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1. INTRODUCTION 

 
 After the introduction of fuzzy sets by Zadeh [15], 
there have been a number of generalizations of this fundamental 
concept. Later on, fuzzy topology was introduced by Chang [2] 
in 1967.  The notion of intuitionistic fuzzy sets introduced by 
Atanassov [1] is one among them. Using the notion of 
intuitionistic fuzzy sets, Coker [3] introduced the notion of 
intuitionistic fuzzy topological spaces. Intuitionistic fuzzy semi-
pre continuous mappings in intuitionistic fuzzy topological 
spaces are introduced by Young Bae Jun and SeokZun Song 
[14]. In this paper we introduce intuitionistic fuzzy almost semi-
pre generalized continuous mappings, intuitionistic fuzzy 
completely semipre generalized continuous mappings, 
intuitionistic fuzzy almost semipre generalized closed mappings 
and intuitionistic fuzzy almost semipre generalized open 
mappings. We investigate some of its properties.  
 
2. PRELIMINARIES 
Definition 2.1:[1]  Let X be a non-empty fixed set. An 
intuitionistic fuzzy set (IFS in short) A in X is an object having 
the form A = {〈x, µA(x), νA(x)〉/ x ∈ X} where the functions µA: 
X →[0,1] and  νA : X →[0,1] denote the degree of membership 
(namely µA(x)) and the degree of non-membership (namely 
νA(x)) of each element x∈ X to the set A, respectively, and 0 ≤ 
µA(x) + νA(x) ≤1 for each x∈ X. Denote by IFS(X), the set of all 
intuitionistic fuzzy sets in X.  
 
Definition 2.2: [1] Let A and B be IFSs of the form A = {〈x, 
µA(x), νA(x)〉/ x ∈ X} and B = {〈x, µB(x), νB(x)〉/ x∈ X}. Then     

(i) A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) 
for all x ∈ X,  

(ii) A = B if and only if A ⊆ B and B ⊆ A,  
(iii) Ac = { 〈x, νA(x), µA(x)〉/ x ∈ X },  
(iv) A ∩ B = { 〈x, µA(x) ∧ µB(x), νA(x) ∨νB(x)〉/ x ∈ X }, 
(v) A ∪ B = { 〈x, µA(x) ∨ µB(x), νA(x) ∧νB(x)〉/ x ∈ X }.                                                                                                                                           

For the sake of simplicity, we shall use the notation A = 〈x, µA, 
νA〉 instead of A = { 〈x, µA(x), νA(x)〉/ x ∈ X }.  Also for the sake 
of simplicity, we shall use the notation A = 〈x, (µA, µB), (νA, 
νB)〉 instead of A = 〈x, (A/μA, B/μB), (A/νA, B/νB)〉.  The 
intuitionistic fuzzy sets 0~ = { 〈x, 0, 1〉/ x ∈ X } and 1~ = { 〈x, 1, 

0〉/ x ∈ X } are respectively the empty set and the whole set of 
X. 
 
Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in 
short) on X is a family τ of IFSs in X satisfying the following 
axioms: 

(i) 0~, 1~∈ τ, 
(ii) G1 ∩ G2∈ τ, for any G1, G2∈ τ,  
(iii) ∪Gi∈ τ for any family {Gi / i ∈ J} ⊆ τ. 

In this case the pair (X, τ) is called an intuitionistic fuzzy 
topological space(IFTS in short) and any IFS in τ is known as an 
intuitionistic fuzzy open set(IFOS in short)in X. The 
complement Ac of an IFOS A in an IFTS (X, τ) is called an 
intuitionistic fuzzy closed set (IFCS in short) in X. 
 
Definition 2.4: [3] Let (X, τ) be an IFTS and A = 〈x, µA, νA〉 be 
an IFS in X. Then  

(i) int(A) =  ∪{ G / G is an IFOS in X and G ⊆ A }, 
(ii) cl(A) = ∩{ K / K is an IFCS in X and A ⊆ K }, 
(iii) cl(Ac) = (int(A))c, 
(iv) int(Ac) = (cl(A))c. 

 
Definition 2.5: [4] An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy semiclosed set (IFSCS in short) 
if int(cl(A)) ⊆ A, 

(ii) intuitionistic fuzzy semiopen set (IFSOS in short) if 
A ⊆ cl(int(A)). 

Definition 2.6: [4] An IFS A of an IFTS (X, τ) is an 
(i) intuitionistic fuzzy preclosed set (IFPCS in short) if 

cl(int(A)) ⊆ A,  
(ii) intuitionistic fuzzy preopen set (IFPOS in short) if A 

⊆int(cl(A)). 

Note that every IFOS in (X, τ) is an IFPOS in X.  
 
Definition 2.7: [4] An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy α-closed set (IFαCS in short) if 
cl(int(cl(A))) ⊆ A, 

(ii) intuitionistic fuzzy α-open set (IFαOS in short) if A 
⊆int(cl(int(A))), 
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(iii) intuitionistic fuzzy regular closed set (IFRCS in 
short) if A = cl(int(A)), 

(iv) intuitionistic fuzzy regular open set (IFROS in short) 
if A = int(cl(A)), 

(v) intuitionistic fuzzy β-closed set (IFβCS in short) if 
int(cl(int(A))) ⊆ A, 

(vi) intuitionistic fuzzy β-open set (IFβOS in short) if A 
⊆ cl(int(cl(A))). 

 
Definition 2.8: [14] An IFS A of an IFTS (X, τ) is an  

(i) intuitionistic fuzzy semipre closed set (IFSPCS for 
short) if there exists an IFPCS B such that int(B) ⊆ 
A ⊆ B, 

(ii) intuitionistic fuzzy semipre open set (IFSPOS for 
short) if there exists an IFPOS B such that B ⊆ A ⊆ 
cl(B).  

 
Definition 2.9: [11] An IFS A is an IFTS (X, τ) is said to be an 
intuitionistic fuzzysemipre generalized closed set (IFSPGCS) if 
spcl(A) ⊆ U whenever A ⊆ U and U is an IFSOS in (X, τ). An 
IFS A of an IFTS (X, τ) is called an intuitionistic fuzzy semipre 
generalized open set (IFSPGOS in short) if Ac is an IFSPGCS in 
(X, τ). 
 
Every IFCS, IFSCS, IFαCS, IFRCS, IFPCS, IFSPCS, IFβCS is 
an IFSPGCS but the converses are not true in general. 
 
Definition 2.10: [9] The complement Ac of an IFSPGCS A in an 
IFTS (X, τ) is called an intuitionistic fuzzy semipre generalized 
open set (IFSPGOS for short) in X. 
 
The family of all IFSPGOSs of an IFTS (X, τ) is denoted by 
IFSPGO(X). Every IFOS, IFSOS, IFαOS, IFROS, IFPOS, 
IFSPOS, IFβOS is an IFSPGOS but the converses are not true in 
general. 
 
Definition 2.11: [7] Let α, β ∈ [0, 1] and α+ β ≤ 1.  An 
intuitionistic fuzzy point (IFP for short)p(α, β) of X is an IFS of X 
defined by  

p(α, β) (y) =   ൜
ݕ݂݅(ߚ,ߙ) = ݌

ݕ݂݅            (0,1) ≠  ݌

 
Definition 2.12: [7] Let p(α, β) be an IFP of an IFTS (X, τ). An 
IFS A of X is called an intuitionistic fuzzy neighborhood (IFN 
for short) of p(α, β) if there exists an IFOS B in X such that p(α, β)∈ 
B ⊆ A. 
 
Definition 2.13: [8] Let an IFS A of an IFTS (X,  τ). Then 

(i) αint(A) =  ∪{ K / K is an IFαOS in X and K ⊆A}. 
(ii) αcl(A) =  ∩{ K / K is an IFαCS in X and A ⊆K }. 

Definition 2.14: [14] Let A be an IFS in an IFTS (X, τ). Then  
(i) sint(A) = ∪{ G / G is an IFSOS in X and G ⊆A },  
(ii) scl(A) = ∩{ K / K is an IFSCS in X and A ⊆K }. 

 Note that for any IFS A in (X, τ), we have scl(Ac) = (sint(A))c 
and sint(Ac) = (scl(A))c. 
 
Definition 2.15: [4] Let A be an IFS in an IFTS (X, τ). Then  

(i) spint (A) = ∪{G / G is an IFSPOS in X and G ⊆A }.  
(ii) spcl (A) = ∩{ K / K is an IFSPCS in X and A ⊆K }. 

Note that for any IFS A in (X, τ), we have spcl(Ac) = (spint(A))c 
and spint(Ac) = (spcl(A))c . 
 
Definition 2.16: [13] Let A be an IFS in an IFTS (X, τ).  Then 
semipre generalized interior of A (spgint(A) for short) and 

semipre generalized closure of A (spgcl(A) for short) are 
defined by  

(i) spgint (A) = ∪{ G / G is an IFSPGOS in X and G 
⊆A }.   

(ii) spgcl(A) = ∩{K / K is an IFSPGCS in X and A⊆K}. 

Note that for any IFS A in (X, τ), we have spgcl(Ac) = 
(spgint(A))c and spgint(Ac) = (spgcl(A))c. 
 
Definition 2.17: [9] If every IFSPGCS in (X, τ) is an IFSPCS in 
(X, τ), then the space can be called as an intuitionistic fuzzy 
semipre T1/2 (IFSPT1/2 for short) space. 
 
Definition 2.18: [4] Let f be a mapping from an IFTS (X, τ) into 
an IFTS (Y, σ). Then f is  
said to be intuitionistic fuzzy continuous(IF continuous in short) 
if f -1(B) ∈ IFO(X) for every B ∈ σ.  
 
Definition 2.19: [4] Let f be a mapping from an IFTS (X, τ) into 
an IFTS (Y, σ). Then f is said to be  

(i) intuitionistic fuzzy semi continuous(IFS continuous in 
short) if f -1(B) ∈IFSO(X) for every B ∈ σ, 

(ii) intuitionistic fuzzy α- continuous(IFα continuous in 
short) if f -1(B) ∈IFαO(X) for every B ∈ σ,  

(iii) intuitionistic fuzzy pre continuous(IFP continuous in 
short) if f -1(B) ∈IFPO(X) for every B ∈ σ, 

(iv) intuitionistic fuzzy β- continuous(IFβ continuous in 
short) if f -1(B) ∈IFβO(X) for every B ∈ σ. 

Result 2.20:  
(i) Every IF continuous mapping is an IFα-continuous 

mapping and every IFα-continuous mapping is an IFS 
continuous mapping as well as intuitionistic fuzzy pre 
continuous mapping. [4] 

(ii) Every IF continuous mapping is an IFSG continuous 
mapping. [5] 

 
Definition 2.21: [14] Let f be a mapping from an IFTS (X, τ) 
into an IFTS (Y,  σ). Then f is said to be an  intuitionistic fuzzy 
semipre continuous ( IFSP continuous for short) mapping if  f -

1(B) ∈ IFSPO(X) for every B ∈ σ . 
Every IFS continuous mapping and IFP continuous mappings 
are IFSP continuous mapping but the converses may not be true 
in general. 
 
Definition 2.22: [12]A mapping f : (X, τ) → (Y, σ) is called an 
intuitionistic fuzzy semipre generalized continuous (IFSPG 
continuous for short) mappings if f -1(V) is an IFSPGCS in (X, 
τ) for every IFCS V of (Y, σ). 
 
Definition 2.23: [7] A map f : (X, τ) → (Y, σ) is called an 
intuitionistic fuzzy closed mapping (IFCM for short) if f(A) is 
an IFCS in Y for each IFCS A in X. 
 
Definition 2.24: [7] A map f : (X, τ) → (Y, σ) is called an 

(i) intuitionistic fuzzy semiopen mapping (IFSOM for 
short) if f(A) is an IFSOS in Y for each IFOS A in X. 

(ii) intuitionistic fuzzy α-open mapping (IFαOM for short) if 
f(A) is an IFαOS in Y for each IFOS A in X. 

(iii) intuitionistic fuzzy preopen mapping (IFPOM for short) 
if f(A) is an IFPOS in Y for each IFOS A in X. 

Definition 2.25: [10]A mapping f : (X, τ) → (Y, σ) is called an 
intuitionistic fuzzy semipre generalized closed mapping 
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(IFSPGCM for short) if f(A) is an IFSPGCS in Y for each IFCS 
A in X. 
 
Definition  2.26: [10] A mapping f : (X, τ) → (Y, σ) is said to 
be an intuitionistic fuzzy M-semipre generalized closed 
mapping (IFMSPGCM for short) if f(A) is an IFSPGCS in Y for 
every IFSPGCS A in X. 
 
Definition 2.27: [6]  An IFS A is said to be intuitionistic fuzzy 
dense (IFD for short) in another IFS B in an IFT (X, τ), if cl(A) 
= B. 
 
3. INTUITIONISTIC FUZZY ALMOST 
SEMIPRE GENERALIZED CONTINUOUS 
MAPPINGS 
In this section we have introduced intuitionistic fuzzy almost 
semipregeneralized continuous mapping and investigated some 
of its properties. 
 
Definition 3.1: A mapping f : X  Y is said to be an 
intuitionistic fuzzy almostsemipre generalized continuous 
mapping (IFaSPG continuous mapping for short) if f -1(A) is an 
IFSPGCS in X for every IFRCS A in Y. 
For the sake of simplicity, we shall use the notation A= 〈x, (µ, 
µ), (ν, ν)〉 instead of A= 〈x,(a/μa, b/μb), (a/νa, b/νb)〉  in all the 
examples used in this paper. Similarly we shall use the notation  
B= 〈x, (µ, µ), (ν, ν)〉 instead of B= 〈x,(u/μu, v/μv), (u/νu, v/νv)〉 in 
the following examples. 
 
Example 3.2:Let X = {a, b}, Y = {u, v} and G1= x, (0.5, 0.4), 
(0.5, 0.6),G2 = y,  (0.2, 0.3), (0.8, 0.7). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPG continuous mapping. 
 
Theorem 3.3: Every IF continuous mapping is an IFaSPG 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IF continuous mapping. Let 
V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an 
IFCS in Y. Then f -1(V) is an IFCS in X, by hypothesis. Since 
every IFCS is an IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f 
is an IFaSPG continuous mapping. 
 
Example 3.4:Let X = {a, b}, Y = {u, v} and G1= x, (0.5, 0.4), 
(0.5, 0.6), G2 = y,  (0.2, 0.3), (0.8, 0.7). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPG continuous mapping but not an IF continuous 
mapping. 
 
Theorem 3.5: Every IFS continuous mapping is an IFaSPG 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFS continuous mapping. 
Let V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an 
IFCS in Y. Then f -1(V) is an IFSCS in X. Since every IFSCS is 
an IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f is an IFaSPG 
continuous mapping. 
 
Example 3.6:Let X = {a, b}, Y = {u, v} and G1= x, (0.5, 0.4), 
(0.5, 0.6), G2 = y, (0.2, 0.3), (0.8, 0.7). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPG continuous mapping but not an IFS continuous 
mapping. 

 
Theorem 3.7: EveryIFP continuous mapping is an IFaSPG 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFP continuous mapping. 
Let V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an 
IFCS in Y.  Then f -1(V) is an IFPCS in X. Since every IFPCS is 
an IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f is an IFaSPG 
continuous mapping. 
 
Example 3.8: Let X = {a, b}, Y = {u, v}, G1 = x, (0.5, 0.6), 
(0.5, 0.4) andG2 = y, (0.5, 0.3), (0.5, 0.7). Then  = {0~, G, 
1~}and = {0~, G2, 1~} are IFT on X and Y respectively. Define 
a mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPG continuous mapping but not an IFP continuous 
mapping. 
 
Theorem 3.9: Every IFβ continuous mapping is an IFaSPG 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFβ continuous mapping. 
Let V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an 
IFCS in Y.  Then f -1(V) is an IFβCS in X. Since every IFβCS is 
an IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f is an IFaSPG 
continuous mapping.  
 
Example 3.10: Let X = {a, b}, Y = {u, v}, G1 = x, (0.7, 0.8), 
(0.3, 0.2), G2 = 〈x, (0.2, 0.1), (0.8, 0.9)〉, G3 = 〈x, (0.5, 0.6), 
(0.5, 0.4)〉, G4 = 〈x, (0.6, 0.7), (0.4, 0.3)〉, and G5 = y, (0.1, 0.4), 
(0.9, 0.6). Then  = {0~, G1, G2, G3, G4, 1~}and = {0~, G5, 1~} 
are IFT on X and Y respectively. Define a mappingf : (X, )    
(Y, ) by f(a) = u and f(b) = v. Then f is an IFaSPG continuous 
mapping but not an IFβ continuous mapping. 
 
Theorem 3.11: Every IFSP continuous mapping is an IFaSPG 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFSP continuous mapping. 
Let V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an 
IFCS in Y.  Then f -1(V) is an IFSPCS in X. Since every IFSPCS 
is an IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f is an 
IFaSPG continuous mapping.  
 
Example 3.12: Let X = {a, b}, Y = {u, v}, G1 = 〈x, (0.7, 0.8), 
(0.3, 0.2)〉, G2 = 〈x, (0.2, 0.1), (0.8, 0.9)〉, G3 = 〈x, (0.5, 0.6), 
(0.5, 0.4)〉, G4 = 〈x, (0.6, 0.7), (0.4, 0.3)〉,  and G5 = 〈y, (0.1, 0.4), 
(0.9, 0.6)〉. Then τ = {0~, G1, G2, G3, G4, 1~}andσ = {0~, G5, 1~} 
are IFT on X and Y respectively. Define a mapping f: (X, τ) → 
(Y, σ) by f(a) = u and f(b) = v. Then f is an IFaSPG continuous 
mapping but not an IFSP continuous mapping. 
 
Theorem 3.13: Every IFα continuous mapping is an IFaSPG 
continuous mapping but not conversely. 
 
Proof:  Letf : (X, )  (Y, ) be an IFα continuous mapping. 
Let V be an IFRCS in Y. Since every IFRCS is an IFCS, V is an 
IFCS in Y.  Then f -1(V) is an IFαCS in X. Since every IFαCS is 
an IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f is an IFaSPG 
continuous mapping. 
 
Example 3.14: Let X = {a, b}, Y = {u, v} and G1= x, (0.5, 0.4), 
(0.5, 0.6), G2 = y,  (0.2, 0.3), (0.8, 0.7). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPG continuous mapping but not an IFαcontinuous 
mapping. 
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Theorem 3.15:  Letf : (X, )  (Y, ) be a mapping where f -

1(V) is an IFRCS in X for every IFCS in Y. Then f is an IFaSPG 
continuous mapping but not conversely. 
 
Proof:  Let A be an IFRCS in Y. Since every IFRCS is an IFCS, 
V is an IFCS in Y. Then f -1(V) is an IFRCS in X. Since every 
IFRCS is an IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f is 
an IFaSPG continuous mapping. 
 
Example 3.16: Let X = {a, b}, Y = {u, v}, G1 = x, (0.5, 0.6), 
(0.5, 0.4) and G2 = y, (0.5, 0.3), (0.5, 0.7). Then  = {0~, G, 
1~}and = {0~, G2, 1~} are IFT on X and Y respectively. Define 
a mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPG continuous mapping but not a mapping as defined in 
Theorem 3.15. 
Theorem 3.17: Every IFSPG continuous mapping is an IFaSPG 
continuous mapping but not conversely. 
 
Proof: Assume that f : X  Y be an IFSPG continuous 
mapping. Let A be an IFRCS in Y. Then A is an IFCS in Y. By 
hypothesis f -1(A) is an IFSPGCS in X. Hence f is an IFaSPG 
continuous mapping. 
 
Example 3.18: Let X = {a, b}, Y = {u, v}, G1 = x, (0.7, 0.8), 
(0.3, 0.2),G2 = x,(0.6, 0.7), (0.4, 0.3), G3 = y, (0.4, 0.2), (0.6, 
0.8) and G4 =y, (0.4, 0.2), (0.4, 0.8).  Then = {0~, G1, G2, 1~} 
and  = {0~, G3, G4, 1~} are IFT on Xand Y respectively. Define 
a mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPG continuous mapping but not an IFSPG continuous 
mapping.  
 
Theorem 3.19:  Let f : X  Y be a mapping. Then the 
following are equivalent: 
(i) f is an IFaSPG continuous mapping, 
(ii) f -1(A) is an IFSPGOS in X for every IFROS A in Y. 
 
Proof: (i)  (ii) Let A be an IFROS in Y. Then Ac is an IFRCS 
in Y.  By hypothesis, f -1(Ac) is an IFSPGCS in X. That is f -

1(A)c is an IFSPGCS in X. Therefore f -1(A) is an IFSPGOS in 
X. 
(ii)  (i) Let A be an IFRCS in Y. Then Ac is an IFROS in Y.  
By hypothesis, f -1(Ac) is an IFSPGOS in X. That is f -1(A)c is an 
IFSPGOS in X. Therefore f -1(A) is an IFSPGCS in X. Then f is 
an IFaSPG continuous mapping. 
 
Theorem3.20: Let p(α, β) be an IFP in X. A mapping f : X  Y is 
an IFaSPGcontinuous mapping if for every IFOS A in Y with 
f(p(α, β))  A, there exists an IFOS B in X with  p(α, β) B such 
that f -1(A) is  IFD in B. 
 
Proof: Let A be an IFROS in Y. Then A is an IFOS in Y. Let 
f(p(α, β))  A, then there exists an IFOS B in X such that p(α, β)  
B and cl(f -1(A)) =  B. Since B is an IFOS,cl(f -1(A)) is also an 
IFOS in X. Therefore int(cl(f -1(A))) = cl(f -1(A)). Now f -1(A) 
cl(f -1(A)) = int(cl(f -1(A))) cl(int(cl(f -1(A)))). This implies f -

1(A) is an IFβOS in X and hence an IFSPGOS in X. Thus f is an 
IFaSPG continuous mapping. 
 
Theorem 3.21: Let f : X  Y be a mapping where X is an 
IFSPT1/2 space. Then the following are equivalent: 
(i) f is an IFaSPG continuous mapping, 
(ii) spcl(f -1(A))  f  -1(cl(A)) for every IFSPOS in Y, 
(iii) spcl(f -1(A))  f  -1(cl(A)) for every IFSOS A in Y, 
(iv) f -1(A) spint(f -1(int(cl(A)))) for every IFPOS A in Y. 
 
Proof: (i)  (ii) let A be an IFSPOS in Y. Then by Definition 
2.8, there exists an IFPOS B such that B  A cl(B) and B 

int(cl(B)). Now cl(int(cl(A)))  cl(int(cl(B)))  cl(B)  A. 
Hence A cl(int(cl(A))). Therefore cl(A)  cl(int(cl(A))). But 
cl(int(cl(A)))  cl(A). Hence cl(int(cl(A))) = cl(A). This implies 
cl(A) is an IFRCS in (X, ). By hypothesisf -1(cl(A)) is an 
IFSPGCS in X and hence f -1(cl(A)) is an IFSPCS in X, since X 
is an IFSPT1/2 space. This implies spcl(f -1(cl(A))) = f-1(cl(A)). 
Now spcl(f -1(A)) spcl(f -1(cl(A))) = f  -1(cl(A)). Thus spcl(f -

1(A)) f -1(cl(A)). 
(ii)  (iii) Since every IFSOS is an IFSPOS, proof is similar as 
in (i)  (ii). 
(iii)  (i) Let A be an IFRCS in Y. Then A = cl(int(A)). 
Therefore A is an IFSOS in Y. By hypothesis, spcl(f -1(A)) f  -

1(cl(A)) = f  -1(A) spcl(f -1(A)). Hence f -1(A) is an IFSPCS and 
hence is an IFSPGCS in X. Thus f is an IFaSPG continuous 
mapping. 
(i)  (iv) Let  A be an IFPOS in Y. Then A int(cl(A)). Since 
int(cl(A)) is an IFROSin Y, by hypothesis, f -1(int(cl(A))) is an 
IFSPGOS in X. Since X is an IFSPT1/2 space, f -1(int(cl(A))) is 
an IFSPOS in X. Therefore f -1(A)  f -1(int(cl(A))) = spint(f -

1(int(cl(A)))). 
(iv)  (i) Let A be an IFROS in Y. Then A is an IFPOS in X. 
By hypothesis, f -1(A) spint(f -1(int(cl(A)))) = spint(f -1(A))  f -

1(A). This implies f -1(A) is an IFSPOS in X and hence is an 
IFSPGOS in X. Therefore f is an IFaSPG continuous mapping. 
 
Theorem 3.22: Let f : X  Y be a mapping. If f is an IFaSPG 
continuous mapping, thenspgcl(f -1(A))  f -1(cl(A)) for every 
IFSPOS A in Y. 
 
Proof: Let A be an IFSPOS in Y. Then cl(A) is an IFRCS in Y. 
By hypothesisf -1(cl(A)) is an IFSPGCS in X. Then spgcl(f -

1(cl(A))) = f -1(cl(A)). Now spgcl(f -1(A)) spgcl(f -1(cl(A))) =f -

1(cl(A)). That is spgcl(f -1(A)  f -1(cl(A)). 
 
Corollary 3.23: Let f : X  Y be a mapping. If f is an 
IFaSPGcontinuous mapping, thenspgcl(f -1(A))  f -1(cl(A)) for 
every IFSOS A in Y. 
 
Proof: Since every IFSOS is an IFSPOS, the proof is obvious 
from the Theorem 3.22. 
 
Corollary 3.24: Let f : X  Y be a mapping. If f is an IFaSPG 
continuous mapping, thenspgcl(f -1(A))  f -1(cl(A)) for every 
IFPOS A in Y. 
 
Proof: Since every IFPOS is an IFSPOS, the proof is obvious 
from the Theorem 3.22. 
 
Theorem 3.25: Let f : X  Y be a mapping. If f is an IFaSPG 
continuous mapping, thenspgcl(f -1(cl(A)))  f -1(cl(spint(A))) 
for every IFSPOS A in Y. 
 
Proof: Let A be an IFSPOS in Y. Then cl(A) is an IFRCS in Y 
and spint(A) = A.  By hypothesis,f -1(cl(A)) is an IFSPGCS in X. 
Then spgcl(f -1(cl(A))) = f -1(cl(A))  f -1(cl(spint(A))).  
 
Corollary 3.26: Let f : X  Y be a mapping. If f is an IFaSPG 
continuous mapping, thenspgcl(f -1(cl(A)))  f -1(cl(spint(A))) 
for every IFSOS A in Y. 
 
Proof: Since every IFSOS is an IFSPOS, the proof is obvious 
from the Theorem 3.25. 
 
Corollary 3.27: Let f : X  Y be a mapping. If f is an IFaSPG 
continuous mapping, then spgcl(f -1(cl(A)))  f -1(cl(spint(A))) 
for every IFPOS A in Y. 
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Proof: Since every IFPOS is an IFSPOS, the proof is obvious 
from the Theorem 3.25. 
 
Theorem 3.28: Let f : X  Y be a mapping. If f -1(spint(B)) 
spint(f -1(B)) for every IFS B in Y, then f is an IFaSPG 
continuous mapping. 
 
Proof: Let B  Y be an IFROS. By hypothesis, f -1(spint(B)) 
spint(f -1(B)). Since B is an IFROS, it is an IFSPOS in Y. 
Therefore spint(B) = B. Hence f -1(B) = f -1(spint(B)) spint(f -

1(B))  f -1(B). This implies f -1(B) is an IFSPOS and hence an 
IFSPGOS in X. Thus f is an IFaSPG continuous mapping. 
 
Remark 3.29: The converse of the above theorem is true if B  
Y is an IFROS and X is an IFSPT1/2 space. 
 
Proof: Let f be an IFaSPG continuous mapping. Let B be an 
IFROSin Y. Then f -1(B) is an IFSPGOS in X. Since X is an 
IFSPT1/2 space, f -1(B) is an IFSPOS in X. Therefore f -

1(spint(B)) f -1(B) =spint(f -1(B)). That is f -1(spint(B)) spint(f -

1(B)). 
 
Theorem 3.30: Let f : X  Y be a mapping. If spcl(f -1(B)) f -

1(spcl(B)) for every IFS B in Y, then f is an IFaSPG continuous 
mapping. 
 
Proof: Let B  Y be an IFRCS. By hypothesis, spcl(f -1(B)) f -

1(spcl(B)). Since B is an IFRCS, it is an IFSPCS in Y. Therefore 
spcl(B) = B. Hence f -1(B) = f -1(spcl(B)) spcl(f -1(B))  f -1(B). 
This implies f -1(B) is an IFSPCS and hence an IFSPGCS in X. 
Thus f is an IFaSPG continuous mapping. 
 
Remark 3.31: The converse of the above theorem is true if B  
Y is an IFRCS and X is an IFSPT1/2 space. 
 
Proof: Let f be an IFaSPG continuous mapping. Let B be an 
IFRCS in Y. Then f -1(B) is an IFSPGCS in X. Since X is an 
IFSPT1/2 space, f -1(B) is an IFSPCS in X. Therefore spcl(f -1(B)) 
= f -1(B)) f -1(spcl(B)). 
 
Theorem 3.32: The following are equivalent for a mapping f : 
X  Y where X is an IFSPT1/2 space: 
(i) f is an IFaSPG continuous mapping, 
(ii) spcl(f -1(A))  f  -1(αcl(A)) for every IFSPOS A in Y, 
(iii) spcl(f -1(A))  f  -1(αcl(A)) for every IFSOS A in Y, 
(iv) f -1(A) spint(f -1(scl(A))) for every IFPOS A in Y. 
 
Proof: (i)  (ii) Let A be an IFSPOS in Y. Then cl(A) is an 
IFRCS in Y. Hence by hypothesis f -1(cl(A)) is an IFSPGCS in 
X and hence is an IFSPCS in X, since X is an IFSPT1/2 space. 
This implies spcl(f -1(cl(A))) = f -1(cl(A)). Now spcl(f -1(A)) 
spcl(f -1(cl(A))) = f  -1(cl(A)). Since cl(A) is an IFRCS, 
cl(int(cl(A))) = cl(A). Nowspcl(f -1(A))  f  -1(cl(A)) = f  -

1(cl(int(cl(A)))) f-1(Acl(int(cl(A)))) = f -1(αcl(A)). Hence 
spcl(f -1(A))  f  -1(αcl(A)). 
(ii)  (iii) Let A be an IFSOS in Y. Since every IFSOS is an 
IFSPOS, the proof is obvious. 
(iii)  (i) Let A be an IFRCS in Y. Then A = cl(int(A)). 
Therefore A is an IFSOS in Y. By hypothesis, spcl(f -1(A)) f  -

1(αcl(A))  f  -1(cl(A)) = f  -1(A) spcl(f -1(A)). That is spcl(f -

1(A)) =  f  -1(A). Hencef -1(A) is an IFSPCS and hence is an 
IFSPGCSin X. Thus f is an IFaSPG continuous mapping. 
(i)  (iv) Let  A be an IFPOS in Y. Then A int(cl(A)). Since 
int(cl(A)) is an IFROS in Y, by hypothesis, f -1(int(cl(A))) is an 
IFSPGOS in X. Since X is an IFSPT1/2 space, f -1(int(cl(A))) is 

an IFSPOS in X. Therefore f  -1(A)  f -1(int(cl(A))) =spint(f -

1(int(cl(A)))) spint(f -1(A int(cl(A)))) = spint(f -1(scl(A))). 
That is f -1(A) spint(f -1(scl(A))). 
(iv)  (i) Let A be an IFROS in Y. Then A is an IFPOS in Y. 
Hence by hypothesis, f -1(A) spint(f -1(scl(A))). This implies f -

1(A) spint(f -1(A int(cl(A)))) = spint(f -1(A  A)) = spint(f -

1(A ))  f -1(A). Therefore f -1(A) is an IFSPOS in X and hence it 
is an IFSPGOS in X. Thus f is an IFaSPG continuous mapping.    
 
Theorem 3.33: Let f : X  Y be a mapping where X is an 
IFSPT1/2 space. If f is an IFaSPG continuous mapping, then 
int(cl(int(f -1(B))))  f -1(spcl(B)) for everyB IFRC(Y). 
 
Proof: Let B  Y be an IFRCS. By hypothesis, f -1(B) is an 
IFSPGCS in X. Since Xis an IFSPT1/2 space, f -1(B) is an 
IFSPCS in X. Therefore spcl(f -1(B)) = f -1(B). Now int(cl(int(f -

1(B))))  f -1(B) int(cl(int(f -1(B)))) spcl(f -1(B)) = f -1(B) = f -

1(spcl(B)). Hence int(cl(int(f -1(B))))  f -1(spcl(B)). 
 
Theorem 3.34: Let f : X  Y be a mapping where X is an 
IFSPT1/2 space. If f is an IFaSPG continuous mapping, then f -

1(spint(B))  cl(int(cl(f -1(B)))) for everyB IFRO(Y). 
Proof: This theorem can be easily proved by taking complement 
in Theorem 3.33. 
 
 
4. INTUITIONISTIC FUZZY 
COMPLETELYSEMIPRE GENERALIZED 
CONTINUOUS MAPPINGS 
 
In this section we have introduced intuitionistic fuzzy 
completely semipregeneralized continuous mappings and 
studied some of their properties. 
 
Definition 4.1: A mapping f : X  Y is said to be an 
intuitionistic fuzzy completelysemipre generalized continuous 
mapping (IFcSPG continuous mapping for short) iff -1(V) is an 
IFRCS in X for every IFSPGCS V in Y. 
 
Theorem 4.2: Every IFcSPG continuous mapping is an IFSPG 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFcSPG continuous 
mapping. Let V be an IFCS in Y. Hence V is an IFSPGCS in Y. 
Then f -1(V) is an IFRCS in X. Since every IFRCS is an 
IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f is an IFSPG 
continuous mapping. 
 
Example 4.3:Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 0.4), 
(0.5, 0.6), G2 = y,(0.6, 0.7), (0.4, 0.2). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. Then f is an 
IFSPG continuous mapping but not an IFcSPG continuous 
mapping.  
 
Theorem 4.4: Every IFcSPG continuous mapping is an IFaSPG 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFcSPG continuous 
mapping. Let V be an IFRCS in Y. Hence V is an IFSPGCS in 
Y. Then f -1(V) is an IFRCS in X. Since every IFRCS is an 
IFSPGCS, f -1(V) is an IFSPGCS in X. Hence f is an IFaSPG 
continuous mapping. 
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Example 4.5:Let X = {a, b}, Y = {u, v}, G1 = x, (0.7, 0.8), 
(0.3, 0.2), G2 = x,(0.6, 0.7), (0.4, 0.3) and G3 = y, (0.5, 0.4), 
(0.5, 0.6). Then τ = {0~, G1, G2, 1~} and = {0~, G3, 1~} are IFT 
on X and Y respectively. Define a mapping f : (X, )    (Y, ) 
by f(a) = u and f(b) = v. Then f is an IFaSPG continuous 
mapping but not an IFcSPGcontinuous mapping. 
 
Theorem 4.6: Every IFcSPG continuous mapping is an IF 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFcSPG continuous 
mapping. Let V be an IFCS in Y. Hence V is an IFSPGCS in Y. 
Then f -1(V) is an IFRCS in X and hence an IFCS in X. Hence f 
is an IF continuous mapping. 
 
Example 4.7:Let X = {a, b}, Y = {u, v} and G1 = x, (0.6, 0.7), 
(0.4, 0.2), G2 = y,(0.6, 0.7), (0.4, 0.2). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. Then f is an 
IF continuous mapping but not an IFcSPG continuous mapping. 
 
Theorem 4.8: Every IFcSPG continuous mapping is an IFS 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFcSPG continuous 
mapping. Let V be an IFCS in Y. Since every IFCS is an 
IFSPGCS, V is an IFSPGCS in Y. Then f -1(V) is an IFRCS in 
X. Since every IFRCS is an IFSCS, f -1(V) is an IFSCS in X. 
Hence f is an IFS continuous mapping. 
 
Example 4.9:Let X = {a, b}, Y = {u, v} and G1 = x, (0.6, 0.7), 
(0.4, 0.2), G2 = y,(0.6, 0.7), (0.4, 0.2). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. Then f is an 
IFS continuous mapping but not an IFcSPG continuous 
mapping. 
Theorem 4.10: Every IFcSPG continuous mapping is an IFP 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFcSPG continuous 
mapping. Let V be an IFCS in Y. Hence V is an IFSPGCS in Y. 
Then f -1(V) is an IFRCS in X, by hypothesis. Since every 
IFRCS is an IFPCS, f -1(V) is an IFPCS in X. Hence f is an IFP 
continuous mapping. 
 
Example 4.11:Let X = {a, b}, Y = {u, v}, G1 = x, (0.7, 0.8), 
(0.3, 0.2), , G2 = x,(0.6, 0.7), (0.4, 0.3) and G3 = y, (0.5, 0.4), 
(0.5, 0.6). Then τ = {0~, G1, G2, 1~} and = {0~, G3, 1~} are IFT 
on X and Y respectively. Define a mapping f : (X, )    (Y, ) 
by f(a) = u and f(b) = v. Then f is an IFP continuous mapping 
but not an IFcSPG continuous mapping. 
 
Theorem 4.12: Every IFcSPG continuous mapping is an IFSP 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFcSPG continuous 
mapping. Let V be an IFCS in Y. Hence V is an IFSPGCS in Y. 
Then f -1(V) is an IFRCS in X, by hypothesis. Since every 
IFRCS is an IFSPCS, f -1(V) is an IFSPCS in X. Hence f is an 
IFSP continuous mapping. 
 
Example  4.13:Let X = {a, b}, Y = {u, v}, G1 = x, (0.7, 0.8), 
(0.3, 0.2), G2 = x,(0.6, 0.7), (0.4, 0.3) and G3 = y, (0.5, 0.4), 
(0.5, 0.6). Then τ = {0~, G1, G2, 1~} and = {0~, G3, 1~} are IFT 
on X and Y respectively. Define a mapping f : (X, )    (Y, ) 
by f(a) = u and f(b) = v. Then f is an IFSP continuous mapping 
but not an IFcSPGcontinuous mapping. 

 
Theorem 4.14: Every IFcSPG continuous mapping is an IFα 
continuous mapping but not conversely. 
 
Proof: Letf : (X, )  (Y, ) be an IFcSPG continuous 
mapping. Let V be an IFCS in Y. Hence V is an IFSPGCS in Y. 
Then f -1(V) is an IFRCS in X, by hypothesis. Since every 
IFRCS is an IFαCS, f -1(V) is an IFαCS in X. Hence f is an IFα 
continuous mapping. 
 
Example 4.15:Let X = {a, b}, Y = {u, v} and G1 = x, (0.6, 0.7), 
(0.4, 0.2), G2 = y, (0.6, 0.7), (0.4, 0.2). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. Then f is an 
IFα continuous mapping but not an IFcSPG continuous 
mapping. 
 
 
The relation between various types of intuitionistic fuzzy 
continuity is given in the following diagram. In this diagram cts 
means continuous mapping.  
 
IFPcts IFcts  
 
 
     IFaSPGcts 
 
IFαctsIFcSPGcts  
 
 
   IFSPGcts 
 
IFScts IFSPcts 
 
In the above diagram none of them is reversible. 
 
Theorem 4.16: If f : X  Y is an IFcSPG continuous mapping 
where X is an IFSPT1/2 space, then spcl(f -1(A))  f -1(cl(A)) for 
every IFSPOS A  Y. 
 
Proof: Let A be an IFSPOS in Y. Then cl(A) is an IFRCS in Y. 
Hence cl(A) is an IFSPGCS in Y. By hypothesis, f -1(cl(A)) is an 
IFRCS in X and thus an IFSPCS in X. Therefore spcl(f -1(A))  
spcl(f -1(cl(A))) = f -1(cl(A)). 
 
Corollary 4.17: If f : X  Y is an IFcSPG continuous mapping 
where X is an IFSPT1/2 space, then spcl(f -1(A))  f -1(cl(A)) for 
every IFSOS A  Y. 
 
Proof: Since every IFSOS is an IFSPOS, the proof is obvious 
from the Theorem 4.16. 
 
Theorem4.18: A mapping f : X  Y is an IFcSPG continuous 
mapping if and only if f -1(V) is an IFROS in X for every 
IFSPGOS V in Y. 
 
Proof: Straightforward. 
 
Theorem 4.19: If a mapping f : X  Y is an IFcSPG 
continuous mapping, then for every IFP p(α, β)  X and for every 
IFN A of f(p(α, β)), there exists an IFROS B  X such that p(α, β) 
 B f -1(A). 
 
Proof: Let p(α, β)  X and let A be an IFN of f(p(α, β)). Then there 
exists an IFOS C in Y such that f(p(α, β))  C  A. Since every 
IFOS is an IFGSPOS, C is an IFSPGOS in Y. Hence by 
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hypothesis, f -1(C) is an IFROS in X and p(α, β)  f -1(C). Now let 
f -1(C) = B. Therefore p(α, β)  B = f -1(C)  f -1(A). 
 
Theorem 4.20: If a mapping f : X  Y is an IFcSPG 
continuous mapping, then for every IFP p(α, β) X and for every 
IFN A of f(p(α, β)), there exists an IFROS  B  X such thatp(α, β) 
 B and f(B)  A. 
 
Proof: Let p(α, β) X and let A be an IFN of f(p(α, β)). Then there 
exists an IFOS C in Y such that f(p(α, β))  C  A. Since every 
IFOS is an IFSPGOS, C is an IFSPGOS in Y. Hence by 
hypothesis, f -1(C) is an IFROS in X and p(α, β) f -1(C). Now let f 

-1(C) = B. Therefore p(α, β) B  f -1(A). Thus f(B)  f(f -1(A))  
A. That is f(B)  A. 
 
Theorem 4.21:If a mapping f : X  Y is an IFcSPG continuous 
mapping, then int(cl(f -1(int(B)))) f -1(B) for every IFS B in Y. 
 
Proof:  Let B  Y be an IFS. Then int(B) is an IFOS in Y and 
hence an IFSPGOS in Y. By hypothesis, f -1(int(B)) is an IFROS 
in X. Hence int(cl(f -1(int(B)))) = f -1(int(B))  f -1(B). 
 
Theorem 4.22:If an injective mapping f : X  Y is an IFcSPG 
continuous mapping, then the following are equivalent: 
(i) for any IFSPGOS A in Y and for any IFP p(α, β) X, if 
f(p(α, β)) q A then 
p(α, β)qint(f -1(A)), 
(ii) for any IFSPGOS A in Y and for any p(α, β) X, if 
f(p(α, β))q A then there 
exists an IFOS B in X such that p(α, β)q B and f(B)  A. 
 
Proof: (i)  (ii) Let A  Y be an IFSPGOS and let p(α, β) X. 
Let f(p(α, β)) q A. Thenp(α, β)q f -1(A). By hypothesis, p(α, β) qint(f -

1(A)), where int(f -1(A)) is an IFOS in X. Let B = int(f -1(A)). 
Since int(f -1(A))  f -1(A), B  f -1(A). Then f(B)  f(f -1(A))  
A. 
(ii)  (i) Let A  Y be an IFSPGOS and let p(α, β)X. Suppose 
f(p(α, β)) q A, then by (ii) there exists an IFOS B in X such that 
p(α, β)q B and f(B)  A. Now B = f -1(f(B))  f -1(A). That is B = 
int(B) int(f -1(A)). Therefore p(α, β) q B implies p(α, β) q int(f -

1(A)).  
 
5. INTUITIONISTIC FUZZY ALMOST 
SEMIPRE GENERALIZED CLOSED 
MAPPINGS  
In this section we have introduced intuitionistic fuzzy 
almostsemipregeneralized closed mappings and intuitionistic 
fuzzy almost semipregeneralized open mappings. We have 
studied some of their properties. 
 
Definition 5.1: A mapping f : X  Y is called an intuitionistic 
fuzzy almost semipregeneralized closed mapping (IFaSPGC 
mapping for short) if f(A) is an IFSPGCS in Y for each IFRCS 
A in X. 
 
Example 5.2:Let X = {a, b}, Y = {u, v} and G1= x, (0.2, 0.3), 
(0.8, 0.7) ,G2 = y, (0.5, 0.4), (0.5, 0.6). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPGC mapping. 
 
Theorem 5.3:  Every IFC mapping is an IFaSPGC mapping but 
not conversely. 
 

Proof: Assume that f: X   Y is an IFC mapping. Let A be an 
IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X. 
Then f(A) is an IFCS in Y. Since every IFCS is an IFSPGCS, 
f(A) is an IFSPGCS in Y. Hence f is an IFaSPGC mapping. 
 
Example 5.4:Let X = {a, b}, Y = {u, v} and G1= x, (0.2, 0.3), 
(0.8, 0.7) , G2 = y, (0.5, 0.4), (0.5, 0.6). Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPGC mapping but not an IFC mapping. 
 
Theorem 5.5:  Every IFSC mapping is an IFaSPGC mapping 
but not conversely. 
 
Proof: Assume that f : X  Y be an IFSC mapping. Let A be an 
IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X. 
Then f(A) is an IFSCS in Y. Since every IFSCS is an IFSPGCS, 
f(A) is an IFSPGCS in Y. Hence f is an IFaSPGC mapping. 
 

Example 5.6: Let X = {a, b}, Y = {u, v} and G 1  = x, (0.2, 
0.3), (0.8, 0.7) , G2 = y, (0.5, 0.4), (0.5, 0.6) . Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFT on X and Y respectively. 
Define a mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFaSPGC mapping but not an IFSC mapping. 
 
Theorem 5.7:  Every IFαC mapping is an IFaSPGC mapping 
but not conversely. 
 
Proof: Let f : X  Y be an IFαC mapping . Let A be an IFRCS 
in X. Since every IFRCS is an IFCS, A is an IFCS in X. Then 
f(A) is an IFαCS in Y. Since every IFαCS is an IFSPGCS, f(A) 
is an IFSPGCS in Y. Hence f is an IFaSPGC mapping. 
 
Example 5.8:Let X = {a, b}, Y = {u, v} and G1= x, (0.2, 0.3), 
(0.8, 0.7) ,G2 = y, (0.5, 0.4), (0.5, 0.6) . Then τ = {0~, G1, 1~} 
and  = {0~, G2, 1~} are IFT on X and Y respectively. Define a 
mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPGC mapping but not an IFαC mapping. 
 
Theorem 5.9:  Every IFPC mapping is an IFaSPGC mapping 
but not conversely. 
 
Proof: Assume that f : X  Y be an IFPC mapping. Let A be an 
IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS in X.  
Then f(A) is an IFPCS in Y. Since every IFPCS is an IFSPGCS, 
f(A) is an IFSPGCS in Y. Hence f is an IFaSPGC mapping. 
 
Example 5.10: Let X = {a, b}, Y = {u, v}, G1 = x, (0.5, 0.3), 
(0.5, 0.7) andG2 = y, (0.5, 0.6), (0.5, 0.4). Then  = {0~, G, 
1~}and  = {0~, G2, 1~} are IFT on X and Y respectively. Define 
a mapping f : (X, )    (Y, ) by f(a) = u and f(b) = v. Then f is 
an IFaSPGC mapping but not an IFPC mapping.   
 
Theorem 5.11:  Every IFSPGC mapping is an IFaSPGC 
mapping but not conversely. 
 
Proof: Assume that f : X  Y be an IFGSPC mapping. Let A 
be an IFRCS in X. Since every IFRCS is an IFCS, A is an IFCS 
in X.  Then f(A) is an IFSPGCS in Y. Hence f is an IFaSPGC 
mapping. 
 
Example 5.12: Let X = {a, b}, Y = {u, v}, G1 = x, (0.4, 0.2), 
(0.6, 0.8) , G2 = x,(0.4, 0.2), (0.4, 0.8) , G3 = y, (0.7, 0.8), 
(0.3, 0.2)  and G4 =y, (0.6, 0.7), (0.4, 0.3).  Then  = {0~, G1, 
G2, 1~} and  = {0~, G3, G4, 1~} are IFT on Xand y respectively. 
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Define a mapping f : (X, )   (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFaSPGC mapping but not an IFSPGC mapping. 
 
Theorem 5.13:  Every IFMSPGC mapping is an IFaSPGC 
mapping but not conversely. 
 
Proof:  Assume that f : X  Y be an IFMSPGC mapping . Let 
A be an IFRCS in X. Then A is an IFSPGCS in X. By 
hypothesis f (A) is an IFSPGCS in Y. Therefore f is an 
IFaSPGC mapping. 
 
Example 5.14:Let X = {a, b}, Y = {u, v}, G1 = x, (0.4, 0.2), 
(0.6, 0.8) , G2 = x,(0.4, 0.2), (0.4, 0.8) , G3 = y, (0.7, 0.8), 
(0.3, 0.2)  and G4 =y, (0.6, 0.7), (0.4, 0.3).  Then  = {0~, G1, 
G2, 1~} and  = {0~, G3, G4, 1~} are IFT on Xand y respectively. 
Define a mapping f : (X, )   (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFaSPGC mapping but not an IFMSPGC mapping. 
 
The relation between various types of intuitionistic fuzzy closed 
mappings is given in the following diagram.  
 
 IFαCM    IFSPGCM 
 
 
IFCM       IFPCMIFaSPGCMIFMSPGCM 
 
 
 IFSCM 
 
The reverse implications are not true in general in the above 
diagram. 
 
Definition 5.15: A mapping f : X  Y is called an intuitionistic 
fuzzy almostsemipre generalized open mapping (IFaSPGO 
mapping for short) if f(A) is an IFSPGOS in Y for each IFROS 
A in X.  
 
Theorem 5.16: Let f : X  Y be a bijective mapping. Then the 
following statements are equivalent: 
(i) f is an IFaSPGO mapping, 
(ii) f is an IFaSPGC mapping. 
Proof: Straightforward. 
 
Theorem 5.17:  Let p(α, β) be an IFP in X. A mapping f : X  Y 
is an IFaSPGO mapping if for every IFOS A in X with f -1(p(α, β)) 
 A, then there exists an IFOS B in Y with p(α, β)  B such that 
f(A) is  IFD in B. 
 
Proof: Let A be an IFROS in X. Then A is an IFOS in X. Let f -

1(p(α, β))  A, then there exists an IFOS B in Y such that p(α, β)  
B and cl(f(A)) =  B. Since B is an IFOS, cl(f(A)) = B is also an 
IFOS in Y. Therefore int(cl(f(A))) = cl(f(A)). Now f(A) 
cl(f(A)) = int(cl(f(A)))  cl(int(cl(f(A)))). This implies f(A) is 
an IFSPOS in Y and hence an IFSPGOS in Y. Thus f is an 
IFaSPGO mapping. 
 
Theorem 5.18: Let f : X  Y be a mapping where Y is an 
IFSPT1/2 space. Then the following statements are equivalent: 
(i) f is an IFaSPGC mapping, 
(ii) spcl(f(A))  f(cl(A)) for every IFSPOS A in X, 
(iii) spcl(f(A))  f(cl(A)) for every IFSOS A in X, 
(iv) f(A) spint(f(int(cl(A)))) for every IFPOS A in X. 
 
Proof: (i)  (ii) Let A be an IFSPOS in X. Then cl(A) is an 
IFRCS in X. By hypothesis, f(cl(A)) is an IFSPGCS in Y and 
hence is an IFSPCS in Y, since Y is an IFSPT1/2 space.  This 

implies spcl(f(cl(A))) = f(cl(A)). Now spcl(f(A)) spcl(f(cl(A))) 
= f(cl(A)). Thus spcl(f(A))  f(cl(A)). 
(ii)  (iii) Since every IFSOS is an IFSPOS, the proof directly 
follows. 
(iii)  (i) Let A be an IFRCS in X. Then A = cl(int(A)). 
Therefore A is an IFSOS in X. By hypothesis, spcl(f(A))  
f(cl(A)) = f(A) spcl(f(A)). Hence f(A) is an IFSPCS and hence 
is an IFSPGCS in Y. Thus f is an IFaSPGC mapping. 
(i)  (iv) Let  A be an IFPOS in X. Then A int(cl(A)). Since 
int(cl(A)) is an IFROS in X, by hypothesis, f(int(cl(A))) is an 
IFSPGOS in Y. Since Y is an IFSPT1/2 space, f(int(cl(A))) is an 
IFSPOS in Y. Therefore f(A)  f(int(cl(A))) 
spint(f(int(cl(A)))). 
(iv)  (i) Let A be an IFROS in X. Then A is an IFPOS in X. 
By hypothesis,f(A) spint(f(int(cl(A)))) = spint(f(A))  f(A). 
This implies f(A) is an IFSPOS in Y and hence is an IFSPGOS 
in Y. Therefore f is an IFaSPGC mapping. 
 
Theorem 5.19: Let f : X  Y be a mapping. If f is an IFaSPGC 
mapping, then spgcl(f(A))  f(cl(A)) for every IFSPOS A in X. 
 
Proof: Let A be an IFSPOS in X. Then cl(A) is an IFRCS in X. 
By hypothesis f(cl(A)) is an IFSPGCS in Y. Then spgcl(f(cl(A)) 
= f(cl(A)). Now spgcl(f(A)) spgcl(f(cl(A))) = f(cl(A)). That is 
spgcl(f(A))  f(cl(A)). 
 
Corollary 5.20: Let f : X  Y be a mapping. If f is an IFaSPGC 
mapping, then spgcl(f(A)  f(cl(A)) for every IFSOS A in X. 
 
Proof: Since every IFSOS is an IFSPOS, the proof is obvious 
from the Theorem 5.19. 
 
Corollary 5.21: Let f : X  Y be a mapping. If f is an IFaGSPC 
mapping, then gspcl(f(A)  f(cl(A)) for every IFPOS A in X. 
 
Proof: Since every IFPOS is an IFSPOS, the proof is obvious 
from the Theorem 5.19. 
 
Theorem 5.22: Let f : X  Y be a mapping. If f is an IFaSPGC 
mapping, then spgcl(f(A))  f(cl(spint(A))) for every IFSPOS A 
in X. 
 
Proof: Let A be an IFSPOS in X. Then cl(A) is an IFRCS in X. 
By hypothesis, f(cl(A)) is an IFSPGCS in Y. Then spgcl(f(A)) 
spgcl(f(cl(A))) = f(cl(A))   f(cl(spint(A))), since spint(A) = 
A. 
 
Corollary 5.23: Let f : X  Y be a mapping. If f is an IFaSPGC 
mapping, then spgcl(f(A))  f(cl(spint(A))) for every IFSOS A 
in X. 
 
Proof: Since every IFSOS is an IFSPOS, the proof is obvious 
from the Theorem 5.22. 
 
Corollary 5.24:  Let f: X  Y be a mapping. If f is an IFaSPGC 
mapping, then spgcl(f(A))  f(cl(spint(A))) for every IFPOS A 
in X. 
 
Proof: Since every IFPOS is an IFSPOS, the proof is obvious 
from the Theorem 5.22. 
 
Theorem 5.25:  Let f : X  Y be a mapping. If f(spint(B)) 
spint(f(B)) for every IFS B in X, then f is an IFaSPGO 
mapping. 
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Proof: Let B  X be an IFROS. By hypothesis, f(spint(B)) 
spint(f(B)). Since B is an IFROS, it is an IFSPOS in X. 
Therefore spint(B) = B. Hence f(B) = f(spint(B)) spint(f(B))  
f(B). This implies f(B) is an IFSPOS and hence an IFSPGOS in 
Y. Thus f is an IFaSPGO mapping. 
 
Theorem 5.26:  Let f : X  Y be a mapping. If spcl(f(B))   
f(spcl(B)) for every IFS B in X, then f is an IFaSPGC mapping. 
 
Proof: Let B  X be an IFRCS. By hypothesis, spcl(f(B))   
f(spcl(B)). Since B is an IFRCS, it is an IFSPCS in X. Therefore 
spcl(B) = B. Hence f(B) = f(spcl(B)) spcl(f(B))  f(B). This 
implies f(B) is an IFSPCS and hence an IFSPGCS in Y. Thus f 
is an IFaSPGC mapping. 
 
Theorem 5.27: The following statements are equivalent for a 
mapping f : X  Y, where Y is an IFSPT1/2 space: 
(i) f is an IFaSPGC mapping, 
(ii) spcl(f(A))  f(αcl(A)) for every IFSPOS A in X, 
(iii) spcl(f(A))  f(αcl(A)) for every IFSOS A in X, 
(iv) f(A) spint(f(scl(A))) for every IFPOS A in X. 
 
Proof: (i)  (ii) Let A be an IFSPOS in X. Then cl(A) is an 
IFRCS in X. By hypothesis f(cl(A)) is an IFSPGCS in Y and 
hence is an IFSPCS in Y, since Y is an IFSPT1/2 space.  This 
implies spcl(f(cl(A))) = f(cl(A)). Now spcl(f(A)) spcl(f(cl(A))) 
= f(cl(A)). Since cl(A) is an IFRCS, cl(int(cl(A))) = cl(A). 
Therefore spcl(f(A))  f(cl(A)) = f(cl(int(cl(A))))  f(A  
cl(int(cl(A)))) = f(αcl(A)). Hence spcl(f(A))  f(αcl(A)). 
(ii)  (iii) Since every IFSOS is an IFSPOS, the proof is 
obvious. 
(iii)  (i) Let A be an IFRCS in X. Then A = cl(int(A)). 
Therefore A is an IFSOS in X. By hypothesis, spcl(f(A))  
f(αcl(A))  f(cl(A)) = f(A) spcl(f(A)). That is spcl(f(A)) =  
f(A). Hence f(A) is an IFSPCS and hence is an IFSPGCS in Y. 
Thus f is an IFaSPGC mapping. 
(i)  (iv) Let  A be an IFPOS in X. Then A int(cl(A)). Since 
int(cl(A)) is an IFROS in X, by hypothesis, f(int(cl(A))) is an 
IFSPGOS in Y. Since Y is an IFSPT1/2 space, f(int(cl(A))) is an 
IFSPOS in Y. Therefore f(A)  f(int(cl(A))) 
spint(f(int(cl(A)))) spint(f(A int(cl(A)))) = spint(f(scl(A))). 
That is f(A) spint(f(scl(A))). 
(iv)  (i) Let A be an IFROS in X. Then A is an IFPOS in X. 
By hypothesis, f(A) spint(f(scl(A))). This implies f(A) 
spint(f(A int(cl(A)))) spint(f(A  A)) = spint(f(A ))  
f(A). Therefore f(A) is an IFSPOS in Y and hence an IFSPGOS 
in Y. Thus f is an IFaSPGC mapping. 
 
Theorem 5.28: Let f : X  Y be a mapping where Y is an 
IFSPT1/2 space. If f is an IFaSPGC mapping, then 
int(cl(int(f(B))))  f(spcl(B)) for every IFRCS B in X. 
 
Proof: Let B  X be an IFRCS. By hypothesis, f(B) is an 
IFSPGCS in Y. Since Y is an IFSPT1/2 space, f(B) is an IFSPCS 
in Y. Therefore spcl(f(B)) = f(B). Now int(cl(int(f(B))))   f(B) 
= f(spcl(B)), since B = spcl(B). Hence int(cl(int(f(B))))  
f(spcl(B)). 
 
Theorem 5.29: Let f : X  Y be a mapping where Y is an 
IFSPT1/2 space. If f is an IFaSPGC mapping, then f(spint(B))  
cl(int(cl(f(B)))) for every IFROS B in X. 
 
Proof: This theorem can be easily proved by taking complement 
in Theorem 5.28. 
 

Theorem 5.30: Let f : X  Y be a bijective mapping. Then the 
following statements are equivalent: 
(i) f is an IFaSPGO mapping, 
(ii) f is an IFaSPGC mapping, 
(iii) f -1 is an IFaSPG continuous mapping. 
 
Proof: (i)  (ii) is obvious from the Theorem 5.16. 
(ii)  (iii) Let A  X be an IFRCS. Then by hypothesis, f(A) is 
an IFSPGCS in Y. That is (f -1) -1(A) is an IFSPGCS in Y. This 
implies f -1 is an IFaSPG continuous mapping. 
(iii)  (ii) Let A  X be an IFRCS. Then by hypothesis (f -1) -

1(A) is an IFSPGCSin Y. That is f(A) is an IFSPGCS in Y. 
Hence f is an IFaSPGC mapping. 
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