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Abstract Demonstrable data retention (DDR) is a technique which certain the integrity of data in storage outsourcing. In this 
paper we propose an efficient DDR protocol that prevent attacker in gaining information from multiple cloud storage node. Our 
technique is for distributed cloud storage and support the scalability of services and data migration. This technique Cooperative 
store and maintain the client’s data on multi cloud storage. To insure the security of our technique we use zero-knowledge proof 
system, which satisfies zero-knowledge properties, knowledge soundness and completeness. We present a Cooperative DDR 
(CDDR) protocol based on hash index hierarchy and homomorphic verification response. In order to optimize the performance of 
our technique we use a novel technique for selecting optimal parameter values to reduce the storage overhead and computation 
costs of client for service providers.  

Keyword:  Demonstrable Data Retention, homomorphic, zero knowledge, storage outsourcing, multiple cloud, Cooperative, data 
Retention. 

 

1. INTRODUCTION 

IN past few years, a cloud storage service has become a 
faster profitable growth point by providing their clients a 
reasonably scalable, low-cost, position-independent 
platform for client’s data. As cloud computing environment 
is made based on open architectures and interfaces, it has 
the capability to incorporate multiple internal or/and 
external cloud services together to provide high 
interoperability. We say such a distributed cloud 
environment as a hybrid cloud (or multi-Cloud). Very 
often, we use virtual infrastructure management (VIM) [2], 
a multi-cloud allows clients to easily access his or her 
resources remotely through interfaces such as Web services 
provided by Amazon EC2. There exist various tools and 
technologies for multicloud, such as Vmware vSphere, 
Platform VM Orchestrator and Ovirt. These tools help 
cloud providers to construct a distributed cloud storage 
platform (DCSP) for managing client’s data. However, 
such an important platform is vulnerable to be 
compromised, especially in a hostile environment and it 
would bring irretrievable losses to the clients. For 
examplethe confidential data in an enterprise may be 
illegally accessed through a remote interface provided by a 
multi-cloud, or confidential data and archives may be lost 
or altered with when they are stored into a hostile storage 

pool outside the enterprise. Therefore, it is important and 
necessary for cloud service providers (CSPs) to provide 
security techniques for managing their storage services. 
Demonstrable data retention (DDR) [1] (or proofs of 
retrievability (POR) [2]) is such a probabilistic proof 
technique for a storage provider to prove the integrity and 
ownership of clients’ data without downloading data. The 
verification without downloading makes it especially 
important for large-size files and folders (typically 
including many clients’ files) to check whether these data 
have been altered with or deleted without downloading the 
latest version of data. Thus, it is able to replace traditional 
hash and signature functions in storage outsourcing. 
Various DDR techniques have been recently proposed, 
such as Scalable DDR [4] and Dynamic DDR [5]. 
However, these techniques mainly focus on DDR issues 
atuntrusted servers in a single cloud storage providerand 
are not suitable for a multi-cloud environment (see the 
comparison of POR/DDR techniques in Table 
1)Motivation: In order to provide a low-cost, scalable, 
location-independent platform for managing clients’ data, 
current cloud storage systems adopt several new 
distributedfile systems, for example, Google File System 
(GFS),Apache Hadoop Distribution File System (HDFS), 
Amazon S3 File System, CloudStore etc.These file systems 
share
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TABLE 1: Comparison of POR/DDR schemes for a file consisting of ݊ blocks 

 ݇ߩ and ߩ,is the number of sampling blocks ݐ ,is the number of sectors in each block, ܿ is the number of CSPs in a multi-cloud ݏ
are the probability of block corruption in a cloud server and ݇-th cloud server in a multi-cloud ࣪ = {ܲ݇}, respective, ♯ denotes 
the verification process in a trivial approach, and ܴ݉݋ܪ,ܶ݉݋ܪ,ܶܪܯ denotes Merkle Hash tree, homomorphic tags, and 
homomorphic response respectively.

some similar features: a single metadata server provides 
centralized management by a global namespace; files are 
split into blocks or chunks and stored on block servers; and 
the systems are comprised of interconnected clusters of 
block servers. Those features enable cloud service 
providers to store and process large amounts of data. 
However, it is crucial to offer an efficient verification on 
the integrity and availability of stored data for detecting 
faults and automatic recovery. Moreover, this verification 
is necessary to provide reliability by automatically 
maintaining multiple copies of data and automatically 
redeploying processing logic in the event of failures. 
Although existing techniques can make a false or true 
decision for data retention without downloading data at 
untrusted stores, they are not suitable for a distributed cloud 
storage environment since they were not originally 
constructed on interactive proof system. For example, the 
techniques based on Merkle Hash tree (MHT), such as 
Dynamic DDR-I, Dynamic DDR-II [1] and scalable DDR 
[4] in Table-1. Use an authenticated skip list to check the 
integrity of file blocks adjacently in space Unfortunately, 
they did not provide any algorithms for constructing 
distributed Merkle trees that are necessary for efficient 
verification in a multi-cloud environment. In addition, 
when a client asks for a file block, the server needs to send 
the file block along with a proof for the correctness of the 
block. However, this process incurs significant 
communication overhead in a multi-cloud environment, 
since the server in one cloud typically needs to generate 
such a proof with the help of other cloud storage services, 
where the adjacent blocks are stored. The other techniques, 
such as DDR [1], CPOR-I, and CPOR-II [6] in Table 1, are 
constructed on homomorphic verification tags, by which 
the server can generate tags for multiple file blocks in terms 
of a single response value. However, that doesn’t mean the 

responses from multiple clouds can be also combined into a 
single value on the client side. In case of lack of 
homomorphic responses, clients must invoke the DDR 
protocol repeatedly to check the integrity of file blocks 
stored in multiple cloud servers. Also, clients need to know 
the exact position of each file block in a multi-cloud 
environment. In addition, the verification process in such a 
case will lead to high communication overheads and 
computation costs at client sides as well. Therefore, it is of 
utmost necessary to design a Cooperative DDR model to 
reduce the storage and network overheads and enhance the 
transparency of verification activities in cluster-based cloud 
storage systems. Moreover, such a Cooperative DDR 
technique should provide features for timely detecting 
abnormality and renewing multiple copies of data. Even 
though existing DDR techniques have addressed various 
security properties, such as public verifiability [1], 
dynamics [5], scalability [4], and privacy preservation [7], 
we still need a careful consideration of some potential 
attacks, including two major categories: Data Leakage 
Attack by which an adversary can easily obtain the stored 
data through verification process after running or wire-
tapping sufficient verification communications and Tag 
Forgery Attack by which a dishonest CSP can deceive the 
clients. These two attacks may cause potential risks for 
privacy leakage and ownership cheating. Also, these 
attacks can more easily compromise the security of a 
distributed cloud system than that of a single cloud system. 
Although various security models have been proposed for 
existing DDR techniques [1], [7], [6], these models still 
cannot cover all security requirements, especially for 
demonstrable secure privacy preservation and ownership 
verification. To establish a highly effective security model, 
it is necessary to analyze the DDR technique within the 
framework of zero-knowledge proof system (ZKPS) due to 

Scheme Type CSP 
Comp. 

Client 
Comp. 

Comm. Flag. Priva
cy 

Multiple 
Clouds 

Prob. Of   
Detection 

DDR[2] ܶ݉݋ܪ O(t) O(t) O(1)   ✓    # 1 − (1 − ߩ)ݐ 
SDDR[4] MHT O(t) O(t) O(t)  ✓  ✓  1 − (1 − ߩ)ݏ⋅ݐ 
CDDR-[5] MHT O(t.log n) O(t.log n) O(t log n)   ✓  1 − (1 − ߩ)ݐ 
CDDR-II[5] MHT O(t log n) O(t log n) O(t log n)    1 − (1 − ߩ)Ω(݊) 
CPOR-[6] ܶ݉݋ܪ O(t) O(t) O(1)        # 1 − (1 − ߩ)ݐ 
CPOR-II{6} ܶ݉݋ܪ O(t+s) O(t+s) O(s)  ✓       # 1 − (1 − ߩ)t-s 
OurScheme ݉݋ܪR O(t+c.s) O(t+s) O(s)  ✓  ✓  ✓ 1 −Πܲ݇∈࣪ 

 ݏ⋅ݐ⋅݇ݎ(݇ߩ − 1)
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the reason that DDR system is essentially an interactive 
proof system (IPS), which has been well studied in the 
cryptography community. In summary, an verification 
technique for data integrity in distributed storage 
environments should have the following features: Usability 
aspect: A client should utilize the integrity check in the 
way of collaboration services. The technique should 
conceal the details of the storage to reduce the burden on 
clients; Security aspect: The technique should provide 
adequate security features to resist some existing attacks, 
such as data leakage attack and tag forgery attack; 
Performance aspect: The technique should have the lower 
communication and computation overheads than non-
Cooperative solution. 

Related Works: To ensure the integrity and availability of 
outsourced data in cloud storages, researchers have 
proposed two basic approaches called Demonstrable data 
retention (DDR) [1] and Proofs of Retrievability (POR) [1]. 
Ateniese et al. [1] first proposed the DDR model for 
ensuring retention of files on untrusted storages and 
provided an RSA-based technique for a static case that 
achieves the (1) communication cost. They also proposed a 
publicly verifiable version, which allows anyone, not just 
the owner, to challenge the server for data retention. This 
property greatly extended application areas of DDR 
protocol due to the separation of data owners and the users. 
However, these techniques are insecure against replay 
attacks in dynamic scenarios because of the dependencies 
on the index of blocks. Moreover, they do not fit for multi-
cloud storage due to the loss of homomorphism property in 
the verification process. In order to support dynamic data 
operations, Ateniese et al. developed a dynamic DDR 
solution called Scalable DDR [4]. They proposed a 
lightweight DDR technique based on cryptographic hash 
function and symmetric key encryption, but the servers can 
deceive the owners by using previous metadata or 
responses due to the lack of randomness in the challenges. 
The numbers of updates and challenges are limited and 
fixed in advance and users cannot perform block insertions 
anywhere. Based on this work, Erway etal. [5] Introduced 
two Dynamic DDR techniques with a hash function tree to 
realize (log ݊) communication and computational costs for 
a ݊-block file. The basic technique, called CDDR-I, retains 
the drawback of Scalable DDR, and in the ‘blockless’ 
technique, called CDDRII, the data blocks {݆݉݅ }݆∈[1,ݐ] 
can be leaked by the response of a challenge, ܯ 
= ∑ ܽ௧

௝ୀଵ ݆݆݉݅, where ݆ܽ is a random challenge value. 
Furthermore, these techniques are also not effective for a 
multi-cloud environment because the verification path of 
the challenge block cannot be stored completely in a cloud 
[8]. Juels and Kaliski [3] presented a POR technique, which 
relies largely on preprocessing steps that the client conducts 
before sending a file to a CSP. Unfortunately, these 

operations prevent any efficient extension for updating 
data. Shacham and Waters [6] proposed an improved 
version of this protocol called Compact POR, which uses 
homomorphic property to aggregate a proof into (1) 
authenticator value and ܱ(ݐ) computation cost for ݐ 
challenge blocks, but their solution is also static and could 
not prevent the leakage of data blocks in the verification 
process. Wang et al. [7] presented a dynamic technique 
with (log ݊) cost by integrating the Compact POR 
technique and Merkle Hash Tree (MHT) into the CDDR. 
Furthermore, several POR techniques and models have 
been recently proposed including [9], [10]. In [9] Bowers et 
al. introduced a distributed cryptographic system that 
allows a set of servers to solve the DDR problem. This 
system is based on an integrity-protected error Correcting 
code (IP-ECC), which improves the security and efficiency 
of existing tools, like POR. However, a file must be 
transformed into ݈ distinct segments with the same length, 
which are distributed across ݈ servers. Hence, this system is 
more suitable for RAID rather than cloud storage. Our 
Contributions, in this paper, we address the problem of 
demonstrable data retention in distributed cloud 
environments from the following aspects: high 
performance, transparent verification, and high security. To 
achieve these goals, we first propose a verification 
framework for multi-cloud storage along with two 
fundamental techniques: homomorphic verifiable response 
(HVR) and hash index hierarchy (HIH). We then 
demonstrate that the possibility of constructing a 
Cooperative DDR (CDDR) technique without 
compromising data privacy based on modern cryptographic 
techniques, such as interactive proof system (IPS). We 
further introduce an effective construction of CDDR 
technique using above-mentioned structure. Moreover, we 
give a security analysis of our CDDR technique from the 
IPS model. We prove that this construction is a multi-
prover zero-knowledge proof system (MP-ZKPS) [11], 
which has zero-knowledge properties, completeness and 
knowledge soundness. These properties ensure that CDDR 
technique can implement the security against data leakage 
attack and tag forgery attack. To improve the system 
performance with respect to our technique, we analyze the 
performance of probabilistic queries fordetecting abnormal 
situations. This probabilistic method also has an inherent 
benefit in reducing computation and communication 
overheads. Then, we present an efficient method for the 
selection of optimal parameter values to minimize the 
computation overheads of CSPs and the clients’ operations. 
Inaddition, we analyze that our technique is suitable for 
existing distributed cloud storage systems. Finally, our 
experiments show that our solution introduces very limited 
computation and communication overheads. 
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Organization: The rest of this paper is organized as 
follows. In Section 2, we describe a formal definition of 
CDDR and the underlying techniques, which are utilized in 
the construction of our technique. We introduce the details 
of Cooperative DDR technique for multicloud storage in 
Section 3. We describe the security and performance 
evaluation of our technique in Section 4 and 5, 
respectively. We discuss the related work in Section and 
Section 6 concludes this paper. 

2. STRUCTURE AND TECHNIQUES 

In this section, we present our verification framework for 
multi-cloud storage and a formal definition of CDDR. We 
introduce two fundamental techniques for constructing our 
CDDR technique: hash index hierarchy (HIH) on which the 
responses of the clients’ challenges computed from 
multiple CSPs can be combined  into a single response as 
the final result; and homomorphic verifiable response 
(HVR) which supports distributed cloud storage in a multi-
cloud storage and implements an efficient construction of 
collision resistant hash function, which can be viewed as a 
random oracle model in the verification protocol. 

Fig 1: Verification architecture for data integrity. 

 

2.1 Verification Framework for Multi-
Cloud:Although existing DDR techniques offer a 
publicly accessible remote interface for checking and 
managing the tremendous amount of data, the majority of 
existing DDR techniques is incapable to satisfy the inherent 
requirements from multiple clouds in terms of 
communication and computation costs. To address this 
problem, we consider amulti-cloud storage service as 

illustrated in Figure 1. In this architecture, a data storage 
service involves three different entities: Clients who have a 
large amount of data to be stored in multiple clouds and 
have the permissions to access and manipulate stored data; 
Cloud Service Providers (CSPs) who work together to 
provide data storage services and have enough storages and 
computation resources; and Trusted Third Party (TTP) who 
is trusted to store verification parameters and offer public 
query services for these parameters. In this architecture, we 
consider the existence of multiple CSPs to Cooperative 
store and maintain the clients’ data. Moreover, a 
Cooperative DDR is used to verify the integrity and 
availability of their stored data in all CSPs. The 
verificationprocedure is described as follows: Firstly, a 
client (data owner) uses the secret key to pre-process a file 
which consists of a collection of ݊ blocks, generates a set 
of public verification information that is stored in TTP, 
transmits the file and some verification tagsto CSPs, and 
may delete its local copy; Then, by using a verification 
protocol, the clients can issue a challenge for one CSP to 
check the integrity and availability of outsourced data with 
respect to public information stored in TTP. We neither 
assume that CSP is trust to guarantee the security of the 
stored data, nor assume that data owner has the ability to 
collect the evidence of the CSP’s fault after errors have 
been found. To achieve this goal, a TTP server is 
constructed as a core trust base on the cloud for the sake of 
security We assume the TTP is reliable and independent 
through the following functions [12]: to setup and maintain 
the CDDR cryptosystem; to generate and store data 
owner’s public key; and to store the public parameters used 
to execute the verification protocol in the CDDR technique. 
Note that the TTP is not directly involved in the CDDR 
technique in order to reduce the complexity of 
cryptosystem. 

2.2 Definition of Cooperative DDR: In order to 
prove the integrity of data stored in a multi-cloud 
environment, we define a framework for CDDR based on 
interactive proof system (IPS) and multi-prover zero-
knowledge proof system (MPZKPS), as follows:Definition 
1 (Cooperative-DDR): A Cooperative demonstrable data 
retention ࣭ = (݂݋݋ݎܲ ,݊݁ܩ݃ܽܶ ,݊݁ܩݕ݁ܭ) is a collection of 
twoalgorithms (݊݁ܩ݃ܽܶ,݊݁ܩݕ݁ܭ) and an interactive 
proof system ݂ܲ݋݋ݎ, as follows: (1௞ ): takes a security 
parameter ݇ as input, and returns a secret key ݇ݏ or a 
public-secret key-pair (݇ݏ ,݇݌); ܶܽ݃(࣪,ܨ ,݇ݏ)݊݁ܩ: takes as 
inputs a secret key ݇ݏ, a file ܨ, and a set of cloud storage 
providers ࣪ = {ܲ݇}, and returns the triples (ߪ ,߰,ߞ), where 
 is a set of verification (ℋ,ݑ) = ߰ ,isthe secret in tags ߞ
parameters ݑ and an index hierarchyℋ for ߪ ,ܨ = 
 is the tag of the (௞)ߪ,௞∈࣪ denotes a set of all tags݌{(௞)ߪ}
fraction ܨ(௞) of ܨ in ௞ܲ; (࣪, V ): is a protocol of proof of 
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data retention between CSPs (࣪ = { ௞ܲ}) and a verifier (V), 
that is, 〈 ∑ ௞ܲ(ܨ(௞) , (௞)ߪ

௉ೖ∊௣  (߰,݇݌)〈ܸ↔(

=ቊ
1, ܨ = ൛ܨ(௞)ൟ݅ݐܿܽݐ݊݅ݏ
0, ܨ = ൛ܨ(௞)ൟ݅ܿݏℎܽ݊݃݁݀

Where each  ௞ܲ takes as input 

a file  ܨ(௞) and a set of tags ߪ(௞), and a public key ݇݌ and a 
set of public parameters ߰ are the common input between ܲ 
and ܸ. At the end of the protocol run, ܸ returns a bit {1|0} 
denoting true and false. Where, ∑ ௞ܲ ∊ ݌  denotes 
Cooperative computing in ௞ܲ∈࣪.  A trivial way to realize 
the CDDR is to check the data stored in each cloud one by 
one, i.e.⋀ 〈 ௞ܲ(ܨ(௞), (௞)ߪ ↔  V〉௉ೖ∊௣ (pk, ψ)Where ⋀ denotes 
the logical AND operations among the Boolean outputs of 
all protocols ⟨ ௞ܲ, ܸ⟩ for all ௞ܲ∈࣪. However, it would cause 
significant communication and computation overheads for 
the verifier, as well as a loss of location-transparent. Such a 
primitive approach obviously diminishes the advantages of 
cloud storage: scaling arbitrarily up and down on demand 
[13]. To solve this problem, we extend above definition by 
adding an organizer (ܱ), which is one of CSPs that directly 
contacts with the verifier, as follows: 〈∑ ௞ܲ(ܨ(௞) , (௞)ߪ

௉ೖ∊௣ ) 
↔O↔ܸ〉 (݇݌, ߰), Where the action of organizer is to 
initiate and organize the verification process. This 
definition is consistent with aforementioned architecture, 
e.g., a client (or an authorized application) is considered as, 
the CSPs are as ࣪ = { ௜ܲ}݅ ∊ [1, ܿ], and the Zoho cloud is as 
the organizer in Figure 1. Often, the organizer is an 
independent server or a certain CSP in ࣪. The advantage of 
this new multi-prover proof system is that it does not make 
any difference for the clients between multi-prover 
verification process and single-prover verification process 
in the way of collaboration. Also, this kind of transparent 
verification is able to conceal the details of data storage to 
reduce the burden on clients. For the sake of clarity, we list 
some used signals in Table 2. 

TABLE 2: The signal and its explanation. 

Sig. Repression 
݊ the number of blocks in a file; 
 ;the number of sectors in each block ݏ
 ;the number of index coefficient pairs in a query ݐ
ܿ the number of clouds to store a file; 
 [݊,1]∋݅{݆,݅݉} = ܨ ,.sectors, i.e ݏ × ݊ the file with ܨ

 ; [ݏ,1]∋݆,
 ;[݊,1]∋݅{݅ߪ} = ߪ ,.the set of tags, i.e ߪ
ܳ the set of index-coefficient pairs, i.e., ܳ = {(݅, ݅ݒ)}; 
 .ܳ the response for the challenge ߠ
 

2.3 Hash Index Hierarchy for CDDR:To support 
distributed cloud storage, we illustrate a representative 
architecture used in our Cooperative DDR technique as 
shown in Figure 2. Our architecture has a hierarchy 
structure which resembles a natural representation of file 

storage. This hierarchical structure ℋ consists of three 
layers to represent relationships among all blocks for stored 
resources. They are described as follows: 1) Express 
Layer: offers an abstract representation of the stored 
resources; 2) Service Layer: offers and manages cloud 
storage services; and 3) Storage Layer: realizes data 
storage on many physical devices. We make use of this 
simple hierarchy to organize data blocks from multiple CSP 
services into a large size file by shading their differences 
among these cloud storage systems. For example, in Figure 
2 the resources in Express Layer are split and stored into 
three CSPs, which are indicated by different colors, in 
Service Layer. In turn, each CSP fragments and stores the 
assigned data into the storage servers in Storage Layer. We 
also make use of colors to distinguish different CSPs. 
Moreover, we follow the logical order of the data blocks to 
organize the Storage Layer. This architecture also provides 
special functions for data storage and management, e.g., 
there may exist overlaps among data blocks (as shown in 
dashed boxes) and discontinuous blocks but these functions 
may increase the complexity of storage management. In 
storage layer, we define a common fragment structure that 
provides probabilistic verification of data integrity for 
outsourced storage. The fragment structure is a data 
structure that maintains a set of block-tag pairs, allowing 
searches, checks and updates in (1) time. An instance of 
this structure is shown in storage layer of Figure 2: an 
outsourced file ܨ is split into ݊ blocks {݉1, m2, ⋅⋅⋅,}, and 
each block ݉݅ is split into ݏ sectors {݉݅,1,݉݅,2, ⋅⋅⋅ ,݉݅,ݏ}. 
The fragment structure consists of ݊ block-tag pair (݉௜,ߪ௜), 
where ߪ௜ is a signature tag of block ݉௜ generated by a set 
of secrets τ = (߬ଵ, ߬ଶ, ⋅⋅⋅ , ߬௦). In order to check the data 
integrity, the fragment structure implements probabilistic 
verification as follows: given a random chosen challenge 
(or query) ܳ = {(݅,ݒ௜)} ݅∈ܴܫ, where ܫ is a subset of the 
block indices and ݒ௜ is a random coefficient. There exists 
an efficient algorithm to produce a constant-size response 
 k∈I {௞ݒ,݅,௞݉} ௜ comes from allߤ where ,(′ߪ ,௦ߤ , ⋅⋅⋅ ,ଶߤ ,ଵߤ)
and σ′ is from all {ߪ௞, ݒ௞} k∈ I. Given a collision-resistant 
hash function ܪ௞ (⋅), we make use of this architecture to 
construct a Hash Index Hierarchy ℋ (viewed as a random 
oracle), which is used to replace the common hash function 
in prior DDR techniques, as follows:1) Express layer: 
given ݏ random {߬௜}௜ୀଵ

௦  and the file nameܨ௡ , sets ߦ(ଵ)  = 
∑ܪ ఛ೔

ೞ
೔

  ௡=1 and makes it public for verification but makesܨ
{߬௜}௜ୀଵ

௦  secret;2) Service layer: given the ߦ(ଵ) and the cloud 
name ௞ܥ , sets ߦ(ଶ)  = క(భ)ܪ ( ௞ܥ );3) Storage layer: given 
the (ଶ)ߦ , a blocknumber i, and its index record ௜ܺ  = 
௜ܤ“ || ௜ܸ ||ܴ௜”, sets ߦ௜,௞

(ଷ)=ܪక೔,ೖ
(మ)( ௜ܺ), where ܤ௜  is the sequence 

number of a block, ௜ܸ is the updated version number, and 
ܴ௜ is a random integer to avoid collision. As a virtualization 
approach, we introduce a simple index-hash table X = { ௜ܺ} 
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to record the changes of file blocks as well as to generate 
the hash value of each block in the verification process. 
The structure of X is similar to the structure of file block 
allocation table in file systems. The index-hash table 
consists of serial number, block number, version number, 
random integer, and so on. Different from the common 
index table, we assure that all records in our index table to 
differ from one another prevent forgery of data blocks and 
tags. By using this structure, especially the index records 

{ ௜ܺ}, our CDDR technique can also support dynamic data 
operations [8].The proposed structure can be readily 
incorporated into MAC-based, ECC or RSA techniques [1], 
[6]. These techniques, built from collision-resistance 
signatures (see Section 3.1) and the random oracle model, 
have the shortest query and response with 
publicverifiability.They share several common characters 
for theimplementation of the CDDR framework in the 
multiple clouds: 1) a file is split into ݊ × ݏ  sectors

Fig 2:Index-hash hierarchy of CDDR model. 

 

 and each block (ݏ sectors) corresponds to a tag, so that the 
storage of signature tags can be reduced by the increase of 
 a verifier can verify the integrity of file in random (2 ;ݏ
sampling approach, which is of utmost importance for large 
files; 3) these techniques rely on homomorphic properties 
to aggregate data and tags into a constant size response, 
which minimizes the overhead of network communication; 
and 4) the hierarchy structure provides a virtualization 
approach to conceal the storage details of multiple CSPs. 

2.4 Homomorphic Verifiable Response for 
CDDR:A homomorphism is a map ݂: ℙ→ ℚbetween two 
groups such that ݂(݃ଵ⊕݃ଶ)  = ݂(݃ଵ) ⊗ ݂(݃ଶ)  for all ݃ଵ , 
݃ଶ∈ℙ, where ⊕ denotes the operation in P and ⊗ denotes 
the operation in ℚ. This notation has been used to define 
Homomorphic Verifiable Tags (HVTs) in [1]: Given two 
values ߪ௜ and ߪ௝  for two messages ݉௜ and ௝݉ , anyone can 
combine them into a value ߪ௜ ′ corresponding to the sum of 
the messages ݉௜ + ௝݉ . When demonstrable data retention 
is considered as a challenge-response protocol, we extend 
this notation to the concept of Homomorphic Verifiable 

Responses (HVR), which is used to integrate multiple 
responses from the different CSPs in CDDR 

 

technique as follows: Definition 2 (HVR): A response is 
called homomorphic verifiable response in a DDR protocol, 
if given two responsesѲ௜  and Ѳ௝  for two challenges ܳ௜ 
andܳ௝ from two CSPs, there exists an efficient algorithm to 
combine them into a response Ѳcorresponding to the sum 
of the challenges ܳ௜υܳ௝. Homomorphic verifiable response 
is the key technique of CDDR because it not only reduces 
the communication bandwidth, but alsoconceals the 
location of outsourced data in the distributed cloud storage 
environment. 

3 COOPERATIVE DDR TECHNIQUES 

In this section, we propose a CDDR technique for multi-
cloud system based on the above-mentioned structure and 
techniques. This technique is constructed on collision-
resistant hash, bilinear map group, aggregation algorithm, 
and homomorphic responses. 
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3.1 Notations and Preliminaries:Let ℍ = {ܪ௞} be 
a family of hash functions ܪ௞ : {0,1}௡ → {0,1}∗ index by 
݇∈ࣥ. We say that algorithm ࣛ has advantage ߳ in breaking 
collision resistance of ℍ if Pr[ࣛ(݇) = (݉଴ ,݉ଵ ) : ݉଴  ∕= 
݉ଵ,ܪ௞ (݉଴) = ܪ௞ (݉଴)] ≥ ߳, where the probability is over 
the random choices of ݇∈ࣥ and the random bits of ࣛ. So 
that, we have the following definition:  Definition 3 
(Collision-Resistant Hash): A hash family ℍ is (ݐ, ߳)-
collision-resistant if no ݐ-time adversary has advantage at 
least ߳ in breaking collision resistance of ℍ. We set up our 
system using bilinear pairings proposed by Boneh and 
Franklin [12]. Let ॳ and ॳܶ be two multiplicative groups 
using elliptic curve conventions with a large prime order ݌. 
The function ݁ is a computable bilinear map ݁ : ॳ×ॳ → 
ॳܶ with the following properties: for any ܪ,ܩ∈ॳ and all ܽ, 
ܾ∈ℤ݌, we have 1) Bilinearity: ݁([ܽ]ܪ[ܾ] ,ܩ) = ݁(ܪ,ܩ)ܾܽ; 
2) Non-degeneracy: ݁(ܪ,ܩ) ≠ 1 unless ܩ or 1 = ܪ; and 3) 
Computability: ݁(ܪ,ܩ) is efficiently computable.Definition 
4 (Bilinear Map Group System): A bilinear map group 
system is a tuple ॺ = ⟨݌,,, ݁⟩ composed of the objects as 
described above.  

3.2 Our CDDR Technique:In our technique (see 
Fig 3), the manager first runs algorithm ݊݁ܩݕ݁ܭ to obtain 
the public/private key pairs for CSPs and users. Then, the 
clients generate the tags of outsourced data by using 
 is performed by a ݂݋݋ݎܲ Anytime, the protocol .݊݁ܩ݃ܽܶ
5-move interactive Proof protocol between a verifier and 
more than one CSP, in which CSPs need not to interact 
with each other during the verification process, but an 
organizer, is used to organize and manage all CSPs. This 
protocol can be described as follows: 1) The organizer 
initiates the protocol and sends a commitment to the 
verifier; 2) The verifier returns a challenge set of random 
index-coefficient pair’s ܳ to the organizer; 3) The organizer 
relays them into each lock; 4) Each ܲ݅ returns its response 
of challenge to the organizer; and 5) The organizer 
synthesizes aܲ݅ in ࣪ according to the exact position of each 
data final response from received responses and sends it to 
theverifier. The above process would guarantee that the 
verifier accesses files without knowing on which CSPs or 
in what geographical locations their files reside. In contrast 
to a single CSP environment, our technique differs from the 
common DDR technique in two aspects:1) Tag aggregation 
algorithm: In stage of commitment, the organizer generates 
a random ߛ∈ܴℤ݌ and returns its commitment H’ଵ  to the 

verifier. This assures that the verifier and CSPs do not 
obtain the value of ߛ. Therefore, our approach guarantees 
only the organizer can compute the final ߪ′ by using ߛ and 
 is computed, we need to ′ߪ received from CSPs. After ݇ ′ߪ
transfer it to the organizer in stage of “Response1”. In order 
to ensure the security of transmission of data tags, our 
technique employs a new method, similar to the ElGamal 
encryption, to encrypt the combination of tags 
∏ ௜ߪ

௩೔
(௜,௩೔)∈ொೖ  , that is, for ݏ = ݇ݏ∈ℤ݌ and ௞ܲ = (݃, ܵ =݃௦) 

∈ॳଶ, the cipher of message ݉ is ࣝ = (ࣝଵ = ݃ݎ, ࣝଶ = ݉⋅ݏ௥) 
and its decryption is performed by ݉ = ܥଶ . ଵܥ

ି௦ .2) 
Homomorphic responses: Because of the homomorphic 
property, the responses computed from CSPs in a multi-
cloud can be combined into a single final response. It is 
obvious that the final response ߠ received by the verifiers 
from multiple CSPs is same as that in one simple CSP. This 
means that our CDDR technique is able to provide a 
transparent verification for the verifiers. Two response 
algorithms, Response1 and Response2, comprise an HVR: 
Given two responses ݅ߠ and ݆ߠ for two challenges ܳ݅ and 
݆ܳ from two CSPs, i.e., ݅ܫ∋݇ {݇݉} ,݅ܳ) 1݁ݏ݊݋݌ݏܴ݁ = ݅ߠ, 
 there exists an efficient algorithm to combine ,(݅ܫ∋݇ {݇ߪ}
them into a final response ߠ corresponding to the sum of 
the challenges ܳ݅∪, that is,   = ܴ݁1݁ݏ݊݋݌ݏ (ܳ݅∪, {݉݇} 
௜ߠ) 2݁ݏ݊݋݌ݏܴ݁= (݆ܫ∪݅ܫ∋݇ {݇ߪ} ,݆ܫ∪݅ܫ∋݇ ,  ௝). For multipleߠ
CSPs, the above equation can be extended to ߠ = 
 More importantly, the HVR is a .(࣪∋ {݇ߠ}) 2݁ݏ݊݋݌ݏܴ݁
pair of values (ߤ ,ߪ ,ߨ) = ߠ, which has a constant-size even 
for different challenges.  

4 SECURITY ANALYSESWe give a brief 
security analysis of our CDDR construction. This 
construction is directly derived from multi-prover zero-
knowledge proof system (MPZKPS), which satisfies 
following properties for a given assertion, 1 :ܮ) 
Completeness: whenever ܮ ∋ݔ, there exists a strategy for 
the provers that convinces the verifier that this is the case; 

2) Soundness: whenever ܮ∌ݔ, whatever strategy the 
provers employ, they will not convince the verifier that 
 Zero-knowledge: no cheating verifier can learn (3 ;ܮ∋ݔ
anything other than the veracity of the statement. 
According to existing IPS research [11], these properties 
can protect our construction from various attacks, such as 
data leakage attack (privacy leakage), tag forgery attack 
(ownership cheating), etc. In details, the security of our 
technique can be analyzed as follow

4.1 Collision resistant for index-hash 
hierarchy:In our CDDR technique, the collision 
resistant of index hash hierarchy is the basis and 
prerequisite for the security of whole technique, which is 
described as being secure in the random oracle model. 
Although the hash function is collision resistant, a 

successful hash collision can still be used to produce a 
forged tag when the same hash value is reused multiple 
times, e.g., a legitimate client modifies the data or repeats 
to insert and delete data blocks of outsourced data. To 
avoid the hash collision, the hash value (3)ߦ ݅,݇, which is 
used to generate the tag ݅ߪ in CDDR technique, is 
computed from the set of values {߬݅}, ݇ܥ ,݊ܨ, {߯݅}. As 
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long as there exists one bit difference in these data, we can 
avoid the hash collision. As a consequence, we have the 
following theorem (see Appendix B): Theorem 1 (Collision 
Resistant): The index-hash hierarchy in CDDR technique is 

collision resistant, even if the client generatesට2݌. ݈݊ ଵ
ଵିℇ

  

files with the same file name and cloud name,  and the 

client repeats ට2௅ାଵ . ݈݊ ଵ
ଵିℇ

  times to modify, insert and 

delete data blocks, where the collision probability is at least 
 .݅߯∋ܴ݅ for ܮ = ∣ܴ݅∣ and ,݌ℤ∋݅߬ ,ߝ

4.2 Completeness property of verification:In 
our technique, the completeness property implies public 
verifiability property, which allows anyone, not just the 
client (data owner), to challenge the cloud server for data 
integrity and data ownership without the need for any 
secret information. First, for every available data-tag pair 
 the ,ܫ∋݅ (݅ݒ ,i) = ܳ and a random challenge (ܨ ,݇ݏ) ∋ (ߪ ,ܨ)
verification protocol should be completed with success 
probability according to the Equation (3), that is, Pr 
ൣ〈∑ ௞ܲ(ܨ(௞) , (௞)ߪ

௉ೖ∊௣ ) ↔ O ↔ V〉(pk, ψ) = 1൧ = 1.  In this 
process, anyone can obtain the owner’s public key ݇݌ = (݃, 
ℎ, ܪଵ =ℎα,ܪଶ =ℎβ) and the corresponding file parameter ߰ 
 ,from TTP to execute the verification protocol (߯ ,ξ(ଵ),ݑ) =
hence this is a public verifiable protocol. Moreover, for 
different owners, the secrets ߙ and ߚ hidden in their public 
key ݇݌ are also different, determining that success 
verification can only be implemented by the real owner’s 
public key. In addition, the parameter ߰ is used to store the 
file-related information, so an owner can employ a unique 
public key to deal with a large number of outsourced files. 

4.3 Zero-knowledge property of verification: 
The CDDR construction is in essence a Multi-Prover Zero-
knowledge Proof (MP-ZKP) system [11], which can be 
considered as an extension of the notion of an interactive 
proof system (IPS). Roughly speaking, in the scenario of 
MP-ZKP, a polynomial-time bounded verifier interacts 
with several provers whose computational powers are 
unlimited. According to a Simulator model, in which every 
cheating verifier has a simulator that can produce a 
transcript that “looks like” an interaction between an honest 
prover and a cheating verifier, we can prove our CDDR 
construction has Zero-knowledge property. 

Theorem 2 (Zero-Knowledge Property): The verification 
protocol ݂ܲ݋݋ݎ(࣪, ܸ ) in CDDR technique is a 
computational zero-knowledge system under a simulator 
model, that is, for every probabilistic polynomial-time 
interactive machine ܸ∗, there exists a probabilistic 
polynomial-time algorithm ܵ∗ such that the ensembles 
 and ((߰ ,݇݌)⟨∗ܸ ↔ ܱ ↔ ((݇)ߪ ,(݇)ܨ)݇ܲ࣪∋݇ܲ Σ ⟩) ݓܸ݁݅

-are computationally indistinguishable. Zero (߰ ,݇݌)∗ܵ
knowledge is a property that achieves the CSPs’ robustness 
against attempts to gain knowledge by interacting with 
them. For our construction, we make use of the zero-
knowledge property to preserve the privacy of data blocks 
and signature tags. Firstly, randomness is adopted into the 
CSPs’ responses in order to resist the data leakage attacks 
(see Attacks 1 and 3 in Appendix A). That is, the random 
integer ݆ߣ, is introduced into the response ݆ߤ, i.e., ݆ߤ, ݇ = 
 This means that the cheating .݆ ,݅݉⋅݅ݒ݇ܳ∋ (݅ݒ ,݅) Σ + ݇ ,݆ߣ
verifier cannot obtain ݉݅, from ݆ߤ, because he does not 
know the random integer ݆ߣ. At the same time, a random 
integer ߛ is also introduced to randomize the verification 
tag ߪ, i.e., ߪ′ ←(Π Pk ∈ ࣪σ′ k ⋅  R − s k) ఊ. Thus, the tag ߪ 
cannot reveal to the cheating verifier in terms of 
randomness.  

4.4 Knowledge soundness of verification:For 
every data-tag pairs (ߪ ,∗ܨ∗) ∕∈ (ܨ ,݇ݏ), in order to prove 
nonexistence of fraudulent ࣪∗ and ܱ∗, we require that the 
technique satisfies the knowledge soundness property, that 
is, Pr ൣ〈∑ ௞ܲ(ܨ(௞)∗, ∗(௞)ߪ

௉ೖ∊௣∗ ) ↔ O∗ ↔ V〉(pk, ψ) = 1൧  ≤ 
߳, where ߳ is a negligible error. We prove that our 
technique has the knowledge soundness property by using 
reduction to absurdity 1: we make use of ࣪∗ to construct a 
knowledge extractor ℳ [7,13], which gets the common 
input (݇݌, ߰) and rewindable blackbox accesses to the 
prover ܲ∗, and then attempts to break the computational 
Diffie-Hellman (CDH) problem in ॳ: given ܩ,ܩଵ = ܩ௔,ܩଶ 
 ॳ. But it is unacceptable because∋ܾܽܩ ௕∈ܴॳ, outputܩ =
the problem in polynomial-time.  

Theorem 3 (Knowledge Soundness Property): Our 
technique has (ݐ, ߳′) knowledge soundness in random oracle 
and rewindable knowledge extractor model assuming the 
 computational Diffie-Hellman (CDH) assumption-(߳ ,ݐ)
holds in the group ॳ for ߳′ ≥ ߳. Essentially, the soundness 
means that it is infeasible to fool the verifier to accept false 
statements. Often, the soundness can also be regarded as a 
stricter notion of unforgeability for file tags to avoid 
cheating the ownership. This means that the CSPs, even if 
collusion is attempted, cannot be tampered with the data or 
forge the data tags if the soundness property holds. Thus, 
the Theorem 3 denotes that the CDDR technique can resist 
the tag forgery attacks. 

5 PERFORMANCE EVALUATIONS 

In this section, to detect abnormality in a low overhead and 
timely manner, we analyze and optimize the performance 
of CDDR technique based on the above technique from two 
aspects: evaluation of probabilistic queries and 
optimization of length of blocks. To validate the effects of 
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technique, we introduce a prototype of CDDR-based audit 
system and present the experimental results.  

5.1 Performance Analysis for CDDR 
Technique:We present the computation cost of our 
CDDR technique in Table 3. We use [ܧ] to denote the 
computation cost of an exponent operation in ॳ, namely, 
 and ݃∈ॳ or ॳܶ. We ݌is a positive integer in ℤ ݔ where ,ݔ݃
neglect the computation cost of algebraic operations and 
simple modular arithmetic operations because they run fast 
enough [12]. The most complex operation is the 
computation of a bilinear map (⋅, ⋅) between two elliptic 
points (denoted as [ܤ]). Then, we analyze the storage and 
communication costs of our technique. We define the 
bilinear pairing takes the form: (ॲ݉݌) × (ॲ݉݇݌) → 
ॲ∗݉݇݌ (The definition given here is from [13], [8]), where 
 is a prime, ݉ is a positive integer, and ݇ is the embedding ݌
degree (or security multiplier). In this case, we utilize an 
asymmetric pairing: ॳ1×ॳ2→ ॳܶ to replace the symmetric 
pairing in the original techniques. In Table 3, it is easy to 
find that client’s computation overheads are entirely 
irrelevant for the number of CSPs. Further, our technique 
has better performance compared with non-Cooperative 
numberof CSPs.Further, our technique has better 

TABLE 3: Comparison of computation overheads between 
our CDDR scheme and non-cooperative (trivial) scheme. 

 

performance compared with non-Cooperative approach due 
to the total of computation overheads decrease 3(ܿ−1) times 
bilinear map operations, where ܿ is the number of clouds in 
a multi-cloud. The reason is that, before the responses are 
sent to the verifier from ܿ clouds, the organizer has 
aggregate these responses into a response by using 
aggregation algorithm, so the verifier only need to verify 
this response once to obtain the final result. Without loss of 
generality, let the security parameter ߢ be 80 bits, we need 
the elliptic curve domain parameters over ॲ݌ with ∣݌∣ = 
160 bits and ݉ = 1 in our experiments. This means that the 
length of integer is ݈0 = 2ߢ in ℤ݌. Similarly, we have ݈1 = 
 in ॳॻ for the ߢin ॳ2, and ݈ܶ = 24 ߢin ॳ1, ݈2 = 24 ߢ4
embedding degree ݇ = 6. The storage and communication 
cost of our technique is shown in Table 4. The storage 
overhead of a file with (݂) = 1ܯ-bytes is (݂) = ݊⋅1݈⋅݊ + 0݈⋅ݏ 
 The storage .50 = ݏ bytes for ݊ = 103 and-ܯ1.04 =

overhead of its index table ߯ is ݊⋅݈0 = 20ܭ-bytes. We 
define the overhead rate as 0݈⋅ݏ 1݈ = 1− (݂) (݂) = ߣ and it 
should therefore be kept as low as possible in order to 
minimize the storage in cloud storage providers. It is 
obvious that a higher ݏ means much lower storage. 
Furthermore, in the verification protocol, the 
communication overhead of challenge is 2ݐ⋅40 = 0݈⋅ݐ-Bytes 
in terms of the number of challenged blocks ݐ, but its 
response (response1 or response2) has a constant-size 
communication overhead ܭ1.3 ≈ ݈ܶ+1݈+0݈⋅ݏ-bytes for 
different file sizes. Also, it implies that client’s 
communication overheads are of a fixed size, which is 
entirely irrelevant for the number of CSPs.  

TABLE 4: Comparison of communication overheads 
between our CDDR and non-cooperative scheme 

 

5.2 Probabilistic Verification:We recall the 
probabilistic verification of common DDR technique 
(which only involves one CSP), in which the verification 
process achieves the detection of CSP server misbehavior 
in a random sampling mode in order to reduce the workload 
on the server. The detection probability of disrupted blocks 
ܲ is an important parameter to guarantee that these blocks 
can be detected in time. Assume the CSP modifies ݁blocks 
out of the ݊-block file, that is, the probabilityof 
disruptedblocks is ܾߩ = ݁݊. Let ݐ be the number of 
queriedblocks for a challenge in the verification protocol. 

We have detection probabilityଶ ቀ௡ି௘– 1 ≤ (ݐ ,ܾߩ)  
௡

ቁ
௧
= 

1−(1 − ρb)௧, Where, (ݐ ,ܾߩ) denotes that the probability ܲ 
is a function over ܾߩ and ݐ. Hence, the number of queried 

blocks is ݐ ≈ ୪୭୥(ଵି୔)
୪୭୥(ଵିρୠ)

 ≈ ୔⋅୬
ୣ

 for a sufficiently large ݊ and 

 is ݐ nଷ. This means that the number of queried blocks≫ݐ
directly proportional to the total number of file blocks ݊ for 
the constant ܲ and ݁. Therefore, for a uniform random 
verification in aDDR technique with fragment structure, 
given a file with ݏ⋅݊ = ݖݏ sectors and the probability of 
sector corruption ߩ, the detection probability of verification 
protocol has ܲ ≥ 1 −(1 − ρ)ୱ୸⋅ω , where ߱ denotes the 
sampling probability in the verification protocol. We can 
obtain this result as follows: because ߩ  ܾ≥ 1 − (1 − ρ)ୱ is 
the probability of block corruption with ݏ sectors in 
common DDR technique, the verifier can detect block 
errors with probability ܲ ≥ 1 − (1 − pୠ)୲  ≥ 1 – ((1 −
ρ)ୱ )୸⋅ω  = 1 − (1 − ρ)ୱ୸⋅ω  for a challenge with ݐ = ݊⋅߱ 
index-coefficient pairs. In the same way, given a multi-

 CDDR Scheme Trivial Scheme 
Commitment ݈2 ݈ܿ2 
Challenge1 20݈ݐ2 0݈ݐ 
Challenge2 20݈ݐ/  ܿ  0݈ݐ2
Response1 ( ݈ܶ + 1݈ + 0݈ݏ) ݈ܶ + 2݈1 + 0݈ݏ  ܿ
Response2 ( ݈ܶ + 1݈ + 0݈ݏ) ݈ܶ + 1݈ + 0݈ݏ  ܿ

 CDDR Scheme Trivial Scheme 
KeyGen 3[ܧ] [ܧ]2 
TagGen (2݊ + ݏ)[ܧ]  (ݏ + 2݊)[ܧ] 
Proof(p) ܿ[ܤ] + (1+ݏܿ + ݐ)[ܧ] ܿ[ܤ] +(ݏܿ+ ݐ − ܿ)[ܧ] 
Proof(V) 3[ܤ] + (ݏ + ݐ)[ܧ]  [ܧ](ݏܿ + ݐ) + [ܤ]3ܿ 
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cloud ࣪ = {ܲ݅} ∈ [1, ܿ], the detection probability of CDDR 
technique has ({݇ݎ ,݇ߩ} ,ݖݏ∈࣪, ߱) ≥  1 – ∏ ((1 −୔୩∈࣪
ρk)ୱ)r୩

.ω  = 1−∏ (1 − ρk)ୱ୸.୰ౡ.ω
୔୩∈࣪ ,   where ݎ௞  denotes 

the proportion of data blocks in the ݇-th CSP, ݇ߩ denotes 
the probability of file corruption  2. Exactly, we have ܲ = 
1−(1− ௘

௡
 ) ⋅ (1− ௘

୬ିଵ
) ⋅⋅⋅ (1− ௘

୬ି୲ାଵ
). 

Since 1− ௘
௡

 ≥ 1− ௘
୬ି୧

 for ݅∈ [0, 1−ݐ], we have ܲ = 

1−∏ (1 − ௘
௡ି௜

)௧ିଵ
௜ୀ଴  ≥ 1 −∏ (1 − ௘

௡
)௧ିଵ

௜ୀ଴  = 1 − (1 –௘
௡

)௧.  

3. In terms of (1 – ௘
௡

)௧ ≈ (1 –௘.௧
௡

), we have ܲ ≈ 1− (1 –௘.௧
௡

) = 
௘.௧
௡

 . In the ݇-th CSP and ݇ݎ⋅߱ denotes the possible number 
of blocks queried by the verifier in the ݇-th CSP. 
Furthermore, we observe the ratio of queried blocks in the 
total file blocks ݓ under different detection probabilities. 
Based on above analysis, it is easy to find that this ratio 
holds the 

TABLE 5: The influence of ݐ ,ݏ under the different 
corruption probabilities ߩ and the different detection 
probabilities ܲ 

࣪ {0.1,0.2
,0.01} 

{0.01,0.0
2,0.001} 

{0.001,0.00
2,0.0001} 

{0.0001,0.00
02,0.00001} 

0.5,0.3} ݎ
,0.2} 

{0.5,0.3,
0.2} 

{0.5,0.3,0.2
} 

{0.5,0.3,0.2} 

0.8/ 3 4 /7 20/ 23 62/ 71 71/202 
0.85 /3 5 /8 21/ 26 65/ 79 79/214 
0.9 /3 6/ 10 20 /28 73 /87 87/236 
0.95 /3 8/ 11 29/ 31 86/ 100 100/267 
0.99 /4 10/ 13 31/ 39 105 /119 119/345 
0.999 
/5 

11/ 16 38 /48 128/ 146 146/433 

 

equationݓ≈ ୪୭୥(ଵ ି ୔)
ୱ୸ ⋅Σ ୔୩∈࣪ ୰୩ ⋅ ୪୭୥(ଵ ିρ୩)

. When this probability ݇ߩ 

is a constant probability, the verifier can detect sever 
misbehavior with a certain probability ܲ by asking proof 
for the number of blocks ݐ ≈ log (1−ܲ) ݏ.log (1−ߩ) for 
DDR or forݐ ≈ ୪୭୥(ଵି ୔)

ୱ ⋅Σ ୔୩∈࣪ ୰୩ ⋅ ୪୭୥(ଵ ିρ୩)
CDDR, where ݓ⋅݊ = ݐ 

= ୱ୸⋅୵
௦

 . Note that, the value of ݐ is dependent on the total 
number of file blocks ݊ [2], because it is increased along 
with the decrease of ݇ߩ and log (1 − ݇ߩ) < 0 for the 
constant number of disrupted blocks ݁ and the larger 
number ݊. Another advantage of probabilistic verification 
based on random sampling is that it is easy to identify the 
tampering or forging data blocks or tags. The identification 
function is obvious: when the verification fails, we can 
choose the partial set of challenge indexes as a new 
challenge set, and continue to execute the verification 
protocol. The above search process can be repeatedly 

executed until the bad block is found. The complexity of 
such a search process is (log ݊). 

5.3 Parameter Optimization:In the fragment 
structure, the number of sectors per block ݏ is an important 
parameter to affect the performance of storage services and 
audit services. Hence, we propose an optimization 
algorithm for the value of s in this section. Our results show 
that the optimal value can not only minimize the 
computation and communication overheads, but also 
reduce the size of extra storage, which is required to store 
the verification tags in CSPs. Assume ߩ denotes the 
probability of sector corruption. In the fragment structure, 
the choosing of ݏ is extremely important for improving the 
performance of the CDDR technique. Given the detection 
probability ܲ and the probability of sector corruption ߩ for 
multiple clouds ࣪ = {ܲ݇}, the optimal value of ݏ can be 

computed by minݏ∈ℕ{ ୪୭୥(ଵି୔)
Σ୔୩∈࣪ ୰୩⋅୪୭୥(ଵିρ୩)

⋅ ௔
௦

 ,{ܿ + ݏ⋅ܾ + 

where ܽ⋅ݏ⋅ܾ + ݐ + ܿ denotes the computational cost of  
verification protocol in DDR technique, ܽ, ܾ, ܿ∈ℝ, and ܿ is 
a constant. This conclusion can be obtained from following 
process: Let ݏ⋅݊ = ݖݏ = (݂)/ ݈଴ . According to above-
mentioned results, the sampling probability holds ݓ ≥ 

୪୭୥(ଵି୔)
ୱ୸⋅Σ୔୩∈࣪ ୰୩⋅୪୭୥(ଵିρ୩)

 = ୪୭୥(ଵି୔)
୬⋅ୱ⋅Σ୔୩∈࣪ ୰୩⋅୪୭୥(ଵିρ୩)

 .In order to 

minimize the computational cost, we have min ݏ∈ℕ {ܽ⋅ݐ + 
 ℕ{Σlog (1∋ݏ min ≤ {ܿ + ݏ⋅ܾ + ݓ⋅݊⋅ܽ} ℕ∋ݏ min = {ܿ + ݏ⋅ܾ
 denotes ݇ݎWhere .{ܿ + ݏ⋅ܾ + ݏܽ (݇ߩ − 1) log⋅݇ݎ࣪∋݇ܲ (ܲ −
the proportion of data blocks in the ݇-th CSP, ݇ߩ denotes 
the probability of file corruption in the ݇-th CSP. Since ௔

௦
 is 

a monotone decreasing function and ܾ⋅ݏ is a monotone 
increasing function for 0 <ݏ, there exists an optimal value 
of ݏ∈ℕ in the above equation. The optimal value of ݏ is 
unrelated to a certain file from this conclusion if the 
probability ߩ is a constant value. For instance, we assume a 
multi-cloud storage involves three CSPs ࣪ = {ܲ1, ܲ2, ܲ3} 
and the probability of sector corruption is a constant value 
 We set the detection .{0.001 ,0.02 ,0.01} = {3ߩ ,2ߩ ,1ߩ}
probability ܲ with the range from 0.8 to 1, e.g., ܲ = {0.8, 
0.85, 0.9, 0.95, 0.99, and 0.999}. For a file, the proportion 
of data blocks is 50%, 30%, and 20% in three CSPs, 
respectively, that is, 0.3 = 2ݎ ,0.5 = 1ݎ, and 0.2 = 3ݎ. In 
terms of Table 3, the computational cost of CSPs can be 
simplified to 9+ݏ3 + ݐ. When ݏ is less than the optimal 
value, the computational cost decreases evidently with the 
increase of ݏ, and then it raises when ݏ is more than the 
optimal value. More accurately, we show the influence of 
parameters, ݏ ,ݓ⋅ݖݏ, and ݐ, under different detection 
probabilities in Table 6. It is easy to see that computational 
cost rises with the increase of ܲ. Moreover, we can make 
sure the sampling number of challenge with 
followingConclusion: Given the detection probability ܲ, 
the probability of sector corruption ߩ, and the number of 
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sectors in each block ݏ, the sampling number of 
verification protocol are a constantݓ⋅݊ = ݐ 

≥ ୪୭୥(ଵି୔)
ୱ⋅Σ୔୩∈࣪ ୰୩⋅୪୭୥(ଵିρ୩)

 for different files. Finally, we observe 

the change of ݏunder differentߩ and ܲ. The experimental 

results are shown in Table 5. It is obvious that the optimal 
value of ݏ rises with increase of ܲ and with the decrease 
ofߩ. We choose the optimal value of ݏ on the basis ofߩ. 
settings and system requisition. For NTFS format,

 

TABLE 6: The influence of parameters under different detection probabilities ܲ (࣪ = {3ߩ ,2ߩ ,1ߩ} = {0.001 ,0.02 ,0.01}, {1ݎ, 
 ({0.2 ,0.3 ,0.5} = {3ݎ ,2ݎ

 

we suggest that the value of ݏ is 200 and the size of block is 
4KBytes, which is the same as the default size of cluster 
when the file size is less than 16TB in NTFS. In this case, 
the value of ݏ ensures that the extra storage doesn’t exceed 
1% in storage servers. 

5.4 CDDR for Integrity Audit Services:Basedon 
our CDDR technique, we introduce audit system 
architecture for outsourced data in multiple clouds by 
replacing the TTP with a third party auditor (TPA) in 
Figure 1. In this architecture, this architecture can be 
constructed into a visualization infrastructure of cloud-
based storage service [1]. In Figure 3, we show an example 

of applying our CDDR technique in Hadoop distributed 
filesystem  (HDFS)ସ , with a distributed, scalable, and 
portable 

 

file system [9]. HDFS’ architecture is composed of 
NameNode and DataNode, where NameNode maps a file 
name to a set of indexes of blocks and DataNode indeed 
stores data blocks. To support our CDDR technique, the 
index-hash hierarchy and the metadata of NameNode 
should be integrated together to provide an enquiry service 
for the hash valueξ௜,௞

(ଷ), or index-hash record ߯݅.Based on the 
hash value, the clients can implement the verification 
protocol via CDDR services. Hence, it is easy to replace the 
checksum methods with the CDDR technique for anomaly 
detection in current HDFS. To validate the effectiveness 
and efficiency of our proposed approach for audit services, 
we have implemented a prototype of an audit system. We 

simulated the auditservice and the storage service by using 

Figure 3:Applying CDDR Technique in Hadoop distributed file system (HDFS)

two local IBM servers with two Intel Core 2 processors at 
2.16 GHz and 500M RAM running Windows Server 2003. 

These servers were connected via 250 MB/sec of network 
bandwidth. Using GMP and PBC libraries, we have 

P 0.8 0.85 0.9 0.95 0.99 0.999 
 612.06 408.04 265.43 204.02 168.09 142.60 ݓ⋅ݖݏ
 16 13 11 10 8 7 ݏ
 38 31 29 20 21 20 ݐ
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implemented a cryptographic library upon which our 
technique can be constructed. This C library contains 
approximately 5,200 lines of codes and has been tested on 
both Windows and Linux platforms. The elliptic curve 
utilized in the experiment is a MNT curve, with base field 
size of 160 bits and the embedding degree 6. The security 
level is chosen to be 80 bits, which means ∣160 = ∣݌. 
Furthermore, the proportions of data blocks in each CSP 
have greater influence on the computation costs of 
“challenge” and “response” processes. 

 

6 CONCLUSIONS 

We make three key contributions in this paper, first we 
have proposed a Cooperative DDR technique to support 
dynamic scalability on multiple storage servers, and second 
we presented the construction of an efficient DDR 
technique for distributed cloud storage Based on 
homomorphic verifiable response and hash index hierarchy. 
Third we also showed that our technique provided all 
security properties required by zeroknowledge interactive 
proof system, so that it can resist various attacks even if it 
is deployed as a public audit service in clouds. 
Furthermore, we optimized the probabilistic query and 
periodic verification to improve the audit performance. Our 
experiments clearly demonstrated that our approaches only 
introduce a small amount of computation and 
communication overheads. Therefore, our solution can be 
treated as a new candidate for data integrity verification in 
outsourcing data storage systems. As part of future work, 
we would extend our work to explore more effective 
CDDR constructions. For a practical point of view, we still 
need to address some issues about integrating our CDDR 
technique smoothly with existing systems, for example, 
how to match index structure with cluster-network model, 
how to match index hash hierarchy with HDFS’s two-layer 
name space, and how to dynamically update the CDDR 
parameters according to HDFS’ specific requirements. 
Finally, it is still a challenging problem for the generation 
of tags with the length irrelevant to the size of data blocks. 
We would explore such an issue to provide the support of 
variable-length block verification. 
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