
International Journal of Computer Applications Technology and Research

Volume 1– Issue 3, 79-81, 2012

www.ijcat.com 79

 EXPLOITING DYNAMIC RESOURCE ALLOCATION

FOR EFFICIENT PARALLEL DATA PROCESSING IN

CLOUD-BY USING NEPHEL’S ALGORITHM

Kavya Jakkula

Department of Computer Science and Engineering

Kottam College of Engineering

Chinnatekur, Kurnool, A.P, India

Abstract: In recent years ad hoc parallel data processing has emerged to be one of the killer applications for Infrastructure-as-a-

Service (IaaS) clouds. Major Cloud computing companies have started to integrate frameworks for parallel data processing in their

product portfolio, making it easy for customers to access these services and to deploy their programs. However, the processing

frameworks which are currently used have been designed for static, homogeneous cluster setups and disregard the particular nature of

a cloud. Consequently, the allocated compute resources may be inadequate for big parts of the submitted job and unnecessarily

increase processing time and cost. In this paper, we discuss the opportunities and challenges for efficient parallel data processing in

clouds and present our research project Nephele. Nephele is the first data processing framework to explicitly exploit the dynamic

resource allocation offered by today’s IaaS clouds for both, task scheduling and execution. Particular tasks of a processing job can be

assigned to different types of virtual machines which are automatically instantiated and terminated during the job execution. Based on

this new framework, we perform extended evaluations of Map Reduce-inspired processing jobs on an IaaS cloud system and compare

the results to the popular data processing framework Hadoop.

.Keywords: Iaas-Infrasturcture-as-a-service, PACTs- Parallelization Contracts.

1. INTRODUCTION
The main goal of our project is to decrease the overloads of

the main cloud and increase the performance of the cloud. In

recent years ad-hoc parallel data processing has emerged to be

one of the killer applications for Infrastructure-as-a-Service

(IaaS) clouds. Major Cloud computing companies have started

to integrate frameworks for parallel data processing in their

product portfolio, making it easy for customers to access these

services and to deploy their programs. However, the

processing frameworks which are currently used have been

designed for static, homogeneous cluster setups and disregard

the particular nature of a cloud. The main objective of our

project is to decrease the overloads of the main cloud and

increase the performance of the cloud by segregating all the

jobs of the cloud by cloud storage, job manager and task

manager. and perform the different task using different

resources as the infrastructure needed.

2. Companies providing cloud-scale services have an

increasing need to store and analyze massive data sets such as

search logs and click streams. For cost and performance

reasons, processing is typically done on large clusters of

shared-nothing commodity machines. It is imperative to

develop a programming model that hides the complexity of

the underlying system but provides flexibility by allowing

users to extend functionality to meet a variety of

requirements. In this paper, we present a new declarative and

extensible scripting language, SCOPE (Structured

Computations Optimized for Parallel Execution), targeted for

this type of massive data.

2. NEPHELE/PACT ALGORITHM
We present a parallel data processor centered around a

programming model of so called Parallelization Contracts

(PACTs) and the scalable parallel execution engine Nephele.

The PACT programming model is a generalization of the

well-known map/reduce programming model, extending it

with further second-order functions, as well as with Output

Contracts that give guarantees about the behavior of a

function. We describe methods to transform a PACT program

into a data flow for Nephele, which executes its sequential

building blocks in parallel and deals with communication,

synchronization and fault tolerance. Our definition of PACTs

allows applying several types of optimizations on the data

flow during the transformation. The system as a whole is

designed to be as generic as (and compatible to) map/reduce

systems, while overcoming several of their major weaknesses:

1) the functions map and reduce alone are not sufficient to

express many data processing tasks both naturally and

efficiently. 2) Map/reduce ties a program to a single fixed

execution strategy, which is robust but highly suboptimal for

many tasks. 3) Map/reduce makes no assumptions about the

behavior of the functions. Hence, it offers only very limited

optimization opportunities. With a set of examples and

experiments, we illustrate how our system is able to naturally

represent and efficiently execute several tasks that do not fit

the map/reduce model well.The term Web-Scale Data

Management has been coined for describing the challenge to

develop systems that scale to data volumes as they are found

in search indexes, large scale warehouses, and scientific

applications like climate research. Most of the recent

approaches build on massive parallelization, favoring large

numbers of cheap computers over expensive servers. Current

multicore hardware trends support that development. In many

of the mentioned scenarios,

International Journal of Computer Applications Technology and Research

Volume 1– Issue 3, 79-81, 2012

www.ijcat.com 80

Parallel databases, the traditional workhorses, are refused. The

main reasons are their strict schema and the missing

scalability, elasticity and fault tolerance required for setups of

1000s of machines, where failures are common. Many new

architectures have been suggested, among which the

map/reduce paradigm and its open source implementation

Hadoop have gained the most attention. Here, programs are

written as map and reduce functions, which process key/value

pairs and can be executed in many data parallel instances. The

big advantage of that programming model is its generality:

Any problem that can be expressed with those two functions

can be executed by the framework in a massively parallel

way. The map/reduce execution model has been proven to

scale to 1000s of machines. Techniques from the map/reduce

execution model have found their way into the design of

database engines and some databases added the map/reduce

programming model to their query interface .The map/reduce

programming model has however not been designed for more

complex operations, as they occur in fields like relational

query processing or data mining. Even implementing a join in

map/reduce requires the programmer to bend the

programming model by creating a tagged union of the inputs

to realize the join in the reduce function. Not only is this a

sign that the programming model is somehow unsuitable for

the operation, but it also hides from the system the fact that

there are two distinct inputs. Those inputs may be treated

differently, for example if one is already partitioned on the

key. Apart from requiring awkward programming, that may

be one cause of low performance .Although it is often

possible to force complex operations into the map/reduce

programming model, many of them require to actually

describe the exact communication pattern in the user code,

sometimes as far as hard coding the number and assignment

of partitions. In consequence, it is at least hard, if not

impossible, for a system to perform optimizations on the

program, or even choose the degree of parallelism by itself, as

this would require modifying the user code. Parallel data flow

systems, like Dryad [10], provide high flexibility and allow

arbitrary communication patterns between the nodes by

setting up the vertices and edges correspondingly. But by

design, they require that again the user program sets up those

patterns explicitly. This paper describes the PACT

programming model for the Nephele system. The PACT

programming model extends the concepts from map/reduce,

but is applicable to more complex operations. We discuss

methods to compile PACT programs to parallel data flows for

the Nephele system, which is a flexible execution engine for

parallel data flows (cf. Figure 1).The contributions of this

paper are summarized as follows:• We describe a

programming model, centered around key/value pairs and

Parallelization Contracts (PACTs). The PACTs are second-

order functions that define properties on the input and output

data of their associated first-order functions (from here on

referred to as “user function”, UF). The system utilizes these

properties to parallelize the execution of the UF and apply

optimization rules. We refer to the type of the second-order

function as the Input Contract. The properties of the output

data are described by an attached Output Contract.• We

provide an initial set of Input Contracts, which define how the

input data is organized into subsets that can be processed

independently and hence in a data parallel fashion by

independent instances of the UF. Map and Reduce are

representatives of these contracts, defining, in the case of

Map, that the UF processes each key/value pair

independently, and, in the case of Reduce, that all key/value

pairs with equal key form an inseparable group. We describe

additional functions and demonstrate their applicability. • We

describe Output Contracts as a means to denote some

properties on the UF’s output data.

3. PERFORMANCE EXPERIMENTS

Figure 1. Flow of Dynamic resource Allocation

Figure 2. Dynamic resource Allocation

Figure 3. Technical resource Allocation

International Journal of Computer Applications Technology and Research

Volume 1– Issue 3, 79-81, 2012

www.ijcat.com 81

4. CONCLUSIONS
With a framework like Nephele at hand, there are a variety of

open research issues, which we plan to address for future

work. In particular, we are interested in improving Nephele’s

ability to adapt to resource overload or underutilization during

the job execution automatically. Our current profiling

approach builds a valuable basis for this; however, at the

moment the system still requires a reasonable amount of user

annotations. In general, we think our work represents an

important contribution to the growing field of Cloud

computing services and points out exciting new opportunities

in the field of parallel data processing.

5. ACKNOWLEDGMENTS
I would like to thank my HOD Srinivas Murthy and to my

beloved guide B Krishna Veni for their continuous support

and guidance.

REFERENCES
[1] Amazon Web Services LLC, “Amazon Elastic Compute

Cloud (Amazon EC2),” http://aws.amazon.com/ec2/, 2009.

[2] Amazon Web Services LLC, “Amazon Elastic

MapReduce,” http://aws.amazon.com/elasticmapreduce/,

2009.

[3] Amazon Web Services LLC, “Amazon Simple Storage

Service,” http://aws.amazon.com/s3/, 2009.

[4] D. Battre´, S. Ewen, F. Hueske, O. Kao, V. Markl, and D.

Warneke, “Nephele/PACTs: A Programming Model and

Execution Framework For Web-Scale Analytical Processing,”

Proc. ACM Symp.Cloud Computing (SoCC ’10), pp. 119-

130, 2010.

