
International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 166 - 169, 2013, ISSN: 2319–8656

www.ijcat.com 166

An improvised tree algorithm for association rule
mining using transaction reduction

 Krishna Balan Karthiga Sakthi Priya
Pondicherry Engineering College Pondicherry Engineering College Pondicherry Engineering College

Pondicherry, India Pondicherry, India Pondicherry, India

Abstract: Association rule mining technique plays an important role in data mining research where the aim is to find interesting
correlations between sets of items in databases. The apriori algorithm has been the most popular techniques in finding frequent
patterns. However, when applying this method a database has to be scanned many times to calculate the counts of the huge umber
of candidate items sets. A new algorithm has been proposed as a solution to this problem. The proposed algorithm is mainly
concentrated to reduce the candidate sets generation and also aimed to increase the time of execution of the process.

Keywords: Apriori; association; candidate sets; data mining; itemsets;

1. INTRODUCTION

As the rapid growth of the information technology the
data’s has been stored in the form of digital systems. As
tremendous amounts of data are thus generated due to the
full digitization. Data mining plays an important role to
extract meaningful information from the scattered data.
Association rule is a popular technique which is used for
finding interesting relationship between variables in large
databases. R. Agrawal and R. Srikant in 1994 presented the
apriori algorithm for mining frequent itemsets which is
based on the generation of candidate itemset. Several
different algorithms have been proposed for association
rule. In this paper a new algorithm has been proposed for
association rule. The proposed algorithm has been
implemented by comparing all the demerits of the existing
systems. The main goal of the proposed system is to speed
up the computation process.

2. RELATED WORKS

There are various algorithms were proposed for finding the
frequent itemsets . The best well known for the rule mining
is the apriori algorithm which was proposed by the
Agrawal and Srikant (1994) [2]. This uses the concept of
candidate generation. Although the apriori algorithm is
efficient in finding the item sets the execution time gets
longer when the database size increases since it has to
generate the candidate item-sets. Many algorithms have
been proposed to overcome the drawbacks of the a priori
such as the FP-Growth algorithm [4] were proposing a new
idea for the candidate set generation problem where it
introduces a Tree structure concept where it distributes the
workload as it relies on the depth first search. It implies
that it is faster than the apriori where there is no candidate
generation as it uses the divide and conquer approach such
that the database is scanned only twice. The matrix Apriori

algorithm[6] is proposed in order to improve the efficiency
time of the apriori algorithm where this uses the combined
approach of the apriori and the fp-growth algorithm. The
description and implementation of the above algorithms are
briefly explained below.

2.1 Apriori Algorithm [2]

One of the first algorithms to evolve for frequent itemset
and Association rule mining was Apriori. Two major steps
of the Apriori algorithm are the join and prune steps. The
join step is used to construct new candidate sets. A
candidate itemset is basically an item set that could be
either Frequent or infrequent with respect to the support
threshold. Higher level candidate itemsets (Ci) are
generated by joining previous level frequent itemsets are
Li-1 with it. The prune step helps in filtering out candidate
item-sets whose subsets (prior level) are not frequent. This
is based on the anti-monotonic property as a result of which
every subset of a frequent item set is also frequent.Thus a
candidate item set which is composed of one or more
infrequent item sets of a prior level is filtered(pruned) from
the process of frequent itemset and association mining.[4]

2.2 FP-Growth Algorithm [6]

The FP-Growth methods adopts a divide and conquer
strategy as follows: compress the database representing
frequent items into a frequent-pattern tree, but retain the
itemset association information, and then divide such a
compressed database into a set of condition databases, each
associated with one frequent item, and mine each such
database [8].

First, a scan of database derives a list of frequent items in
descending order. Then the FP - tree is constructed as
follows. Create the root of the tree and scan the database
second time. The items in each transaction are processed in
the order of frequent items list and a branch is created for
each transaction. When considering the branch to be added

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 166 - 169, 2013, ISSN: 2319–8656

www.ijcat.com 167

to a transaction, the count of each node along a common
prefix is incremented by 1. After constructing the tree the
mining proceeds as follows. Start from each frequent
length-1 pattern, construct its conditional pattern base, then
construct its conditional FP-tree and perform mining
recursively on such a tree. The support of a candidate
(conditional) itemset is counted traversing the tree. The
sum of count values at least frequent item’s nodes gives the
support value.

2.3 DH Algorithm [1]

In order to improve the execution time of the apriori
algorithm there are many algorithms have been
implemented. The DH (Direct Hashing) algorithm has been
proposed for reducing the database rescanning. The DHCP
algorithm is an effective hash based algorithm for the
candidate set generation. It reduces the size of the candidate
set of filtering any k item set out of the hash table if the
hash entry does not have minimum support. The hash table
structure contains the information regarding the support of
each item set. The DHP algorithm consists of three steps.
The first step is to get a set of large itemsets and constructs
a hash table for 2 itemset. The second step generates the set
of candidate itemsets Ck. The third step is the same as the
second step except it does not use the hash table in
determining whether to include a particular itemset into the
candidate itemsets.

2.4 Transaction Reduction Algorithm:

The classical Apriori algorithm generates a large number of
candidate sets if the database is large. And due to large
number of records in database results in much more I/O
cost. In this project, we proposed an optimized method for
Apriori algorithm which reduces the size of the database. In
our proposed method, we introduced an attribute
Size_Of_Transaction (SOT) , containing a number of items
in individual transaction in the database. The deletion
process of transaction in database will made according to
the value of K. Whatever the value of K, the algorithm
searches the same value for SOT of the database. If the
value of K matches with a value of SOT then delete only
those transactions from the database.

3. PROPOSED SYSTEM

3.1 Improved Apriori Algorithm

Our Improved Apriori algorithm which uses the data
structure which represents the hash table. This algorithm
proposes to overcome the weakness of Apriori by reducing
the candidate sets. The proposed algorithm does a three
stage process where the first process is a hash based step is
used to reduce the candidate itemsets generated in the first
phase. We assure that the number of itemset generated
using hashing can be reduced. In this algorithm each
transaction counts all the itemset at the same time possible
2-itemsets in the current transactions are hashed to a hash

map. After the 2-itemset the individual items which has less
frequent are deleted from the transaction database and the
final step is the construction of a tree where we apply a
divide and conquer strategy for mining the frequent
itemsets from the transaction database. And in this process
the frequent itemsets are listed in descending order. A root
of the tree is constructed first and then the branches are
added according to the count of the itemset. Once the tree is
constructed the frequent itemsets are minined by traversing
through the tree. Since the construction of the tree is made
simple as by reducing the items from the transaction
database.

The algorithm is as follows

Input: The Transaction database and the minimum support.
Output: All the frequent itemsets in the transaction
database.
The following is the description of the algorithm

1. The transaction database is scanned and create a
possible 2-itemsets.

2. Let the Hash table of size 8.
3. For each bucket assign a candidate pair using the

ASCII values of the item sets.
4. Each bucket in the hash table has a count, which

is increased by 1 each item an item set is hashed
to that bucket.

5. If the bucket count is equal or above the
minimum support count, the bit vector is set to 1.
Otherwise it is set to 0.

6. The candidate pairs that hash to locations where
the bit vector bit is not set are removed.

7. Modify the transaction database to include only
these candidate pairs

8. Then the candidate itemsets which has less
frequent are then removed from the transaction
database.

9. And the database is scanned for minimum
support threshold, frequent items are selected and
sorted.

10. Initialization of the FP-tree is done. From the
frequent items a node list is created which will be
connected to nodes of the tree. After initialization
the database is read again. This time, if an item in
a transaction is selected as frequent then it is
added to the tree structure.

11. Beginning of the least frequent item, a frequent
pattern finder procedure is called recursively. The
support count of the patterns is found and
displayed if they are frequent.

12. End.

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 166 - 169, 2013, ISSN: 2319–8656

www.ijcat.com 168

Table 1. Transaction Database

TID ITEMS

T1 I1, I3, I7

T2 I2, I3, I7

T3 I1, I2, I3

T4 I2, I3

T5 I2, I3, I4, I5

T6 I2, I3

T7 I1, I2, I3, I4, I6

T8 I2, I3, I4, I6

T9 I1

T10 I1, I3

Table 2.Hash Table Data Format

HASH COUNT:

{I1I3}=4,{I1I7}=1,{I3I7}=2,{I2I3}=7,
{I2I7}=1,{I3I7}=2,{I1I2}=2,{I1I3}=3,
{I2I4}=3,{I2I5}=1,{I3I4}=3{I3I5}=1,
{I4I5}=1,{I1I4}=1,{I1I6}=1,
{I2I6}=2,{I3I6}=2,{I4I6}=2.

MINIMUM SUPPORT=3 ,

FREQUENT ITEM SET {I1I3, I2I3, I3I4},
FREQUENT ITEM SET= {I1, I2, I3, I4}

Table 3. Transaction Reduction Table

TID ITEMS
T1 I1, I3
T2 I2, I3
T3 I1,I2,I3
T4 I2,I3
T5 I2,I3
T6 I2,I3
T7 I1,I2,I3,I4
T8 I2,I3,I4
T9 I1

T10 I1,I3

Table 4. Maximum Item Set Count

ITEMS COUNT
I3 8
I2 7
I1 5
I4 3

 null

 8

 2 7

 2 2

Figure 1. Tree Structure

TID ITEM SET

T1 I1I3, I1I7, I3I7

T2 I2I3, I2I7, I3I7

T3 I1I2, I1I3, I2I3

T4 I2I3

T5 I2I3,I2I4,I2I5,I3I4,I3I5,I4I
5

T6 I2I3

T7 I1I2,I1I3,I1I4,I1I6,I2I3,I2I
4,I2I6,I3I4,I3I6,I4I6

T8 I2I3,I2I4,I2I6,I3I4,I3I6,I4I
6

T9 I1

T10 I1I3

I3

I1 I2

I4 I1

I4

I1

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 166 - 169, 2013, ISSN: 2319–8656

www.ijcat.com 169

3. EXPERIMENTAL RESULTS

In this section we have taken the market basket analysis
and compare the efficiency of the proposed method to the
existing algorithms which is mentioned above. All these
algorithms are coded using the eclipse IDE which uses
JAVA programming language. The data sets have been
generated for testing these algorithms.
 Two case studies have been done in analyzing the
algorithm

i) the execution time of the algorithm is tested to
the number of transactions,
 ii) The execution time is executed to the number
of the support.

Case i:
In this case where we are comparing the execution time of
the transaction where any transaction may a contain more
than one frequent itemsets. Here the minimum support is
made constant. Here we assume the minimum support is
being 40% and the comparison table is shown below.

Table:6 Execution Time based on

Transactions
Transa
ctions

Exec Hash
Apriori

Transacti
on

Reductio
n

Exec
Aprio

ri

Improve
d

Apriori

1000 0.326 0.986 1.247 0.238

750 0.275 0.731 1.136 0.19

500 0.186 0.051 1.041 0.13

300 0.165 0.192 0.961 0.05

Case ii:

Now the execution time of different algorithms is compared
by varying the minimum support. The comparison table is
shown below.

Table:7 Execution Time Based on Support

Support

%
Exec
Hash

Apriori

Exec
Apriori

Transaction
reduction

Improved
Apriori

70 0.065 0.146 0.056 0.04
60 0.066 0.151 0.06 0.045
50 0.061 0.301 0.096 0.055
40 0.165 0.406 0.205 0.135

4. CONCLUSION

In this paper a new algorithm has been proposed for
association rule mining for finding the frequent itemsets.
The present apriori algorithm has some bottlenecks we
need to optimize and the proposed algorithm will give a
new way for association rule where it reduces the candidate
item sets. And we have also done some case studies about
the existing algorithm above and we also listed the demerits
of the existing systems and our proposed work is assured to
overcome these bottlenecks we mainly concentrated to
reduce the candidate itemset generation and also to increase
the execution time of the process.

5. REFERENCES

[1] J. S. Park, M.S. Chen, and P.S. Yu. “An Effective Hash
Based Algorithm for Mining Association Rules”.
Proceedings of the 1995 ACM SIGMOD International
Conference on Management of Data, San Jose, CA, USA,
1995, 175186.

[2] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules in Large Databases,” Prof. 20th
Int’l Conf. Very Large Data Bases, pp. 478499, 1994.

[3] A. Savasere, E. Omiecinski, and S. Navathe. “An
Efficient Algorithm for Mining Association Rules in Large
Databases”. Proceedings of 21th International Conference
on Very Large Data Bases (VLDB’95), September 1115,
1995, Zurich, Switzerland, Morgan Kaufmann, 1995,
432444.

[4] J. Han and J Pei, “Mining frequent patterns by pattern
growth: methodology and implications”. ACM SIGKDD
Explorations Newsletter 2, 2, 1420. 2000.

[5] G. PiatetskyShapiro. “Discovery, analysis, and
presentation of strong rules. Knowledge Discovery in
Databases”, 1991: p. 229248.

[6] Barış Yıldız, Belgin Ergenç. “Comparison Of Two
Association Rule Mining Algorithms Without Candidate
Generation”, In IASTED International Conference on
Artifical Intelligence and Applications (AIA 2010),
Austria, Feb 15-17, 2010.

[7] Jiawei Han, Hong Cheng, Dong Xin, Xifeng Yan,
“Frequent pattern mining: current status and future
directions”, In the Journal of Data Min Knowl Disc (2007)
15:55–86,Springer Science+ Business Media, LLC 2007.

