that are migrated between flight 

system and ground [16]. 

Package Control Software 

Public 

-- This type is refined for a AATFCS instance by 

refining the 

-- Classifiers of the features to be instance specific 

Thread group controller 

Features 

State Estimates In: port group AATFCS Data::State 

Estimates In; 

Estimate History In: port group Value Histories: 

Estimate History Inv; 

Control Goals In: port group AATFCS Data::X goals 

in; 

Commands Out: port group AATFCS 

Data::Commands Out; 

End controller; 

Thread group implementation controller. Basic 

End controller. Basic; 

Fig6 Example package of AATFCS system 

 5.1Operating System Thread Model 

Hardware adapter, estimator, controller, planner, goal 

executive, and goal monitor are represented by logical 

threads, each with an execution rate, a deadline, and a worst-

case execution time. Some of this functionality may be 

distributed between flight system and ground or may be 

distributed within the flight system or ground system. The 

latter distribution may occur due to a multiprocessor 

configuration or in anticipation of using multi-core chip 

architectures in a spacecraft. 

Distribution decisions regarding ground or flight system are 

localized to changes in processor binding property values in 

the AADL model, unless state variable proxies are modeled 

explicitly as part of the application system. The collection of 

logical threads bound to the ground processor the flight 

processor is then grouped into rate groups. Each member of a 

rate group is executed by an operating system thread at the 

period of the rate group. Note that such rate group 

optimization must take into account execution order 

requirements between threads of the same rate or of different 

rates that require data to be communicated mid-frame (i.e., 

within the same execution cycle). 

Property set Rate Groups is 

Rate Groups : type enumeration ( EstimatorRategroup, 

ControllerRateGroup, PlanExecutionRateGroup, 

PlanningRateGroup, HWARateGroup); 

AssignedRateGroup : inherit RateGroups::RateGroups 

applies to (thread, thread group, process, system); 

end RateGroups; 

Fig 7: Rate Group Modeling by Properties 
 

Rate group optimizations can be represented within the 

current version of AADL using the property mechanism. We 

can introduce a property type Rate Groups that is an 

enumeration of rate groups in a particular application and a 

property to specify the rate group that a thread is assigned o, 

as illustrated in Figure 7. The enumeration literals are an 

ordered set. AADL V2 introduces the concept of virtual 

processor to model hierarchical schedulers. The operating 

system threads, which execute the tasks of a rate group, act as 

schedulers that dispatch these tasks as a cyclic executive. 

Therefore, we represent each of them as a virtual processor to 

which the application AADL threads are bound. Each of these 

virtual processors is defined as a subcomponent of a given 

processor or is defined separately and bound to a processor. 

    5.2 Binding to Hardware 

AADL supports modeling the computer platform of the 

embedded system. In Figure 8, we illustrate how flight system 

and ground system computer platforms can be modeled. The 

flight system consists of a processor, memory, and a flight 

system bus. In addition, the flight processor has access to a 



International Journal of Computer Applications and Technology (2278 - 8298) 

Volume 1– Issue 1, 2012, 13-19 

 

18 

 

device bus that is also accessible by devices representing the 

sensors and actuators outside the MDS computer hardware 

system component. The ground system consists of a 

processor, memory, and a ground system bus. The two 

computer platforms are interconnected via a Space Link bus 

that represents the downlink between the spacecraft and the 

ground station. Without having to model the internal details of 

the hardware, we can use properties to specify characteristics 

relevant to the analysis of embedded systems. 

 

 
Figure 8 Flight and Ground Processing Systems 

 

 

The binding of embedded software applications to the 

computer platform is also accomplished through properties. 

The Allowed_Processor_Binding property places constraints 

on the binding to processors. The binding may be constrained 

to a processor type or to a set of processors. Binding 

constraints are taken into consideration when a resource 

allocation tool makes its allocation decisions; the 

Actual_Processor_Binding property records the actual binding 

decisions shows the use of Allowed_Processor_Binding for 

the AATFCS architecture. This property is declared with the 

top-level system. Implementation allowing the property 

declaration to refer to the processor as the reference value and 

to the application component to which the property applies. 

 

Package Complete AATFCS system::Camera 

Public 

System Complete AATFCS system 

Extends Complete AATFCS system::Complete 

AATFCS System 

End Complete AATFCS system; 

System implementation Complete AATFCS system. 

Camera 

Extends Complete AATFCS system::Complete 

AATFCS system. Basic 

Subcomponents 

AATFCS Control System: refined to process 

AATFCScontrolSystem::Camera:: AATFCS 

ControlSystem.camea; 

Controlledsystem: refined to system 

SystemUnderControl::Camera::system_under_control.c

amera; 

AATFCSPlatform: refined to system 

ExecutionHardware::Camera:: AATFCS 

Hardware.camera; 

flows 

TemperatureResponse: end to end flow 

AATFCS systemUnderControl.Tempflow -> 

SystemtoControllerConn - 

AATFCS ControlSystem.ControlFlow -> 

ControllertoSystemConn -> 

AATFCS systemUnderControl.HeaterCmdFlow 

{ Latency => 50 ms;}; 

properties 

Allowed_Processor_Binding => 

reference mdsplatform.ground_processor applies to 

AATFCS ControlSystem.OperatorConsole; 

Allowed_Processor_Binding => 

reference mdsplatform.ground_processor applies to 

AATFCS ControlSystem.GoalElaborator; 

Allowed_Processor_Binding => 

reference mdsplatform.flight_processor applies to 

AATFCS ControlSystem.GoalExecutive; 

Allowed_Processor_Binding => 

reference mdsplatform.flight_processor applies to 

AATFCS ControlSystem.StateEstimation; 

Allowed_Processor_Binding => 

reference mdsplatform.flight_processor applies to 

AATFCS ControlSystem.DeviceControl; 

Allowed_Processor_Binding => 

reference mdsplatform.flight_processor applies to 

AATFCS SystemUnderControl.Hardware Adapters; 
 

Fig 9: Modeling of Processor Bindings 

6. Conclusions 
 This paper has presented an overview of the 

automated air traffic Flight control system 

andhasperformedanalyses using different systems 

architectural modeling methods. A description of 

the system was provided along with the many 

architectural views which are indicative of the 

Complex nature of the system. 

 

 Several of the analyses presented in this paper are 

exemplary of the ability of models to reduce 

complexity and increase comprehension of the 

system architecture in an unambiguous manner. 

Models also serve to reduce miscommunication and 

can potentially reduce overruns in development 

cost, especially if the modeling activity is done 

sufficiently early in the program, as demonstrated 

by the spiral development model. 

 

 The architectural analyses highlighted primary areas 

of interest in defining the AATFCS. The UML 

analyses presented examples of the system 

architecture from an object-oriented perspective: the 

use case, the class hierarchy diagram, and the 

sequence diagram. 

 

 We presented AADL language for AATFCS 

system. 

 

7. References 
[1] “NASA &The Next Generation Air Transportation 

System (NextGen)” (n.d.), 

fromwww.aeronautics.nasa.gov/docs/nextgen_whitepap

er_06_26_07.pdf.retrieved October 5, 2008. 



International Journal of Computer Applications and Technology (2278 - 8298) 

Volume 1– Issue 1, 2012, 13-19 

 

19 

 

 

[2]  “Free flight (air traffic control)”retrievedfrom 

Wikipedia(FreeFlight):http://en.wikipedia.org/wiki/Free

_flight_(air_traffic_control),retrieved October 21, 2008. 

 

[3] Cureton, K. SAE 574 Lecture #1: Net-Centric Systems 

Architecting and Engineering. University of Southern 

California. (Aug. 26, 2008). 

 

[4] Cureton, K.SAE 574 Lecture #1: Net-Centric Systems 

Architecting and Engineering. Universityof Southern 

California.(Aug. 26, 2008). 

[5] “Fact Sheet – System-Wide Information Management 

(SWIM)”, (May 2, 2006), retrieved fromGoogle 

(System-Wide Information 

Management):http://www.faa.gov/news/fact_sheets/ne

ws_story.cfm?newsId=7129October 23, 2008 

 

[6] “OEP Plan Reference Sheet NNEW” (June 19, 

2007)fromGoogle(NNEW):http://www.faa.gov/about/of

fice_org/headquarters_offices/ato/publications/oep/versi

on1/reference/nnew/retrieved October 23, 2008. 

 

[7] Spitzer, C., The Avionics Handbook. CRC Press LLC. 

(Ed.). (2001). 

 

[8] Wasson, C. System Analysis, Design, and 

Development: Concepts, Principles and Practices. New 

Jersey : John Wiley & Sons, Inc (2006). 

 

[9] Rechtin, E. (1991). System Architecting: Creating and 

Building Complex Systems. New Jersey: Prentice-Hall, 

Inc. (1991). 

 

[10] Hines, J. Systems Engineering Theory and Practice, 

SAE 541, Session 1. University of Southern 

California.(June 2, 2008) 

 

[11] “Spiral model” retrieved from Google 

(spiraldevelopmentmodel):http://en.wikipedia.org/wiki/

Spiral_model,Dec. 6, 2008 

 

[12] “Spiral model” retrieved Dec. 6, 2008 from Google 

(spiraldevelopmentmodel):http://en.wikipedia.org/wiki/

Spiral_modelDec. 2, 2008. 

 

[13] Cureton, K. SAE 574 Lecture #6: Architecture 

Modeling Concepts. University of Southern California. 

(Oct. 14, 2008). 

. 

[14] Cureton, K. SAE 574 Lecture #7: Architecture 

Modeling Concepts. University of Southern California. 

(Oct. 28, 2008). 

 

[15] Schmuller, J. Sams Teach Yourself UML in 24 Hours, 

Third Edition, Sams Publishing. (2004). 

 

[16] Society of Automotive Engineers (SAE). “The 

Architecture Analysis and Design Language (AADL).” 

Society of Automotive Engineers (SAE) Standard AS-

5506 (November 2004) Revised in January 2009 as AS-

5506A. 

http://www.sae.org/technical/standards/AS5506A. 

 

 


