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1. INTRODUCTION 
 
 In 1965, Zadeh [13] introduced fuzzy sets and in 
1968, Chang [2] introduced fuzzy topology.  After the 
introduction of fuzzy set and fuzzy topology, several authors 
were conducted on the generalization of this notion.  The 
notion of intuitionistic fuzzy sets was introduced by Atanassov 
[1] as a generalization of fuzzy sets.  In 1997, Coker [3] 
introduced the concept of intuitionistic fuzzy topological 
spaces.  In 2005, Young Bae Jun and SeokZun Song [12] 
introduced Intuitionistic fuzzy semipre continuous mappings 
in intuitionistic fuzzy topological spaces. In this paper we 
introduce intuitionistic fuzzy contra semipre generalized 
continuous mappings, intuitionistic fuzzy almost contra 
semipre generalized continuous mappings and intuitionistic 
fuzzy contra semipre generalized open mappings. We 
investigate some of their properties.  
 
2. PRELIMINARIES 
 
Definition 2.1: [1] Let X be a non-empty fixed set. An 
intuitionistic fuzzy set (IFS in short) A in X is an object 
having the form A = {〈x, µA(x), νA(x)〉/ x ∈ X} where the 
functions µA : X → [0, 1] and  νA : X → [0, 1] denote the 
degree of membership (namely µA(x)) and the degree of non-
membership (namely νA(x)) of each element x ∈ X to the set 
A, respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X. 
Denote by IFS(X), the set of all intuitionistic fuzzy sets in X.  
 
Definition 2.2: [1] Let A and B be IFSs of the form A = {〈x, 
µA(x), νA(x)〉/ x ∈ X} and B = {〈x, µB(x), νB(x)〉/ x∈ X}. Then     
1. A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) 
for all x ∈ X 
2. A = B if and only if A ⊆ B and B ⊆ A 
3. Ac = {〈x, νA(x), µA(x)〉/ x ∈ X} 
4. A ∩ B = {〈x, µA(x) ∧ µB(x), νA(x) ∨νB(x)〉/ x ∈ X} 
5. A ∪ B = {〈x, µA(x) ∨ µB(x), νA(x) ∧νB(x)〉/ x ∈ X}                                                                                                                                           
For the sake of simplicity, we shall use the notation A = 〈x, 
µA, νA〉 instead of A = {〈x, µA(x), νA(x)〉/ x ∈ X}.  The 
intuitionistic fuzzy sets 0~ = {〈x, 0, 1〉/ x ∈ X} and 1~ = {〈x, 1, 
0〉/ x ∈ X} are respectively the empty set and the whole set of 
X. 
 

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT in 
short) on X is a family τ of IFSs in X satisfying the following 
axioms: 
1. 0~, 1~∈ τ 
2. G1 ∩ G2∈ τ, for any G1, G2∈ τ 
3. ∪Gi∈ τ for any family {Gi / i ∈ J} ⊆ τ 
In this case the pair (X, τ) is called an intuitionistic fuzzy 
topological space(IFTS in short) and any IFS in τ is known as 
an intuitionistic fuzzy open set(IFOS in short)in X. The 
complement Ac of an IFOS A in an IFTS (X, τ) is called an 
intuitionistic fuzzy closed set (IFCS in short) in X. 
 
Definition 2.4: [3] Let (X, τ) be an IFTS and A = 〈x, µA, νA〉 
be an IFS in X. Then  
1. int(A) =  ∪{G / G is an IFOS in X and G ⊆ A} 
2. cl(A) = ∩{K / K is an IFCS in X and A ⊆ K} 
3. cl(Ac) = (int(A))c 
4. int(Ac) = (cl(A))c 
 
Definition 2.5: [5] An IFS A of an IFTS (X, τ) is an 
1. intuitionistic fuzzy preclosed set (IFPCS in short) if 
cl(int(A)) ⊆ A  
2. intuitionistic fuzzy preopen set (IFPOS in short) if A 
⊆int(cl(A)) 
Note that every IFOS in (X, τ) is an IFPOS in X.  
 
Definition 2.6: [5] An IFS A of an IFTS (X, τ) is an  
1. intuitionistic fuzzy α-closed set (IFαCS in short) if 
cl(int(cl(A))) ⊆ A 
2. intuitionistic fuzzy α-open set (IFαOS in short) if A 
⊆int(cl(int(A))) 
3. intuitionistic fuzzy regular closed set (IFRCS in 
short) if A = cl(int(A)) 
4. intuitionistic fuzzy regular open set (IFROS in 
short) if A = int(cl(A)) 
 
Definition 2.7: [12] An IFS A of an IFTS (X, τ) is an  
1. intuitionistic fuzzy semipre closed set (IFSPCS in 
short) if there exists an IFPCS B such that int(B) ⊆ A ⊆ B 
2. intuitionistic fuzzy semipre open set (IFSPOS in 
short) if there exists an IFPOS B such that B ⊆ A ⊆ cl(B) 
 
Definition 2.8:[9] An IFS A is an IFTS (X, τ) is said to be an 
intuitionistic fuzzy semipregeneralized closed set (IFSPGCS 
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in short) if spcl(A) ⊆ U whenever A ⊆ U and U is an IFSOS 
in (X, τ).  
Every IFCS, IFαCS, IFRCS, IFPCS and IFSPCS is an 
IFSPGCS but the converses are not true in general. 
 
Definition 2.9:[7] The complement Ac of an IFSPGCS A in 
an IFTS (X, τ) is called an intuitionistic fuzzy semipre 
generalized open set (IFSPGOS in short) in X. 
 
The family of all IFSPGOSs of an IFTS (X, τ) is denoted by 
IFSPGO(X).  Every IFOS, IFαOS, IFROS, IFPOS and 
IFSPOS is an IFSPGOS but the converses are not true in 
general. 
 
Definition 2.10: [6] Let α, β ∈ [0, 1] and α+ β ≤ 1.  An 
intuitionistic fuzzy point (IFP for short)  p(α, β) of X is an IFS 
of X defined by  

p(α, β) (y) =   ൜
,ߙ) ݕ݂݅            (ߚ = ݌
(0, ݕ݂݅            (1 ≠ ݌  

 
Definition 2.11: [5] Let A be an IFS in an IFTS (X, τ). Then  
1. spint(A) = ∪{G / G is an IFSPOS in X and G ⊆ A}  
2. spcl(A) = ∩{K / K is an IFSPCS in X and A ⊆ K} 
Note that for any IFS A in (X, τ), we have spcl(Ac) = 
(spint(A))c and spint(Ac) = (spcl(A))c. 
 
Definition 2.12: [11] Let A be an IFS in an IFTS (X, τ).  Then 
semipre generalized interior of A (spgint(A) in short) and 
semipre generalized closure of A (spgcl(A) for short) are 
defined by  
1. spgint(A) = ∪{G / G is an IFSPGOS in X and G ⊆ 
A}  
2. spgcl(A) = ∩{K / K is an IFSPGCS in X and A ⊆ 
K} 
Note that for any IFS A in (X, τ), we have spgcl(Ac) = 
(spgint(A))c and spgint(Ac) = (spgcl(A))c. 
 
Definition 2.13: [7] If every IFSPGCS in (X, τ) is an IFSPCS 
in (X, τ), then the space can be called as an intuitionistic fuzzy 
semipre T1/2 (IFSPT1/2 for short) space. 
 
Definition 2.14:[10] A mapping f : (X, τ) → (Y, σ) is called 
an intuitionistic fuzzy semipre generalized continuous (IFSPG 
continuous for short) mappings if f -1(V) is an IFSPGCS in (X, 
τ) for every IFCS V of (Y, σ). 
 
Definition 2.15: [6] A mapppingf : (X, τ) → (Y, σ) is called 
an intuitionistic fuzzy closed mapping (IFCM for short) if f(A) 
is an IFCS in Y for each IFCS A in X. 
 
Definition 2.16: [8] A mapping f : (X, τ) → (Y, σ) is called an 
intuitionistic fuzzy semipre generalized closed mapping 
(IFSPGCM in short) if f(A) is an IFSPGCS in Y for each 
IFCS A in X. 
 
Definition  2.17: [8] A mapping f : (X, τ) → (Y, σ) is said to 
be an intuitionistic fuzzy M-semipre generalized closed 
mapping (IFMSPGCM in short) if f(A) is an IFSPGCS in Y 
for every IFSPGCS A in X. 
 
Definition 2.18:[10] A mapping f: (X, τ) → (Y, σ) be an 
intuitionistic fuzzy semipre generalized irresolute (IFSPG 
irresolute) mapping if f -1(V) is an IFSPGCS in (X, τ) for every 
IFSPGCS V of (Y, σ). 
 
Definition 2.19: [5]Two IFSs A and B are said to be q-
coincident (A q B in short) if and only if there exists and 
element x ∈ X such that µA(x) >νB(x) or νA(x) < µB(x). 

 
Definition 2.19:[4]A mapping f : (X, τ) → (Y, σ) is called an 
1. intuitionistic fuzzy contra continuous if f-1(B) is an 

IFCS in X for everyIFOS B in Y 
2. intuitionistic fuzzy contra α continuous if f-1(B) is an 

IFαCS in X for everyIFOS B in Y 
3. intuitionistic fuzzy contra pre continuous if f-1(B) is 

an IFPCS in X forevery IFOS B in Y 
 

3. INTUITIONISTIC FUZZY 
CONTRA SEMIPRE GENERALIZED 
CONTINUOUS MAPPINGS 

In this section we have introduced intuitionistic 
fuzzy contra semipre generalized continuous mappings. We 
investigated some of its properties.  
 
Definition 3.1: A mapping f : (X, τ) → (Y, σ) is said to be an 
intuitionistic fuzzy contra semipre generalized continuous 
mapping (IFCSPG continuous mapping in short) if f -1(A) is an 
IFSPGCS in X for every IFOS A in Y. 
 
Example 3.2: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.4), (0.5, 0.6), G2 = y, (0.4, 0.2), (0.6, 0.7). Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFTs on X and Y respectively. 
Define a mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFCSPG continuous mapping. 
 
Theorem 3.3: Every IFC continuous mapping is an IFCSPG 
continuous mapping but not conversely. 
Proof: Let A Y be an IFOS. Then f -1(A) is an IFCS in Y, by 
hypothesis. Hencef -1(A) is an IFSPGCS in X. Therefore f is 
an IFCSPG continuous mapping. 
 
Example 3.4: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.4), (0.5, 0.6), G2 = y, (0.4, 0.2), (0.6, 0.7). Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFTs on X and Y respectively. 
Define a mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFCSPG continuous mapping but not an IFC 
continuous mapping. 
 
Theorem 3.5: Every IFCα continuous mapping is an IFCSPG 
continuous mapping but not conversely. 
Proof: Let A Y be an IFOS. Then f -1(A) is an IFαCS in X, 
by hypothesis. Hence f -1(A) is an IFGSPCS in X. Therefore f 
is an IFCSPG continuous mapping. 
 
Example 3.6: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.4), (0.5, 0.6), G2 = y, (0.4, 0.2), (0.6, 0.7). Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFTs on X and Y respectively. 
Define a mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFCSPG continuous mapping but not an IFCα 
continuous mapping. 
 
Theorem 3.7: Every IFCP continuous mapping is an IFCSPG 
continuous mapping but not conversely. 
Proof: Let A Y be an IFOS. Then f -1(A) is an IFPCS in X, 
by hypothesis. Hencef -1(A) is an IFSPGCS in X. Therefore f 
is an IFCSPG continuous mapping. 
 
Example 3.8: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.6), (0.5, 0.4), G2 = x, (0.2, 0.1), (0.8, 0.9)and G3 = y, 
(0.2, 0.3), (0.8, 0.7). Then τ = {0~, G1, G2,1~} and  = {0~, 
G3,1~} are IFTs on X and Y respectively. Define a mappingf : 
(X, )  (Y, ) by f(a) = u and f(b) = v. Then f is an IFCSPG 
continuous mapping but not an IFCP continuous mapping. 
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Theorem 3.9: Let f : (X, τ) → (Y, σ) be a mapping. Then the 
following statements are equivalent: 
(i) f is an IFCSPG continuous mapping 
(ii) f -1(A) is an IFSPGOS in X for every IFCS A in Y 
Proof: (i)  (ii) Let A be an IFCS in Y. Then Ac is an IFOS 
in Y. By hypothesis, f -1(Ac) is an IFSPGCS in X. That is f -

1(A)c is an IFGSPCS in X. Hence f -1(A) is an IFSPGOS in X. 
(ii)  (i) Let A be an IFOS in Y. Then Ac is an IFCS in Y. By 
hypothesis, f -1(Ac) is an IFSPGOS in X. Hence f -1(A) is an 
IFSPGCS in X. Thus f is an IFCSPG continuous mapping. 
 
Theorem 3.10: Let f : (X, τ) → (Y, σ)  be a bijective 
mapping. Suppose that one of the following properties hold: 
(i) f -1(cl(B)) int(spcl(f -1(B))) for each IFS B in Y 
(ii) cl(spint(f -1(B)))  f -1(int(B)) for each IFS B in Y 
(iii) f(cl(spint(A))) int(f(A)) for each IFS A in X 
(iv) f(cl(A)) int(f(A)) for each IFSPOS A in X 
Then f is an IFCSPG continuous mapping. 
Proof: (i)  (ii) is obvious by taking complement in (i). 
(ii)  (iii) Let A  X. Put B = f(A) in Y. This implies A = f -

1(f(A)) = f -1(B) in X. Now cl(spint(A)) = cl(spint(f -1(B)))  f -

1(int(B)) by hypothesis. Therefore f(cl(spint(A))) f(f -

1(int(B))) = int(B) = int(f(A)). 
(iii)  (iv) Let A  X be an IFSPOS. Then spint(A) = A. By 
hypothesis, f(cl(spint(A))) int(f(A)).  Therefore f(cl(A)) = 
f(cl(spint(A))) int(f(A)). 
Suppose (iv) holds: Let A be an IFOS in Y. Then f -1(A) is an 
IFS in X andspint(f -1(A)) is an IFSPOS in X. Hence by 
hypothesis, f(cl(spint(f -1(A)))) int(f(spint(f -1(A)))) int(f(f -

1(A))) = int(A)  A. Therefore cl(spint(f -1(A))) = f -

1(f(cl(spint(f -1(A))))) f -1(A). Now cl(int(f -1(A)))  cl(spint(f 

-1(A)))  f -1(A).  This implies f -1(A) is an IFPCS in X and 
hence an IFSPGCS in X. Thus f is an IFCSPG continuous 
mapping. 
 
Theorem 3.11: Let f : (X, τ) → (Y, σ) be a map. Suppose that 
one of the following properties hold: 
(i) f(spcl(A)) int(f(A)) for each IFS A in X 
(ii) spcl(f -1(B))  f -1(int(B)) for each IFS B in Y 
(iii) f -1(cl(B)) spint(f -1(B)) for each IFS B in Y 
Then f is an IFCSPG continuous mapping. 
Proof: (i)  (ii) Let B  Y. Then f -1(B) is an IFS in X. By 
hypothesis, f(spcl(f -1(B))) int(f(f -1(B))) int(B). Now spcl(f 

-1(B)) f -1(f(spcl(f -1(B))))  f -1(int(B)). 
(ii)  (iii) is obvious by taking complement in (ii). 
Suppose (iii) holds: Let B be an IFCS in Y. Then cl(B) = B 
and f -1(B) is an IFS in X. Now  f -1(B) = f -1(cl(B)) spint(f -

1(B))  f -1(B), by hypothesis. This implies f -1(B) is an 
IFSPOS in X and hence an IFGSPOS in X. Thus f is an 
IFCSPG continuous mapping. 
 
Theorem 3.12: Let f : (X, τ) → (Y, σ) be a bijective mapping. 
Then f is an IFCSPG continuous mapping if cl(f(A))  
f(spint(A)) for every IFS A in X. 
Proof: Let A be an IFCS in Y. Then cl(A) = A and f -1(A) is 
an IFS in X. By hypothesis cl(f(f -1(A)))  f(spint(f -1(A))). 
Since f is onto, f(f-1(A)) = A. Therefore A = cl(A) = cl(f(f -

1(A)))  f(spint(f -1(A))). Now f -1(A) f -1(f(spint(f -1(A)))) = 
spint(f -1(A))  f -1(A). Hence f -1(A) is an IFSPOS in X and 
hence an IFSPGOS in X. Thus f is an IFCSPG continuous 
mapping. 
 
Theorem 3.13: If f : (X, τ) → (Y, σ) is an IFCSPG continuous 
mapping, where X is an IFSPT1/2 space, then the following 
conditions hold: 

(i) spcl(f -1(B))  f -1(int(spcl(B))) for every IFOS B in 
Y 
(ii) f -1(cl(spint(B))) spint(f -1(B)) for every IFCS B in 
Y 
Proof: (i) Let B  Y be an IFOS. By hypothesis f -1(B) is an 
IFSPGCS in X. Since X is an IFSPT1/2 space, f -1(B) is an 
IFSPCS in X. This implies spcl(f -1(B)) = f -1(B) =f -1(int(B))  
f -1(int(spcl(B))).(ii) can be proved easily by taking 
complement in (i). 
 
Theorem 3.14:(i) If f : (X, τ) → (Y, σ) is an IFCSPG 
continuous mapping and g : (Y, σ) →(Z, η) is an IF 
continuous mapping, then  
(i) g f: (X, τ)→ (Z, η)is an IFCSPG continuous 
mapping 
(ii) If f : (X, τ) → (Y, σ) is an IFCSPG continuous mapping 
and g : (Y, σ) (Z, η) is an IFC continuous mapping, then g  
f : (X, τ) → (Z, η) is an IFSPG continuous mapping 
(iii)If f : (X, τ) → (Y, σ) is an IFSPG irresolute mapping and g 
: (Y, σ) (Z, η) is an IFCSPG continuous mapping, then g  f 
: (X, τ)(Z, η)  is an IFCSPG continuous mapping 
Proof: (i) Let A be an IFOS in Z. Then g -1(A) is an IFOS in 
Y, since g is an IF continuous mapping. As f is an IFCSPG 
continuous mapping, f -1(g -1(A)) is an IFSPGCS in X. 
Therefore g f is an IFCSPG continuous mapping. 
(ii) Let A be an IFOS in Z. Then g -1(A) is an IFCS in Y, since 
g is an IFC continuous mapping. As f is an IFCSPG 
continuous mapping, f -1(g -1(A)) is an IFSPGOS in X. 
Therefore g  f is an IFSPG continuous mapping. 
(iii) Let A be an IFOS in Z. Then g -1(A) is an IFSPGCS in Y, 
since g is an IFCSPG continuous mapping. As f is an IFSPG 
irresolute mapping, f -1(g -1(A)) is an IFSPGCS in X. Therefore 
g f is an IFCSPG continuous mapping. 
 
Theorem 3.15: For a mapping f : (X, τ) → (Y, σ), the 
following are equivalent, where X is an IFSPT1/2 space: 
(i) f is an IFCSPG continuous mapping 
(ii) for every IFCS A in Y, f -1(A) is an IFSPGOS in X 
(iii) for every IFOS B in Y, f -1(B) is an IFSPGCS in X 
(iv) for any IFCS A in Y and for any IFP p(α, β)  X, if 
f(p(α, β)) q A, then p(α, β) qspint(f -1(A)) 
(v) For any IFCS A in Y and for any IFP p(α, β)  X, if 
f(p(α, β))q A, then there exists an IFSPGOSB such that p(α, β) q B 
and f(B)  A 
Proof: (i)  (ii) and (ii)  (iii) are obvious. 
(ii)  (iv) Let A  Y be an IFCSand let p(α, β) X. Letf(p(α, β)) 

q A. Thenp(α, β) q f -1(A). Byhypothesis, f -1(A) is an IFSPGOS 
in X. Since X is an IFSPT1/2 space, f -1(A) is an IFSPOS in X. 
This implies spint(f -1(A)) = f -1(A). Hencep(α, β) qspint(f -1(A)). 
(iv)  (ii) Let A  Y be an IFCS and let p(α, β)  X. Let f(p(α, 

β)) q A. Thenp(α, β) q f -1(A). By hypothesis  p(α, β) qspint(f 

-1(A)). That is f -1(A) spint(f -1(A)). But we have spint(f -1(A)) 
 f -1(A). Therefore f -1(A) = spint(f -1(A)). Thus f -1(A) is an 
IFSPOS in X and hence an IFSPGOS in X. 
(iv)  (v) Let A  Y be an IFCS and let p(α, β)  X. Let f(p(α, 

β)) q A. Thenp(α, β) q f -1(A). By hypothesis p(α, β) qspint(f -1(A)). 
Thus f -1(A) is an IFSPOS in X and hence an IFSPGOS in X.  
Let f -1(A) = B.  Therefore p(α, β) q B and f(B) = f(f -1(A))  A. 
(v)  (iv) Let A  Y be an IFCS and let p(α, β)  X. Let f(p(α, 

β)) q A. Thenp(α, β) q f -1(A). By (v) there exists an IFSPGOS B 
in X such that p(α, β) q B and f(B)  A. Let B = f -1(A). Since X 
is an IFSPT1/2 space, f -1(A) is an IFSPOS in X. Therefore p(α, 

β) qspint(f -1(A)). 
 
Theorem 3.16: A mapping f : (X, τ) → (Y, σ) is an IFCSPG 
continuous mapping if f -1(spcl(B)) int(f -1(B)) for every IFS 
B in Y. 
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Proof: Let B  Y be an IFCS. Then cl(B) = B. Since every 
IFCS is an IFSPCS, spcl(B) = B. Now by hypothesis, f -1(B) = 
f -1(spcl(B)) int(f -1(B))  f -1(B). This implies f -1(B) is an 
IFOS in X.Therefore f is an IFC continuous mapping. Then by 
Theorem 3.3, f is an IFCSPG continuous mapping. 
 
Theorem 3.17: A mapping f : (X, τ) → (Y, σ) is an IFCSPG 
continuous mapping, where X is an IFSPT1/2 space if and only 
if f -1(spcl(B)) spint(f -1(cl(B))) for every IFS Bin Y. 
Proof: Necessity: Let B  Y be an IFS. Then cl(B) is an IFCS 
in Y. By hypothesisf -1(cl(B)) is an IFSPGOS in X. Since X is 
an IFSPT1/2 space, f -1(cl(B)) is an IFSPOS in X. Therefore f -

1(spcl(B))  f -1(cl(B)) =spint(f -1(cl(B))). 
Sufficiency: Let B  Y be an IFCS. Then cl(B) = B. By 
hypothesis, f -1(spcl(B)) spint(f -1(cl(B))) = spint(f -1(B)). But 
spcl(B) = B. Therefore f -1(B) = f -1(spcl(B)) spint(f -1(B)) 
 f -1(B). This implies f -1(B) is an IFSPOS in X and hence an 
IFSPGOS in X. Hence f is an IFCSPG continuous mapping. 
 
Theorem 3.18: An IF continuous mappingf : (X, τ) → (Y, σ) 
is an IFCSPG continuous mapping if IFSPGO(X) = 
IFSPGC(X). 
Proof: Let A Y be an IFOS. By hypothesis, f -1(A) is an 
IFOS in X and hence is an IFSPGOS in X. Since IFSPGO(X) 
= IFSPGC(X), f -1(A) is an IFSPGCS in X. Therefore f is an 
IFCSPG continuous mapping. 
 
4. INTUITIONISTIC FUZZY 
ALMOST CONTRA SEMIPRE 
GENERALIZED CONTINUOUS 
MAPPINGS 

In this section we have introduced intuitionistic 
fuzzy almost contra semipre generalized continuous mappings 
and studied some of its properties. 
 
Definition 4.1: A mapping f : (X, τ) → (Y, σ) is said to be an 
intuitionistic fuzzy almost contra semipre generalized 
continuous mapping (IFaCSPG continuous mapping for short) 
if f -1(A) is an IFSPGCS in X for every IFROS A in Y. 
 
Example 4.2:  Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.4), (0.5, 0.6), G2 = y, (0.4, 0.2), (0.6, 0.7). Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFTs on X and Y respectively. 
Define a mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFaCSPG continuous mapping. 
 
Theorem 4.3: Every IFC continuous mapping is an IFaCSPG 
continuous mapping but not conversely. 
Proof: Let A Y be an IFROS. Since every IFROS is an 
IFOS, A is an IFOS in Y. Then f -1(A) is an IFCS in X, by 
hypothesis. Hence f -1(A) is an IFSPGCS in X.  Therefore f is 
an IFaCSPG continuous mapping. 
 
Example 4.4: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.4), (0.5, 0.6), G2 = y, (0.4, 0.2), (0.6, 0.7). Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFTs on X and Y respectively. 
Define a mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFaCSPG continuous mapping but not an IFC 
continuous mapping. 
 
Theorem 4.5: Every IFCα continuous mapping is an 
IFaCSPG continuous mapping but not conversely. 
Proof: Let A Y be an IFROS. Since every IFROS is an 
IFOS, A is an IFOS in Y. Then f -1(A) is an IFαCS in X, by 
hypothesis. Hence f -1(A) is an IFSPGCS in X.  Therefore f is 
an IFaCSPG continuous mapping. 

 
Example 4.6: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.4), (0.5, 0.6), G2 = y, (0.4, 0.2), (0.6, 0.7). Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFT on X and Y respectively. 
Define a mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFaCSPG continuous mapping but not an 
IFCαcontinuos mapping. 
 
Theorem 4.7: Every IFCP continuous mapping is an 
IFaCSPG continuous mapping but not conversely. 
Proof: Let A Y be an IFROS. Since every IFROS is an 
IFOS, A is an IFOS in Y. Then f -1(A) is an IFPCS in X, by 
hypothesis. Hence f -1(A) is an IFSPGCS in X. Therefore f is 
an IFaCSPG continuous mapping. 
 
Example 4.8: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.6), (0.5, 0.4), G2 = x, (0.2, 0.1), (0.8, 0.9)and G3 = y, 
(0.2, 0.3), (0.8, 0.7),. Then τ = {0~, G1, G2,1~} and  = {0~, 
G3,1~} are IFTs on X and Y respectively. Define a mapping f : 
(X, )  (Y, ) by f(a) = u and f(b) = v. Then f is an IFaCSPG 
continuous mapping but not an IFCP continuous mapping. 
 
Theorem 4.9: Every IFCSPG continuous mapping is an 
IFaCSPG continuous mapping but not conversely. 
Proof: Let f : (X, τ) → (Y, σ) be an IFCSPG continuous 
mapping. Let A Y be an IFROS. Then A is an IFOS in Y. 
By hypothesis, f -1(A) is an IFSPGCS in X. Hence f is an 
IFaCSPG continuous mapping. 
 
Example 4.10: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.6), (0.5, 0.4), G2 = y, (0.8, 0.7), (0.2, 0.3)and G3 = y, 
(0.5, 0.5), (0.5, 0.5).Then τ = {0~, G1, 1~} and  = {0~, G2, 
G3,1~} are IFTs on X and Y respectively. Define a mapping f : 
(X, )  (Y, ) by f(a) = u and f(b) = v. Then f is an IFaCSPG 
continuous mapping but not an IFCSPG continuous mapping. 
 
 
Theorem 4.11:  If f : (X, τ) → (Y, σ) is a mapping, then the 
following are equivalent: 
(i) f is an IFaCSPG continuous mapping, 
(ii) f  -1(A)  IFSPGO(X) for every A  IFRC(Y). 
Proof: (i)  (ii) Let A be an IFRCS in Y. Then Ac is an 
IFROS in Y. By hypothesis, f -1(Ac) is an IFSPGCS in X. 
Therefore f -1(A) is an IFSPGOS in X. 
(ii)  (i) Let A be an IFROS in Y. Then Ac is an IFRCS in Y. 
By hypothesis, f -1(Ac) is an IFSPGOS in X. Therefore f -1(A) 
is an IFSPGCS in X. Hence f is an IFaCSPG continuous 
mapping. 
 
The relation between various types of intuitionistic fuzzy 
contra continuity is given in the following diagram. In this 
diagram cts means continuous mapping. 
 
 IFαcts  
   
  
 
IFCctsIFaCSPGctsIFCSPGcts 
 
 
   
IFCPcts 
 
The reverse implications are not true in general in the above 
diagram. 
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Theorem 4.12: If f : (X, τ) → (Y, σ) is a mapping, where X is 
an IFSPT1/2 space, then the following are equivalent: 
(i) f is an IFaCSPG continuous mapping 
(ii) f  -1(A)  IFSPGO(X) for every A  IFRC(Y) 
(iii) f  -1(int(cl(G)))  IFSPGC(X) for every IFOS G  Y 
(iv) f  -1(cl(int(H)))  IFSPGO(X) for every IFCS H  Y 
Proof: (i)  (ii) is obvious from the Theorem 4.12. 
(i)  (iii) Let G be any IFOS in Y. Then int(cl(G)) is an 
IFROS in Y. By hypothesis, f -1(int(cl(G))) is an IFSPGCS in 
X. Hencef  -1(int(cl(G)))  IFSPGC(X). 
(iii)  (i) Let A be any IFROS in Y. Then A is an IFOS in Y. 
By hypothesis, we have  f -1(int(cl(A)))  IFSPGC(X). That is 
f -1(A)  IFSPGC(X), since int(cl(A)) = A. Hence f is an 
IFaCSPG continuous mapping. 
(ii)  (iv) is similar to (i)  (iii). 
 
5.  INTUITIONISTIC FUZZY 
CONTRA SEMIPRE GENERALIZED 
OPEN MAPPINGS 

In this section we have introduced intuitionistic 
fuzzy contra semipre generalized openmappings. We have 
investigated some of its properties.  
 
Definition 5.1: A mapping f : (X, τ) → (Y, σ) is said to be an 
intuitionistic fuzzy contra semipre generalized open mapping 
(IFCSPGOM for short) if f(A) is an IFSPGCS in Y for every 
IFOS A in X. 
 
Example 5.2: Let X = {a, b}, Y = {u, v} and G1 = x, (0.4, 
0.2), (0.6, 0.7) ,G2 = y, (0.5, 0.4), (0.5, 0.6) . Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFTs on X and Y respectively. 
Define a mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFCSPGOM. 
 
Theorem 5.3: For a bijective mapping f : (X, τ) → (Y, σ), 
where Y is an IFSPT1/2 space, the following statements are 
equivalent: 
(i) f is an IFCSPGOM 
(ii) for every IFCS A in X, f(A) is an IFSPGOS in Y 
(iii) for every IFOS B in X, f(B) is an IFSPGCS in Y 
(iv) for any IFCS A in X and for any IFP p(α, β) Y, if f 

-1(p(α, β)) q A, thenp(α, β) qspint(f(A)) 
(v) For any IFCS A in X and for any p(α, β)  Y, if f -

1(p(α, β)) q A, then there existsan IFSPGOS B such that p(α, β) q B 
and f -1(B)  A 
Proof: (i)  (ii) Let A be an IFCS in X. Then Ac is an IFOS 
in X. By hypothesis, f(Ac) is an IFSPGCS in Y. That is f(A)c 
is an IFSPGCS in Y. Hence f(A) is an IFSPGOS in Y. 
(ii)  (i) Let A be an IFOS in X. Then Ac is an IFCS in X. By 
hypothesis, f(Ac) = (f(A))c is an IFSPGOS in Y. Hence f(A) is 
an IFSPGCS in Y. Thus f is an IFCSPGOM. 
(ii)  (iii) is obvious. 
(ii)  (iv) Let A  X be an IFCSand let p(α, β)  Y. Assume 
that f -1(p(α, β)) q A. Then p(α, β) q f(A). By hypothesis, f(A) is an 
IFSPGOS in Y. Since Y is an IFSPT1/2 space, f(A) is an 
IFSPOS in Y. This implies spint(f(A)) = f(A). Hence p(α, β) 

qspint(f(A)). 
(iv)  (ii) Let A  X be an IFCS and let p(α, β)  Y. Assume 
that f -1(p(α, β)) q A. Then p(α, β) q f(A). By hypothesis p(α, β) 

qspint(f(A)). That is f(A) spint(f(A))  f(A). Therefore f(A) 
= spint(f(A)) is an IFSPOS  in Y and hence an IFSPGOS in Y. 
(iv)  (v) Let A  X be an IFCS and let p(α, β)  Y. Assume 
that f -1(p(α, β)) q A.Then  p(α, β) q f(A). This implies p(α, β) 

qspint(f(A)). Thus f(A) is an IFSPOS in Y and hence an 
IFSPGOS in Y. Let f(A) = B. Therefore p(α, β)q B and f -1(B) = 
f -1(f(A))  A. 

(v)  (iv) Let A  X be an IFCS and let p(α, β)  Y. Assume 
that f -1(p(α, β)) q A. Thenp(α, β) q f(A). By hypothesis there exists 
an IFSPGOS B in Y such that p(α, β) q B and  f -1(B)  A. Let B 
= f(A). Then p(α, β) q f(A). Since Y is an IFSPT1/2 space, f(A) is 
an IFSPOS in Y. Therefore p(α, β) qspint(f(A)). 
 
Theorem 5.4: Let f : (X, τ) → (Y, σ) be a bijective mapping. 
Suppose that one of the following properties hold: 
(i) f(cl(B)) int(spcl(f(B))) for each IFS B in X 
(ii) cl(spint(f(B)))  f(int(B)) for each IFS B in X 
(iii) f -1(cl(spint(A))) int(f -1(A)) for each IFS A in Y 
(iv) f -1(cl(A)) int(f -1(A)) for each IFSPOS A in Y 
Then f is an IFCSPGOM. 
Proof: (i)  (ii) is obvious by taking the complement in (i). 
(ii)  (iii) Let A  Y. Put B = f -1(A) in X. This implies A = 
f(B) in Y. Now cl(spint(A)) = cl(spint(f(B)))  f(int(B)) by 
(ii). Therefore f -1(cl(spint(A)))  f -1(f(int(B))) = int(B) = int(f 

-1(A)). 
(iii)  (iv) Let A  Y be an IFSPOS. Then spint(A) = A. By 
hypothesis, f -1(cl(spint(A))) int(f -1(A)). Therefore f -1(cl(A)) 
int(f -1(A)). 
Suppose (iv) holds: Let A be an IFOS in X. Then f(A) is an 
IFS in Y and spint(f(A)) is an IFSPOS in Y. Hence by 
hypothesis, we have f -1(cl(spint(f(A)))) int(f -1(spint(f(A)))) 
int(f -1(f(A))) = int(A)  A. Therefore cl(spint(f(A))) = f(f -

1(cl(spint(f(A)))))  f(A). Now cl(int(f(A)))  cl(spint(f(A))) 
 f(A).  This implies f(A) is an IFPCS in Y and hence an 
IFSPGCS in Y. Thus f is an IFCSPGOM. 
 
Theorem 5.5: Let f : (X, τ) → (Y, σ) be a bijective mapping. 
Suppose that one of the following properties hold: 
(i) f -1(spcl(A)) int(f -1(A)) for each IFS A in Y 
(ii) spcl(f(B))  f(int(B)) for each IFS B in X 
(iii) f(cl(B)) spint(f(B)) for each IFS B in X 
Then f is an IFCSPGOM. 
Proof: (i)  (ii) Let B  X. Then f(B) is an IFS in Y. By 
hypothesis, f -1(spcl(f(B))) int(f -1(f(B))) = int(B). Now 
spcl(f(B)) = f(f -1(spcl(f(B))))  f(int(B)). 
(ii)  (iii) is obvious by taking complement in (ii). 
Suppose (iii) holds. Let B be an IFCS in X. Then cl(B) = B 
and f(B) is an IFS in Y. Now f(B) = f(cl(B)) spint(f(B))  
f(B), by hypothesis. This implies f(B) is an IFSPOS in Y and 
hence an IFSPGOS in Y. Thus f is an IFCSPGOM by 
Theorem 5.3. 
 
Theorem 5.6: Let f : (X, τ) → (Y, σ) be a bijective mapping. 
Then f is an IFCSPGOM if cl(f -1(A))  f -1(spint(A)) for every 
IFS A in Y. 
Proof: Let A be an IFCS in X. Then cl(A) = A and f(A) is an 
IFS in Y. By hypothesis cl(f -1(f(A)))  f -1(spint(f(A))). 
Therefore A = cl(A) = cl(f -1(f(A)))  f -1(spint(f(A))). Now 
f(A)  f(f -1(spint(f(A)))) = spint(f(A))  f(A). Hence f(A) is 
an IFSPOS in Y and hence an IFSPGOS in Y. Thus f is an 
IFCSPGOM by Theorem 5.3. 
 
Theorem 5.7: If f : (X, τ) → (Y, σ) is an IFCSPGOM, where 
Y is an IFSPT1/2 space, then the following conditions are hold: 
(i) spcl(f(B))  f(int(spcl(B))) for every IFOS B in X 
(ii) f(cl(spint(B))) spint(f(B)) for every IFCS B in X 
Proof: (i) Let B  X be an IFOS. Then int(B) = B. By 
hypothesis f(B) is an IFSPGCS in Y. Since Y is an IFSPT1/2 
space, f(B) is an IFSPCS in Y. This implies spcl(f(B)) = f(B) 
= f(int(B)) f(int(spcl(B))). 
(ii) can be proved easily by taking complement in (i). 
Theorem 5.8: A mapping f : (X, τ) → (Y, σ) is an 
IFCSPGOM if f(spcl(B)) int(f(B)) for every IFS B in X. 



International Journal of Computer Applications Technology and Research 
Volume 2– Issue 2, 109 - 116, 2013, ISSN:  2319–8656 

www.ijcat.com   115 
 

Proof: Let B  X be an IFCS. Then cl(B) = B. Since every 
IFCS is an IFSPCS,  spcl(B) = B. Now by hypothesis, f(B) = 
f(spcl(B)) int(f(B))  f(B). This implies f(B) is an IFOS in 
Y. Therefore f(B) is an IFSPGOS in Y. Hence f is an 
IFCSPGOM. 
 
Theorem 5.9: A mapping f : (X, τ) → (Y, σ) is an 
IFCSPGOM, where Y is an IFSPT1/2 space if and only if 
f(spcl(B)) spint(f(cl(B))) for every IFS B in X. 
Proof: Necessity: Let B  X be an IFS. Then cl(B) is an IFCS 
in X. By hypothesis f(cl(B)) is an IFSPGOS in Y. Since Y is 
an IFSPT1/2 space, f(cl(B)) is an IFSPOS in Y. Therefore 
f(spcl(B))  f(cl(B)) = spint(f(cl(B))). 
Sufficiency: Let B  X be an IFCS. Then cl(B) = B. By 
hypothesis, f(spcl(B)) spint(f(cl(B))) = spint(f(B)). But 
spcl(B) = B. Therefore f(B) = f(spcl(B)) spint(f(B)  f(B). 
This implies f(B) is an IFSPOS in Y and hence an IFSPGOS 
in Y. Hence f is an IFCSPGOM. 
 
Theorem 5.10: An IFOM f : (X, τ) → (Y, σ) is an 
IFCSPGOM if IFSPGO(Y) = IFSPGC(Y). 
Proof: Let A X be an IFOS. By hypothesis, f(A) is an IFOS 
in Y and hence is an IFSPGOS in Y. Thus f(A) is an 
IFSPGCS in Y, since IFSPGO(Y) = IFSPGC(Y). Therefore f 
is an IFCSPGOM. 
 
Definition 5.11: A mapping f : (X, τ) → (Y, σ) is said to be an 
intuitionistic fuzzy almost contra semipre generalized open 
mapping (IFaCSPGOM for short) if f(A) is an IFSPGCS in Y 
for every IFROS A in X. 
 
Theorem 5.12:  Every IFCSPGOM is an IFaCSPGOM but 
not conversely. 
Proof: Assume that f : (X, τ) → (Y, σ) be an IFCSPGOM. Let 
A X be an IFROS. Then A is an IFOS in X. By hypothesis, 
f(A) is an IFSPGCS in Y. Hence f is an IFaCSPGOM. 
 
Example 5.13: Let X = {a, b}, Y = {u, v}, G1 = x, (0.5, 0.7), 
(0.5, 0.3), G2 = x, (0.4, 0.2), (0.5, 0.4) and G3 = x, (0.5, 
0.6), (0.5, 0.4) and G4 = y, (0.5, 0.6), (0.5, 0.4). Then τ = 
{0~, G1, G2,G3, 1~} and  = {0~, G4, 1~} are IFTs on X and Y 
respectively. Define a mapping f : (X, )  (Y, ) by f(a) = u 
and f(b) = v. Then f is an IFaCSPGOM but not an 
IFCSPGOM. 
 
Theorem 5.14:  If f : (X, τ) → (Y, σ) is a bijective mapping, 
where Y is an IFSPT1/2 space, then the following conditions 
are equivalent: 
(i) f is an IFaCSPGOM 
(ii) f(A)  IFGSPO(Y) for every A  IFRC(X) 
(iii) f(int(cl(A)))  IFSPGC(Y) for every IFOS A   X 
(iv) f(cl(int(A)))  IFSPGO(Y) for every IFCS A  X 
Proof: (i)  (ii) is obvious. 
 (i)  (iii) Let A be any IFOS in X. Then int(cl(A)) is an 
IFROS in X. By hypothesis, f(int(cl(A))) is an IFSPGCS in Y. 
Hence f(int(cl(A)))  IFSPGC(Y). 
(iii)  (i) Let A be any IFROS in X. Then A is an IFOS in X. 
By hypothesis, f(int(cl(A)))  IFSPGC(Y). That is f(A)  
IFSPGC(Y), since int(cl(A)) = A. Hence f is an IFaCSPGOM. 
(ii)  (iv) is similar as (i)  (iii). 
 
Definition 5.15: A mapping f : (X, τ) → (Y, σ) is said to be an 
intuitionistic fuzzy contra Msemipre generalized open 
mapping (IFCMSPGOM) if f(A) is an IFSPGCS in Y for 
every IFSPGOS A in X. 
 

Example 5.16: Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.6), (0.5, 0.4), G2 = y, (0.2, 0.3), (0.8, 0.7). Then τ = {0~, 
G1, 1~} and  = {0~, G2, 1~} are IFTs on X and Y respectively. 
Define a mapping f : (X, )  (Y, ) by f(a) = u and f(b) = v. 
Then f is an IFCMSPGOM. 
 
Theorem 5.17:  Let f : (X, τ) → (Y, σ) be a bijective 
mapping. Then the following statements are equivalent: 
(i) f is an IFCMSPGOM, 
(ii) f(A) is an IFSPGOS in Y for every IFSPGCS A in 
X. 
Proof: (i)  (ii) Let A be an IFSPGCS in X. Then Ac is an 
IFSPGOS in X. By hypothesis, f(Ac) is an IFSPGCS in Y. 
That is f(A)c is an IFSPGCS in Y. Hence f(A) is an IFSPGOS 
in Y. 
(ii)  (i) Let A be an IFSPGOS in X. Then Ac is an IFGSPCS 
in X. By hypothesis, f(Ac) is an IFSPGOS in Y. Hence f(A) is 
an IFSPGCS in Y. Thus f is an IFCMSPGOM. 
 
Theorem 5.18:  Every IFCMSPGOM is an IFCSPGOM but 
not conversely. 
Proof: Assume that f : (X, τ) → (Y, σ) be an IFCMSPGOM. 
Let A X be an IFOS. Then A is an IFSPGOS in X. By 
hypothesis, f(A) is an IFSPGCS in Y. Hence f is an 
IFCSPGOM. 
 
Example 5.19:  Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.4), (0.5, 0.6), G2 = y, (0.6, 0.7), (0.4, 0.3) and G3 = y, 
(0.4, 0.7), (0.6, 0.3). Then  = {0~, G1, 1~} and  = {0~, G2, G3, 
1~} are IFTs on X and Y respectively. Define a mappingf : (X, 
)   (Y, ) by f(a) = u and f(b) = v. Then f is an IFCSPGO 
mapping but not an IFCMSPGOM. 
 
Theorem 5.20:  Every IFCMSPGOM is an IFaCSPGO 
mapping but not conversely. 
Proof: Assume that f : X  Y be an IFCMSPGOM. Let AX 
be an IFROS. Then A is an IFSPGOS in X. By hypothesis, 
f(A) is an IFSPGCS in Y. Hence f is an IFaCSPGOM. 
 
Example 5.21:  Let X = {a, b}, Y = {u, v} and G1 = x, (0.5, 
0.4), (0.5, 0.6), G2 = y, (0.6, 0.7), (0.4, 0.3) and G3 = y, 
(0.4, 0.7), (0.6, 0.3). Then  = {0~, G1, 1~} and  = {0~, G2, G3, 
1~} are IFT on X and Y respectively. Define a mapping  f : (X, 
)   (Y, ) by f(a) = u and f(b) = v. Then f is an IFaCSPGO 
mapping but not an IFCMSPGO mapping 
 
The relation between various types of intuitionistic fuzzy 
contra open maps is given in the following diagram.  
 
IFCSPGOmapIFaCSPGOmap 
 
 
 
 IFCMSPGO map 
 
The reverse implications are not true in general in the above 
diagram. 
 
Theorem 5.22: (i) If f : (X, τ) → (Y, σ) is an IFOM and g : 
(Y, σ) → (Z, η) be an IFCSPGOM, then g f is an 
IFCSPGOM. 
(ii) If f : (X, τ) → (Y, σ) is an IFCSPGOM and g : (Y, σ) → 
(Z, η)is an IFMSPGCM, then g f is an IFCSPGOM.            
(iii) If f : (X, τ) → (Y, σ) is an IFSPGOM and g : (Y, σ) → (Z, 
η)is an IFCMSPGOM, then  g f is an IFCSPGOM. 
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(iv) If f : (X, τ) → (Y, σ) is an IFCSPGOM and g : (Y, σ) → 
(Z, η)is an IFCMSPGOM, then g  f : (X, τ) → (Z, η) is an 
IFSPGOM. 
Proof: (i) Let A be an IFOS in X. Then f(A) is an IFOS in Y. 
Therefore g(f(A)) is an IFSPGCS in Z. Hence g f is an 
IFCSPGOM. 
(ii)  Let A be an IFOS in X. Then f(A) is an IFSPGCS in Y. 
Therefore g(f(A)) is an IFSPGCS in Z. Hence g f is an 
IFCSPGOM. 
(iii) Let A be an IFOS in X. Then f(A) is an IFSPGOS in Y. 
Therefore g(f(A)) is an IFSPGCS in Z. Hence g f is an 
IFCSPGOM. 
(iv) Let A be an IFOS in X. Then f(A) is an IFSPGCS in Y, 
since f is an IFCSPGOM. Since g is an IFCMSPGOM, g(f(A)) 
is an IFSPGOS in Z. Therefore g f is an IFSPGOM. 
 
Theorem 5.23:  If f : (X, τ) → (Y, σ) is an IFCMSPGOM, 
then  for any IFSPGCS A in X and for any IFP p(α, β)  Y, if f -

1(p(α, β)) q A, then p(α, β) q spgint(f(A)). 
Proof: Let A  X be an IFSPGCSand let p(α, β)  Y. Assume 
that f -1(p(α, β)) q A. Thenp(α, β) q f(A). By hypothesis, f(A) is an 
IFSPGOS in Y. This implies spgint(f(A)) = f(A). Hence p(α, β) 

qspgint(f(A)). 
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