
International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 195

Cooperative Demonstrable Data Retention for Integrity
Verification in Multi-Cloud Storage

Krishna Kumar Singh
GIDA Gorakhpur

U.P India

Rajkumar Gaura
GIDA Gorakhpur

U.P India

Sudhir Kumar Singh
GIDA Gorakhpur

U.P India

Abstract Demonstrable data retention (DDR) is a technique which certain the integrity of data in storage outsourcing. In this
paper we propose an efficient DDR protocol that prevent attacker in gaining information from multiple cloud storage node. Our
technique is for distributed cloud storage and support the scalability of services and data migration. This technique Cooperative
store and maintain the client’s data on multi cloud storage. To insure the security of our technique we use zero-knowledge proof
system, which satisfies zero-knowledge properties, knowledge soundness and completeness. We present a Cooperative DDR
(CDDR) protocol based on hash index hierarchy and homomorphic verification response. In order to optimize the performance of
our technique we use a novel technique for selecting optimal parameter values to reduce the storage overhead and computation
costs of client for service providers.

Keyword: Demonstrable Data Retention, homomorphic, zero knowledge, storage outsourcing, multiple cloud, Cooperative, data
Retention.

1. INTRODUCTION

IN past few years, a cloud storage service has become a
faster profitable growth point by providing their clients a
reasonably scalable, low-cost, position-independent
platform for client’s data. As cloud computing environment
is made based on open architectures and interfaces, it has
the capability to incorporate multiple internal or/and
external cloud services together to provide high
interoperability. We say such a distributed cloud
environment as a hybrid cloud (or multi-Cloud). Very
often, we use virtual infrastructure management (VIM) [2],
a multi-cloud allows clients to easily access his or her
resources remotely through interfaces such as Web services
provided by Amazon EC2. There exist various tools and
technologies for multicloud, such as Vmware vSphere,
Platform VM Orchestrator and Ovirt. These tools help
cloud providers to construct a distributed cloud storage
platform (DCSP) for managing client’s data. However,
such an important platform is vulnerable to be
compromised, especially in a hostile environment and it
would bring irretrievable losses to the clients. For
examplethe confidential data in an enterprise may be
illegally accessed through a remote interface provided by a
multi-cloud, or confidential data and archives may be lost
or altered with when they are stored into a hostile storage

pool outside the enterprise. Therefore, it is important and
necessary for cloud service providers (CSPs) to provide
security techniques for managing their storage services.
Demonstrable data retention (DDR) [1] (or proofs of
retrievability (POR) [2]) is such a probabilistic proof
technique for a storage provider to prove the integrity and
ownership of clients’ data without downloading data. The
verification without downloading makes it especially
important for large-size files and folders (typically
including many clients’ files) to check whether these data
have been altered with or deleted without downloading the
latest version of data. Thus, it is able to replace traditional
hash and signature functions in storage outsourcing.
Various DDR techniques have been recently proposed,
such as Scalable DDR [4] and Dynamic DDR [5].
However, these techniques mainly focus on DDR issues
atuntrusted servers in a single cloud storage providerand
are not suitable for a multi-cloud environment (see the
comparison of POR/DDR techniques in Table
1)Motivation: In order to provide a low-cost, scalable,
location-independent platform for managing clients’ data,
current cloud storage systems adopt several new
distributedfile systems, for example, Google File System
(GFS),Apache Hadoop Distribution File System (HDFS),
Amazon S3 File System, CloudStore etc.These file systems
share

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 196

TABLE 1: Comparison of POR/DDR schemes for a file consisting of ݊ blocks

 ݇ߩ and ߩ,is the number of sampling blocks ݐ ,is the number of sectors in each block, ܿ is the number of CSPs in a multi-cloud ݏ
are the probability of block corruption in a cloud server and ݇-th cloud server in a multi-cloud ࣪ = {ܲ݇}, respective, ♯ denotes
the verification process in a trivial approach, and ܴ݉݋ܪ,ܶ݉݋ܪ,ܶܪܯ denotes Merkle Hash tree, homomorphic tags, and
homomorphic response respectively.

some similar features: a single metadata server provides
centralized management by a global namespace; files are
split into blocks or chunks and stored on block servers; and
the systems are comprised of interconnected clusters of
block servers. Those features enable cloud service
providers to store and process large amounts of data.
However, it is crucial to offer an efficient verification on
the integrity and availability of stored data for detecting
faults and automatic recovery. Moreover, this verification
is necessary to provide reliability by automatically
maintaining multiple copies of data and automatically
redeploying processing logic in the event of failures.
Although existing techniques can make a false or true
decision for data retention without downloading data at
untrusted stores, they are not suitable for a distributed cloud
storage environment since they were not originally
constructed on interactive proof system. For example, the
techniques based on Merkle Hash tree (MHT), such as
Dynamic DDR-I, Dynamic DDR-II [1] and scalable DDR
[4] in Table-1. Use an authenticated skip list to check the
integrity of file blocks adjacently in space Unfortunately,
they did not provide any algorithms for constructing
distributed Merkle trees that are necessary for efficient
verification in a multi-cloud environment. In addition,
when a client asks for a file block, the server needs to send
the file block along with a proof for the correctness of the
block. However, this process incurs significant
communication overhead in a multi-cloud environment,
since the server in one cloud typically needs to generate
such a proof with the help of other cloud storage services,
where the adjacent blocks are stored. The other techniques,
such as DDR [1], CPOR-I, and CPOR-II [6] in Table 1, are
constructed on homomorphic verification tags, by which
the server can generate tags for multiple file blocks in terms
of a single response value. However, that doesn’t mean the

responses from multiple clouds can be also combined into a
single value on the client side. In case of lack of
homomorphic responses, clients must invoke the DDR
protocol repeatedly to check the integrity of file blocks
stored in multiple cloud servers. Also, clients need to know
the exact position of each file block in a multi-cloud
environment. In addition, the verification process in such a
case will lead to high communication overheads and
computation costs at client sides as well. Therefore, it is of
utmost necessary to design a Cooperative DDR model to
reduce the storage and network overheads and enhance the
transparency of verification activities in cluster-based cloud
storage systems. Moreover, such a Cooperative DDR
technique should provide features for timely detecting
abnormality and renewing multiple copies of data. Even
though existing DDR techniques have addressed various
security properties, such as public verifiability [1],
dynamics [5], scalability [4], and privacy preservation [7],
we still need a careful consideration of some potential
attacks, including two major categories: Data Leakage
Attack by which an adversary can easily obtain the stored
data through verification process after running or wire-
tapping sufficient verification communications and Tag
Forgery Attack by which a dishonest CSP can deceive the
clients. These two attacks may cause potential risks for
privacy leakage and ownership cheating. Also, these
attacks can more easily compromise the security of a
distributed cloud system than that of a single cloud system.
Although various security models have been proposed for
existing DDR techniques [1], [7], [6], these models still
cannot cover all security requirements, especially for
demonstrable secure privacy preservation and ownership
verification. To establish a highly effective security model,
it is necessary to analyze the DDR technique within the
framework of zero-knowledge proof system (ZKPS) due to

Scheme Type CSP
Comp.

Client
Comp.

Comm. Flag. Priva
cy

Multiple
Clouds

Prob. Of
Detection

DDR[2] ܶ݉݋ܪ O(t) O(t) O(1) ✓ # 1 − (1 − ߩ)ݐ
SDDR[4] MHT O(t) O(t) O(t) ✓ ✓ 1 − (1 − ߩ)ݏ⋅ݐ
CDDR-[5] MHT O(t.log n) O(t.log n) O(t log n) ✓ 1 − (1 − ߩ)ݐ
CDDR-II[5] MHT O(t log n) O(t log n) O(t log n) 1 − (1 − ߩ)Ω(݊)
CPOR-[6] ܶ݉݋ܪ O(t) O(t) O(1) # 1 − (1 − ߩ)ݐ
CPOR-II{6} ܶ݉݋ܪ O(t+s) O(t+s) O(s) ✓ # 1 − (1 − ߩ)t-s
OurScheme ݉݋ܪR O(t+c.s) O(t+s) O(s) ✓ ✓ ✓ 1 −Πܲ݇∈࣪

 ݏ⋅ݐ⋅݇ݎ(݇ߩ − 1)

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 197

the reason that DDR system is essentially an interactive
proof system (IPS), which has been well studied in the
cryptography community. In summary, an verification
technique for data integrity in distributed storage
environments should have the following features: Usability
aspect: A client should utilize the integrity check in the
way of collaboration services. The technique should
conceal the details of the storage to reduce the burden on
clients; Security aspect: The technique should provide
adequate security features to resist some existing attacks,
such as data leakage attack and tag forgery attack;
Performance aspect: The technique should have the lower
communication and computation overheads than non-
Cooperative solution.

Related Works: To ensure the integrity and availability of
outsourced data in cloud storages, researchers have
proposed two basic approaches called Demonstrable data
retention (DDR) [1] and Proofs of Retrievability (POR) [1].
Ateniese et al. [1] first proposed the DDR model for
ensuring retention of files on untrusted storages and
provided an RSA-based technique for a static case that
achieves the (1) communication cost. They also proposed a
publicly verifiable version, which allows anyone, not just
the owner, to challenge the server for data retention. This
property greatly extended application areas of DDR
protocol due to the separation of data owners and the users.
However, these techniques are insecure against replay
attacks in dynamic scenarios because of the dependencies
on the index of blocks. Moreover, they do not fit for multi-
cloud storage due to the loss of homomorphism property in
the verification process. In order to support dynamic data
operations, Ateniese et al. developed a dynamic DDR
solution called Scalable DDR [4]. They proposed a
lightweight DDR technique based on cryptographic hash
function and symmetric key encryption, but the servers can
deceive the owners by using previous metadata or
responses due to the lack of randomness in the challenges.
The numbers of updates and challenges are limited and
fixed in advance and users cannot perform block insertions
anywhere. Based on this work, Erway etal. [5] Introduced
two Dynamic DDR techniques with a hash function tree to
realize (log ݊) communication and computational costs for
a ݊-block file. The basic technique, called CDDR-I, retains
the drawback of Scalable DDR, and in the ‘blockless’
technique, called CDDRII, the data blocks {݆݉݅ }݆∈[1,ݐ]
can be leaked by the response of a challenge, ܯ
= ∑ ܽ௧

௝ୀଵ ݆݆݉݅, where ݆ܽ is a random challenge value.
Furthermore, these techniques are also not effective for a
multi-cloud environment because the verification path of
the challenge block cannot be stored completely in a cloud
[8]. Juels and Kaliski [3] presented a POR technique, which
relies largely on preprocessing steps that the client conducts
before sending a file to a CSP. Unfortunately, these

operations prevent any efficient extension for updating
data. Shacham and Waters [6] proposed an improved
version of this protocol called Compact POR, which uses
homomorphic property to aggregate a proof into (1)
authenticator value and ܱ(ݐ) computation cost for ݐ
challenge blocks, but their solution is also static and could
not prevent the leakage of data blocks in the verification
process. Wang et al. [7] presented a dynamic technique
with (log ݊) cost by integrating the Compact POR
technique and Merkle Hash Tree (MHT) into the CDDR.
Furthermore, several POR techniques and models have
been recently proposed including [9], [10]. In [9] Bowers et
al. introduced a distributed cryptographic system that
allows a set of servers to solve the DDR problem. This
system is based on an integrity-protected error Correcting
code (IP-ECC), which improves the security and efficiency
of existing tools, like POR. However, a file must be
transformed into ݈ distinct segments with the same length,
which are distributed across ݈ servers. Hence, this system is
more suitable for RAID rather than cloud storage. Our
Contributions, in this paper, we address the problem of
demonstrable data retention in distributed cloud
environments from the following aspects: high
performance, transparent verification, and high security. To
achieve these goals, we first propose a verification
framework for multi-cloud storage along with two
fundamental techniques: homomorphic verifiable response
(HVR) and hash index hierarchy (HIH). We then
demonstrate that the possibility of constructing a
Cooperative DDR (CDDR) technique without
compromising data privacy based on modern cryptographic
techniques, such as interactive proof system (IPS). We
further introduce an effective construction of CDDR
technique using above-mentioned structure. Moreover, we
give a security analysis of our CDDR technique from the
IPS model. We prove that this construction is a multi-
prover zero-knowledge proof system (MP-ZKPS) [11],
which has zero-knowledge properties, completeness and
knowledge soundness. These properties ensure that CDDR
technique can implement the security against data leakage
attack and tag forgery attack. To improve the system
performance with respect to our technique, we analyze the
performance of probabilistic queries fordetecting abnormal
situations. This probabilistic method also has an inherent
benefit in reducing computation and communication
overheads. Then, we present an efficient method for the
selection of optimal parameter values to minimize the
computation overheads of CSPs and the clients’ operations.
Inaddition, we analyze that our technique is suitable for
existing distributed cloud storage systems. Finally, our
experiments show that our solution introduces very limited
computation and communication overheads.

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 198

Organization: The rest of this paper is organized as
follows. In Section 2, we describe a formal definition of
CDDR and the underlying techniques, which are utilized in
the construction of our technique. We introduce the details
of Cooperative DDR technique for multicloud storage in
Section 3. We describe the security and performance
evaluation of our technique in Section 4 and 5,
respectively. We discuss the related work in Section and
Section 6 concludes this paper.

2. STRUCTURE AND TECHNIQUES

In this section, we present our verification framework for
multi-cloud storage and a formal definition of CDDR. We
introduce two fundamental techniques for constructing our
CDDR technique: hash index hierarchy (HIH) on which the
responses of the clients’ challenges computed from
multiple CSPs can be combined into a single response as
the final result; and homomorphic verifiable response
(HVR) which supports distributed cloud storage in a multi-
cloud storage and implements an efficient construction of
collision resistant hash function, which can be viewed as a
random oracle model in the verification protocol.

Fig 1: Verification architecture for data integrity.

2.1 Verification Framework for Multi-
Cloud:Although existing DDR techniques offer a
publicly accessible remote interface for checking and
managing the tremendous amount of data, the majority of
existing DDR techniques is incapable to satisfy the inherent
requirements from multiple clouds in terms of
communication and computation costs. To address this
problem, we consider amulti-cloud storage service as

illustrated in Figure 1. In this architecture, a data storage
service involves three different entities: Clients who have a
large amount of data to be stored in multiple clouds and
have the permissions to access and manipulate stored data;
Cloud Service Providers (CSPs) who work together to
provide data storage services and have enough storages and
computation resources; and Trusted Third Party (TTP) who
is trusted to store verification parameters and offer public
query services for these parameters. In this architecture, we
consider the existence of multiple CSPs to Cooperative
store and maintain the clients’ data. Moreover, a
Cooperative DDR is used to verify the integrity and
availability of their stored data in all CSPs. The
verificationprocedure is described as follows: Firstly, a
client (data owner) uses the secret key to pre-process a file
which consists of a collection of ݊ blocks, generates a set
of public verification information that is stored in TTP,
transmits the file and some verification tagsto CSPs, and
may delete its local copy; Then, by using a verification
protocol, the clients can issue a challenge for one CSP to
check the integrity and availability of outsourced data with
respect to public information stored in TTP. We neither
assume that CSP is trust to guarantee the security of the
stored data, nor assume that data owner has the ability to
collect the evidence of the CSP’s fault after errors have
been found. To achieve this goal, a TTP server is
constructed as a core trust base on the cloud for the sake of
security We assume the TTP is reliable and independent
through the following functions [12]: to setup and maintain
the CDDR cryptosystem; to generate and store data
owner’s public key; and to store the public parameters used
to execute the verification protocol in the CDDR technique.
Note that the TTP is not directly involved in the CDDR
technique in order to reduce the complexity of
cryptosystem.

2.2 Definition of Cooperative DDR: In order to
prove the integrity of data stored in a multi-cloud
environment, we define a framework for CDDR based on
interactive proof system (IPS) and multi-prover zero-
knowledge proof system (MPZKPS), as follows:Definition
1 (Cooperative-DDR): A Cooperative demonstrable data
retention ࣭ = (݂݋݋ݎܲ ,݊݁ܩ݃ܽܶ ,݊݁ܩݕ݁ܭ) is a collection of
twoalgorithms (݊݁ܩ݃ܽܶ,݊݁ܩݕ݁ܭ) and an interactive
proof system ݂ܲ݋݋ݎ, as follows: (1௞): takes a security
parameter ݇ as input, and returns a secret key ݇ݏ or a
public-secret key-pair (݇ݏ ,݇݌); ܶܽ݃(࣪,ܨ ,݇ݏ)݊݁ܩ: takes as
inputs a secret key ݇ݏ, a file ܨ, and a set of cloud storage
providers ࣪ = {ܲ݇}, and returns the triples (ߪ ,߰,ߞ), where
 is a set of verification (ℋ,ݑ) = ߰ ,isthe secret in tags ߞ
parameters ݑ and an index hierarchyℋ for ߪ ,ܨ =
 is the tag of the (௞)ߪ,௞∈࣪ denotes a set of all tags݌{(௞)ߪ}
fraction ܨ(௞) of ܨ in ௞ܲ; (࣪, V): is a protocol of proof of

 Public cloud

 verification
 information

Third party auditor (THA)

clients

 google

micro
softe amazo

n

yahoo
Zoho

Private
clloud 1 Private

cloud ii

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 199

data retention between CSPs (࣪ = { ௞ܲ}) and a verifier (V),
that is, 〈 ∑ ௞ܲ(ܨ(௞) , (௞)ߪ

௉ೖ∊௣ (߰,݇݌)〈ܸ↔(

=ቊ
1, ܨ = ൛ܨ(௞)ൟ݅ݐܿܽݐ݊݅ݏ
0, ܨ = ൛ܨ(௞)ൟ݅ܿݏℎܽ݊݃݁݀

Where each ௞ܲ takes as input

a file ܨ(௞) and a set of tags ߪ(௞), and a public key ݇݌ and a
set of public parameters ߰ are the common input between ܲ
and ܸ. At the end of the protocol run, ܸ returns a bit {1|0}
denoting true and false. Where, ∑ ௞ܲ ∊ ݌ denotes
Cooperative computing in ௞ܲ∈࣪. A trivial way to realize
the CDDR is to check the data stored in each cloud one by
one, i.e.⋀ 〈 ௞ܲ(ܨ(௞), (௞)ߪ ↔ V〉௉ೖ∊௣ (pk, ψ)Where ⋀ denotes
the logical AND operations among the Boolean outputs of
all protocols ⟨ ௞ܲ, ܸ⟩ for all ௞ܲ∈࣪. However, it would cause
significant communication and computation overheads for
the verifier, as well as a loss of location-transparent. Such a
primitive approach obviously diminishes the advantages of
cloud storage: scaling arbitrarily up and down on demand
[13]. To solve this problem, we extend above definition by
adding an organizer (ܱ), which is one of CSPs that directly
contacts with the verifier, as follows: 〈∑ ௞ܲ(ܨ(௞) , (௞)ߪ

௉ೖ∊௣)
↔O↔ܸ〉 (݇݌, ߰), Where the action of organizer is to
initiate and organize the verification process. This
definition is consistent with aforementioned architecture,
e.g., a client (or an authorized application) is considered as,
the CSPs are as ࣪ = { ௜ܲ}݅ ∊ [1, ܿ], and the Zoho cloud is as
the organizer in Figure 1. Often, the organizer is an
independent server or a certain CSP in ࣪. The advantage of
this new multi-prover proof system is that it does not make
any difference for the clients between multi-prover
verification process and single-prover verification process
in the way of collaboration. Also, this kind of transparent
verification is able to conceal the details of data storage to
reduce the burden on clients. For the sake of clarity, we list
some used signals in Table 2.

TABLE 2: The signal and its explanation.

Sig. Repression
݊ the number of blocks in a file;
 ;the number of sectors in each block ݏ
 ;the number of index coefficient pairs in a query ݐ
ܿ the number of clouds to store a file;
 [݊,1]∋݅{݆,݅݉} = ܨ ,.sectors, i.e ݏ × ݊ the file with ܨ

 ; [ݏ,1]∋݆,
 ;[݊,1]∋݅{݅ߪ} = ߪ ,.the set of tags, i.e ߪ
ܳ the set of index-coefficient pairs, i.e., ܳ = {(݅, ݅ݒ)};
 .ܳ the response for the challenge ߠ

2.3 Hash Index Hierarchy for CDDR:To support
distributed cloud storage, we illustrate a representative
architecture used in our Cooperative DDR technique as
shown in Figure 2. Our architecture has a hierarchy
structure which resembles a natural representation of file

storage. This hierarchical structure ℋ consists of three
layers to represent relationships among all blocks for stored
resources. They are described as follows: 1) Express
Layer: offers an abstract representation of the stored
resources; 2) Service Layer: offers and manages cloud
storage services; and 3) Storage Layer: realizes data
storage on many physical devices. We make use of this
simple hierarchy to organize data blocks from multiple CSP
services into a large size file by shading their differences
among these cloud storage systems. For example, in Figure
2 the resources in Express Layer are split and stored into
three CSPs, which are indicated by different colors, in
Service Layer. In turn, each CSP fragments and stores the
assigned data into the storage servers in Storage Layer. We
also make use of colors to distinguish different CSPs.
Moreover, we follow the logical order of the data blocks to
organize the Storage Layer. This architecture also provides
special functions for data storage and management, e.g.,
there may exist overlaps among data blocks (as shown in
dashed boxes) and discontinuous blocks but these functions
may increase the complexity of storage management. In
storage layer, we define a common fragment structure that
provides probabilistic verification of data integrity for
outsourced storage. The fragment structure is a data
structure that maintains a set of block-tag pairs, allowing
searches, checks and updates in (1) time. An instance of
this structure is shown in storage layer of Figure 2: an
outsourced file ܨ is split into ݊ blocks {݉1, m2, ⋅⋅⋅,}, and
each block ݉݅ is split into ݏ sectors {݉݅,1,݉݅,2, ⋅⋅⋅ ,݉݅,ݏ}.
The fragment structure consists of ݊ block-tag pair (݉௜,ߪ௜),
where ߪ௜ is a signature tag of block ݉௜ generated by a set
of secrets τ = (߬ଵ, ߬ଶ, ⋅⋅⋅ , ߬௦). In order to check the data
integrity, the fragment structure implements probabilistic
verification as follows: given a random chosen challenge
(or query) ܳ = {(݅,ݒ௜)} ݅∈ܴܫ, where ܫ is a subset of the
block indices and ݒ௜ is a random coefficient. There exists
an efficient algorithm to produce a constant-size response
 k∈I {௞ݒ,݅,௞݉} ௜ comes from allߤ where ,(′ߪ ,௦ߤ , ⋅⋅⋅ ,ଶߤ ,ଵߤ)
and σ′ is from all {ߪ௞, ݒ௞} k∈ I. Given a collision-resistant
hash function ܪ௞ (⋅), we make use of this architecture to
construct a Hash Index Hierarchy ℋ (viewed as a random
oracle), which is used to replace the common hash function
in prior DDR techniques, as follows:1) Express layer:
given ݏ random {߬௜}௜ୀଵ

௦ and the file nameܨ௡ , sets ߦ(ଵ) =
∑ܪ ఛ೔

ೞ
೔

 ௡=1 and makes it public for verification but makesܨ
{߬௜}௜ୀଵ

௦ secret;2) Service layer: given the ߦ(ଵ) and the cloud
name ௞ܥ , sets ߦ(ଶ) = క(భ)ܪ (௞ܥ);3) Storage layer: given
the (ଶ)ߦ , a blocknumber i, and its index record ௜ܺ =
௜ܤ“ || ௜ܸ ||ܴ௜”, sets ߦ௜,௞

(ଷ)=ܪక೔,ೖ
(మ)(௜ܺ), where ܤ௜ is the sequence

number of a block, ௜ܸ is the updated version number, and
ܴ௜ is a random integer to avoid collision. As a virtualization
approach, we introduce a simple index-hash table X = { ௜ܺ}

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 200

to record the changes of file blocks as well as to generate
the hash value of each block in the verification process.
The structure of X is similar to the structure of file block
allocation table in file systems. The index-hash table
consists of serial number, block number, version number,
random integer, and so on. Different from the common
index table, we assure that all records in our index table to
differ from one another prevent forgery of data blocks and
tags. By using this structure, especially the index records

{ ௜ܺ}, our CDDR technique can also support dynamic data
operations [8].The proposed structure can be readily
incorporated into MAC-based, ECC or RSA techniques [1],
[6]. These techniques, built from collision-resistance
signatures (see Section 3.1) and the random oracle model,
have the shortest query and response with
publicverifiability.They share several common characters
for theimplementation of the CDDR framework in the
multiple clouds: 1) a file is split into ݊ × ݏ sectors

Fig 2:Index-hash hierarchy of CDDR model.

 and each block (ݏ sectors) corresponds to a tag, so that the
storage of signature tags can be reduced by the increase of
 a verifier can verify the integrity of file in random (2 ;ݏ
sampling approach, which is of utmost importance for large
files; 3) these techniques rely on homomorphic properties
to aggregate data and tags into a constant size response,
which minimizes the overhead of network communication;
and 4) the hierarchy structure provides a virtualization
approach to conceal the storage details of multiple CSPs.

2.4 Homomorphic Verifiable Response for
CDDR:A homomorphism is a map ݂: ℙ→ ℚbetween two
groups such that ݂(݃ଵ⊕݃ଶ) = ݂(݃ଵ) ⊗ ݂(݃ଶ) for all ݃ଵ ,
݃ଶ∈ℙ, where ⊕ denotes the operation in P and ⊗ denotes
the operation in ℚ. This notation has been used to define
Homomorphic Verifiable Tags (HVTs) in [1]: Given two
values ߪ௜ and ߪ௝ for two messages ݉௜ and ௝݉ , anyone can
combine them into a value ߪ௜ ′ corresponding to the sum of
the messages ݉௜ + ௝݉ . When demonstrable data retention
is considered as a challenge-response protocol, we extend
this notation to the concept of Homomorphic Verifiable

Responses (HVR), which is used to integrate multiple
responses from the different CSPs in CDDR

technique as follows: Definition 2 (HVR): A response is
called homomorphic verifiable response in a DDR protocol,
if given two responsesѲ௜ and Ѳ௝ for two challenges ܳ௜
andܳ௝ from two CSPs, there exists an efficient algorithm to
combine them into a response Ѳcorresponding to the sum
of the challenges ܳ௜υܳ௝. Homomorphic verifiable response
is the key technique of CDDR because it not only reduces
the communication bandwidth, but alsoconceals the
location of outsourced data in the distributed cloud storage
environment.

3 COOPERATIVE DDR TECHNIQUES

In this section, we propose a CDDR technique for multi-
cloud system based on the above-mentioned structure and
techniques. This technique is constructed on collision-
resistant hash, bilinear map group, aggregation algorithm,
and homomorphic responses.

 Storage Layer Service Layer Expression Layer

ଵߦ
(ଶ)=ܪక(భ)(“ܥ௡”)

௜,ଵߦ

(ଷ)=ܪకభ
(మ)(௜ܺ)

ଶߦ

(ଶ)=ܪక(భ)(“ܥ௡”)

∑ܪ =(ଵ)ߦ ఛ೔
ೞ
೔సభ

 (”௡ܨ“)

ଷߦ
(ଶ)=ܪక(భ)(“ܥ௡”)

 CSP1

 CSP2

CSP3

 overlap

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 201

3.1 Notations and Preliminaries:Let ℍ = {ܪ௞} be
a family of hash functions ܪ௞ : {0,1}௡ → {0,1}∗ index by
݇∈ࣥ. We say that algorithm ࣛ has advantage ߳ in breaking
collision resistance of ℍ if Pr[ࣛ(݇) = (݉଴ ,݉ଵ) : ݉଴ ∕=
݉ଵ,ܪ௞ (݉଴) = ܪ௞ (݉଴)] ≥ ߳, where the probability is over
the random choices of ݇∈ࣥ and the random bits of ࣛ. So
that, we have the following definition: Definition 3
(Collision-Resistant Hash): A hash family ℍ is (ݐ, ߳)-
collision-resistant if no ݐ-time adversary has advantage at
least ߳ in breaking collision resistance of ℍ. We set up our
system using bilinear pairings proposed by Boneh and
Franklin [12]. Let ॳ and ॳܶ be two multiplicative groups
using elliptic curve conventions with a large prime order ݌.
The function ݁ is a computable bilinear map ݁ : ॳ×ॳ →
ॳܶ with the following properties: for any ܪ,ܩ∈ॳ and all ܽ,
ܾ∈ℤ݌, we have 1) Bilinearity: ݁([ܽ]ܪ[ܾ] ,ܩ) = ݁(ܪ,ܩ)ܾܽ;
2) Non-degeneracy: ݁(ܪ,ܩ) ≠ 1 unless ܩ or 1 = ܪ; and 3)
Computability: ݁(ܪ,ܩ) is efficiently computable.Definition
4 (Bilinear Map Group System): A bilinear map group
system is a tuple ॺ = ⟨݌,,, ݁⟩ composed of the objects as
described above.

3.2 Our CDDR Technique:In our technique (see
Fig 3), the manager first runs algorithm ݊݁ܩݕ݁ܭ to obtain
the public/private key pairs for CSPs and users. Then, the
clients generate the tags of outsourced data by using
 is performed by a ݂݋݋ݎܲ Anytime, the protocol .݊݁ܩ݃ܽܶ
5-move interactive Proof protocol between a verifier and
more than one CSP, in which CSPs need not to interact
with each other during the verification process, but an
organizer, is used to organize and manage all CSPs. This
protocol can be described as follows: 1) The organizer
initiates the protocol and sends a commitment to the
verifier; 2) The verifier returns a challenge set of random
index-coefficient pair’s ܳ to the organizer; 3) The organizer
relays them into each lock; 4) Each ܲ݅ returns its response
of challenge to the organizer; and 5) The organizer
synthesizes aܲ݅ in ࣪ according to the exact position of each
data final response from received responses and sends it to
theverifier. The above process would guarantee that the
verifier accesses files without knowing on which CSPs or
in what geographical locations their files reside. In contrast
to a single CSP environment, our technique differs from the
common DDR technique in two aspects:1) Tag aggregation
algorithm: In stage of commitment, the organizer generates
a random ߛ∈ܴℤ݌ and returns its commitment H’ଵ to the

verifier. This assures that the verifier and CSPs do not
obtain the value of ߛ. Therefore, our approach guarantees
only the organizer can compute the final ߪ′ by using ߛ and
 is computed, we need to ′ߪ received from CSPs. After ݇ ′ߪ
transfer it to the organizer in stage of “Response1”. In order
to ensure the security of transmission of data tags, our
technique employs a new method, similar to the ElGamal
encryption, to encrypt the combination of tags
∏ ௜ߪ

௩೔
(௜,௩೔)∈ொೖ , that is, for ݏ = ݇ݏ∈ℤ݌ and ௞ܲ = (݃, ܵ =݃௦)

∈ॳଶ, the cipher of message ݉ is ࣝ = (ࣝଵ = ݃ݎ, ࣝଶ = ݉⋅ݏ௥)
and its decryption is performed by ݉ = ܥଶ . ଵܥ

ି௦ .2)
Homomorphic responses: Because of the homomorphic
property, the responses computed from CSPs in a multi-
cloud can be combined into a single final response. It is
obvious that the final response ߠ received by the verifiers
from multiple CSPs is same as that in one simple CSP. This
means that our CDDR technique is able to provide a
transparent verification for the verifiers. Two response
algorithms, Response1 and Response2, comprise an HVR:
Given two responses ݅ߠ and ݆ߠ for two challenges ܳ݅ and
݆ܳ from two CSPs, i.e., ݅ܫ∋݇ {݇݉} ,݅ܳ) 1݁ݏ݊݋݌ݏܴ݁ = ݅ߠ,
 there exists an efficient algorithm to combine ,(݅ܫ∋݇ {݇ߪ}
them into a final response ߠ corresponding to the sum of
the challenges ܳ݅∪, that is, = ܴ݁1݁ݏ݊݋݌ݏ (ܳ݅∪, {݉݇}
௜ߠ) 2݁ݏ݊݋݌ݏܴ݁= (݆ܫ∪݅ܫ∋݇ {݇ߪ} ,݆ܫ∪݅ܫ∋݇ , ௝). For multipleߠ
CSPs, the above equation can be extended to ߠ =
 More importantly, the HVR is a .(࣪∋ {݇ߠ}) 2݁ݏ݊݋݌ݏܴ݁
pair of values (ߤ ,ߪ ,ߨ) = ߠ, which has a constant-size even
for different challenges.

4 SECURITY ANALYSESWe give a brief
security analysis of our CDDR construction. This
construction is directly derived from multi-prover zero-
knowledge proof system (MPZKPS), which satisfies
following properties for a given assertion, 1 :ܮ)
Completeness: whenever ܮ ∋ݔ, there exists a strategy for
the provers that convinces the verifier that this is the case;

2) Soundness: whenever ܮ∌ݔ, whatever strategy the
provers employ, they will not convince the verifier that
 Zero-knowledge: no cheating verifier can learn (3 ;ܮ∋ݔ
anything other than the veracity of the statement.
According to existing IPS research [11], these properties
can protect our construction from various attacks, such as
data leakage attack (privacy leakage), tag forgery attack
(ownership cheating), etc. In details, the security of our
technique can be analyzed as follow

4.1 Collision resistant for index-hash
hierarchy:In our CDDR technique, the collision
resistant of index hash hierarchy is the basis and
prerequisite for the security of whole technique, which is
described as being secure in the random oracle model.
Although the hash function is collision resistant, a

successful hash collision can still be used to produce a
forged tag when the same hash value is reused multiple
times, e.g., a legitimate client modifies the data or repeats
to insert and delete data blocks of outsourced data. To
avoid the hash collision, the hash value (3)ߦ ݅,݇, which is
used to generate the tag ݅ߪ in CDDR technique, is
computed from the set of values {߬݅}, ݇ܥ ,݊ܨ, {߯݅}. As

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 202

long as there exists one bit difference in these data, we can
avoid the hash collision. As a consequence, we have the
following theorem (see Appendix B): Theorem 1 (Collision
Resistant): The index-hash hierarchy in CDDR technique is

collision resistant, even if the client generatesට2݌. ݈݊ ଵ
ଵିℇ

files with the same file name and cloud name, and the

client repeats ට2௅ାଵ . ݈݊ ଵ
ଵିℇ

 times to modify, insert and

delete data blocks, where the collision probability is at least
 .݅߯∋ܴ݅ for ܮ = ∣ܴ݅∣ and ,݌ℤ∋݅߬ ,ߝ

4.2 Completeness property of verification:In
our technique, the completeness property implies public
verifiability property, which allows anyone, not just the
client (data owner), to challenge the cloud server for data
integrity and data ownership without the need for any
secret information. First, for every available data-tag pair
 the ,ܫ∋݅ (݅ݒ ,i) = ܳ and a random challenge (ܨ ,݇ݏ) ∋ (ߪ ,ܨ)
verification protocol should be completed with success
probability according to the Equation (3), that is, Pr
ൣ〈∑ ௞ܲ(ܨ(௞) , (௞)ߪ

௉ೖ∊௣) ↔ O ↔ V〉(pk, ψ) = 1൧ = 1. In this
process, anyone can obtain the owner’s public key ݇݌ = (݃,
ℎ, ܪଵ =ℎα,ܪଶ =ℎβ) and the corresponding file parameter ߰
 ,from TTP to execute the verification protocol (߯ ,ξ(ଵ),ݑ) =
hence this is a public verifiable protocol. Moreover, for
different owners, the secrets ߙ and ߚ hidden in their public
key ݇݌ are also different, determining that success
verification can only be implemented by the real owner’s
public key. In addition, the parameter ߰ is used to store the
file-related information, so an owner can employ a unique
public key to deal with a large number of outsourced files.

4.3 Zero-knowledge property of verification:
The CDDR construction is in essence a Multi-Prover Zero-
knowledge Proof (MP-ZKP) system [11], which can be
considered as an extension of the notion of an interactive
proof system (IPS). Roughly speaking, in the scenario of
MP-ZKP, a polynomial-time bounded verifier interacts
with several provers whose computational powers are
unlimited. According to a Simulator model, in which every
cheating verifier has a simulator that can produce a
transcript that “looks like” an interaction between an honest
prover and a cheating verifier, we can prove our CDDR
construction has Zero-knowledge property.

Theorem 2 (Zero-Knowledge Property): The verification
protocol ݂ܲ݋݋ݎ(࣪, ܸ) in CDDR technique is a
computational zero-knowledge system under a simulator
model, that is, for every probabilistic polynomial-time
interactive machine ܸ∗, there exists a probabilistic
polynomial-time algorithm ܵ∗ such that the ensembles
 and ((߰ ,݇݌)⟨∗ܸ ↔ ܱ ↔ ((݇)ߪ ,(݇)ܨ)݇ܲ࣪∋݇ܲ Σ ⟩) ݓܸ݁݅

-are computationally indistinguishable. Zero (߰ ,݇݌)∗ܵ
knowledge is a property that achieves the CSPs’ robustness
against attempts to gain knowledge by interacting with
them. For our construction, we make use of the zero-
knowledge property to preserve the privacy of data blocks
and signature tags. Firstly, randomness is adopted into the
CSPs’ responses in order to resist the data leakage attacks
(see Attacks 1 and 3 in Appendix A). That is, the random
integer ݆ߣ, is introduced into the response ݆ߤ, i.e., ݆ߤ, ݇ =
 This means that the cheating .݆ ,݅݉⋅݅ݒ݇ܳ∋ (݅ݒ ,݅) Σ + ݇ ,݆ߣ
verifier cannot obtain ݉݅, from ݆ߤ, because he does not
know the random integer ݆ߣ. At the same time, a random
integer ߛ is also introduced to randomize the verification
tag ߪ, i.e., ߪ′ ←(Π Pk ∈ ࣪σ′ k ⋅ R − s k) ఊ. Thus, the tag ߪ
cannot reveal to the cheating verifier in terms of
randomness.

4.4 Knowledge soundness of verification:For
every data-tag pairs (ߪ ,∗ܨ∗) ∕∈ (ܨ ,݇ݏ), in order to prove
nonexistence of fraudulent ࣪∗ and ܱ∗, we require that the
technique satisfies the knowledge soundness property, that
is, Pr ൣ〈∑ ௞ܲ(ܨ(௞)∗, ∗(௞)ߪ

௉ೖ∊௣∗) ↔ O∗ ↔ V〉(pk, ψ) = 1൧ ≤
߳, where ߳ is a negligible error. We prove that our
technique has the knowledge soundness property by using
reduction to absurdity 1: we make use of ࣪∗ to construct a
knowledge extractor ℳ [7,13], which gets the common
input (݇݌, ߰) and rewindable blackbox accesses to the
prover ܲ∗, and then attempts to break the computational
Diffie-Hellman (CDH) problem in ॳ: given ܩ,ܩଵ = ܩ௔,ܩଶ
 ॳ. But it is unacceptable because∋ܾܽܩ ௕∈ܴॳ, outputܩ =
the problem in polynomial-time.

Theorem 3 (Knowledge Soundness Property): Our
technique has (ݐ, ߳′) knowledge soundness in random oracle
and rewindable knowledge extractor model assuming the
 computational Diffie-Hellman (CDH) assumption-(߳ ,ݐ)
holds in the group ॳ for ߳′ ≥ ߳. Essentially, the soundness
means that it is infeasible to fool the verifier to accept false
statements. Often, the soundness can also be regarded as a
stricter notion of unforgeability for file tags to avoid
cheating the ownership. This means that the CSPs, even if
collusion is attempted, cannot be tampered with the data or
forge the data tags if the soundness property holds. Thus,
the Theorem 3 denotes that the CDDR technique can resist
the tag forgery attacks.

5 PERFORMANCE EVALUATIONS

In this section, to detect abnormality in a low overhead and
timely manner, we analyze and optimize the performance
of CDDR technique based on the above technique from two
aspects: evaluation of probabilistic queries and
optimization of length of blocks. To validate the effects of

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 203

technique, we introduce a prototype of CDDR-based audit
system and present the experimental results.

5.1 Performance Analysis for CDDR
Technique:We present the computation cost of our
CDDR technique in Table 3. We use [ܧ] to denote the
computation cost of an exponent operation in ॳ, namely,
 and ݃∈ॳ or ॳܶ. We ݌is a positive integer in ℤ ݔ where ,ݔ݃
neglect the computation cost of algebraic operations and
simple modular arithmetic operations because they run fast
enough [12]. The most complex operation is the
computation of a bilinear map (⋅, ⋅) between two elliptic
points (denoted as [ܤ]). Then, we analyze the storage and
communication costs of our technique. We define the
bilinear pairing takes the form: (ॲ݉݌) × (ॲ݉݇݌) →
ॲ∗݉݇݌ (The definition given here is from [13], [8]), where
 is a prime, ݉ is a positive integer, and ݇ is the embedding ݌
degree (or security multiplier). In this case, we utilize an
asymmetric pairing: ॳ1×ॳ2→ ॳܶ to replace the symmetric
pairing in the original techniques. In Table 3, it is easy to
find that client’s computation overheads are entirely
irrelevant for the number of CSPs. Further, our technique
has better performance compared with non-Cooperative
numberof CSPs.Further, our technique has better

TABLE 3: Comparison of computation overheads between
our CDDR scheme and non-cooperative (trivial) scheme.

performance compared with non-Cooperative approach due
to the total of computation overheads decrease 3(ܿ−1) times
bilinear map operations, where ܿ is the number of clouds in
a multi-cloud. The reason is that, before the responses are
sent to the verifier from ܿ clouds, the organizer has
aggregate these responses into a response by using
aggregation algorithm, so the verifier only need to verify
this response once to obtain the final result. Without loss of
generality, let the security parameter ߢ be 80 bits, we need
the elliptic curve domain parameters over ॲ݌ with ∣݌∣ =
160 bits and ݉ = 1 in our experiments. This means that the
length of integer is ݈0 = 2ߢ in ℤ݌. Similarly, we have ݈1 =
 in ॳॻ for the ߢin ॳ2, and ݈ܶ = 24 ߢin ॳ1, ݈2 = 24 ߢ4
embedding degree ݇ = 6. The storage and communication
cost of our technique is shown in Table 4. The storage
overhead of a file with (݂) = 1ܯ-bytes is (݂) = ݊⋅1݈⋅݊ + 0݈⋅ݏ
 The storage .50 = ݏ bytes for ݊ = 103 and-ܯ1.04 =

overhead of its index table ߯ is ݊⋅݈0 = 20ܭ-bytes. We
define the overhead rate as 0݈⋅ݏ 1݈ = 1− (݂) (݂) = ߣ and it
should therefore be kept as low as possible in order to
minimize the storage in cloud storage providers. It is
obvious that a higher ݏ means much lower storage.
Furthermore, in the verification protocol, the
communication overhead of challenge is 2ݐ⋅40 = 0݈⋅ݐ-Bytes
in terms of the number of challenged blocks ݐ, but its
response (response1 or response2) has a constant-size
communication overhead ܭ1.3 ≈ ݈ܶ+1݈+0݈⋅ݏ-bytes for
different file sizes. Also, it implies that client’s
communication overheads are of a fixed size, which is
entirely irrelevant for the number of CSPs.

TABLE 4: Comparison of communication overheads
between our CDDR and non-cooperative scheme

5.2 Probabilistic Verification:We recall the
probabilistic verification of common DDR technique
(which only involves one CSP), in which the verification
process achieves the detection of CSP server misbehavior
in a random sampling mode in order to reduce the workload
on the server. The detection probability of disrupted blocks
ܲ is an important parameter to guarantee that these blocks
can be detected in time. Assume the CSP modifies ݁blocks
out of the ݊-block file, that is, the probabilityof
disruptedblocks is ܾߩ = ݁݊. Let ݐ be the number of
queriedblocks for a challenge in the verification protocol.

We have detection probabilityଶ ቀ௡ି௘– 1 ≤ (ݐ ,ܾߩ)
௡

ቁ
௧
=

1−(1 − ρb)௧, Where, (ݐ ,ܾߩ) denotes that the probability ܲ
is a function over ܾߩ and ݐ. Hence, the number of queried

blocks is ݐ ≈ ୪୭୥(ଵି୔)
୪୭୥(ଵିρୠ)

 ≈ ୔⋅୬
ୣ

 for a sufficiently large ݊ and

 is ݐ nଷ. This means that the number of queried blocks≫ݐ
directly proportional to the total number of file blocks ݊ for
the constant ܲ and ݁. Therefore, for a uniform random
verification in aDDR technique with fragment structure,
given a file with ݏ⋅݊ = ݖݏ sectors and the probability of
sector corruption ߩ, the detection probability of verification
protocol has ܲ ≥ 1 −(1 − ρ)ୱ୸⋅ω , where ߱ denotes the
sampling probability in the verification protocol. We can
obtain this result as follows: because ߩ ܾ≥ 1 − (1 − ρ)ୱ is
the probability of block corruption with ݏ sectors in
common DDR technique, the verifier can detect block
errors with probability ܲ ≥ 1 − (1 − pୠ)୲ ≥ 1 – ((1 −
ρ)ୱ)୸⋅ω = 1 − (1 − ρ)ୱ୸⋅ω for a challenge with ݐ = ݊⋅߱
index-coefficient pairs. In the same way, given a multi-

 CDDR Scheme Trivial Scheme
Commitment ݈2 ݈ܿ2
Challenge1 20݈ݐ2 0݈ݐ
Challenge2 20݈ݐ/ ܿ 0݈ݐ2
Response1 (݈ܶ + 1݈ + 0݈ݏ) ݈ܶ + 2݈1 + 0݈ݏ ܿ
Response2 (݈ܶ + 1݈ + 0݈ݏ) ݈ܶ + 1݈ + 0݈ݏ ܿ

 CDDR Scheme Trivial Scheme
KeyGen 3[ܧ] [ܧ]2
TagGen (2݊ + ݏ)[ܧ] (ݏ + 2݊)[ܧ]
Proof(p) ܿ[ܤ] + (1+ݏܿ + ݐ)[ܧ] ܿ[ܤ] +(ݏܿ+ ݐ − ܿ)[ܧ]
Proof(V) 3[ܤ] + (ݏ + ݐ)[ܧ] [ܧ](ݏܿ + ݐ) + [ܤ]3ܿ

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 204

cloud ࣪ = {ܲ݅} ∈ [1, ܿ], the detection probability of CDDR
technique has ({݇ݎ ,݇ߩ} ,ݖݏ∈࣪, ߱) ≥ 1 – ∏ ((1 −୔୩∈࣪
ρk)ୱ)r୩

.ω = 1−∏ (1 − ρk)ୱ୸.୰ౡ.ω
୔୩∈࣪ , where ݎ௞ denotes

the proportion of data blocks in the ݇-th CSP, ݇ߩ denotes
the probability of file corruption 2. Exactly, we have ܲ =
1−(1− ௘

௡
) ⋅ (1− ௘

୬ିଵ
) ⋅⋅⋅ (1− ௘

୬ି୲ାଵ
).

Since 1− ௘
௡

 ≥ 1− ௘
୬ି୧

 for ݅∈ [0, 1−ݐ], we have ܲ =

1−∏ (1 − ௘
௡ି௜

)௧ିଵ
௜ୀ଴ ≥ 1 −∏ (1 − ௘

௡
)௧ିଵ

௜ୀ଴ = 1 − (1 –௘
௡

)௧.

3. In terms of (1 – ௘
௡

)௧ ≈ (1 –௘.௧
௡

), we have ܲ ≈ 1− (1 –௘.௧
௡

) =
௘.௧
௡

 . In the ݇-th CSP and ݇ݎ⋅߱ denotes the possible number
of blocks queried by the verifier in the ݇-th CSP.
Furthermore, we observe the ratio of queried blocks in the
total file blocks ݓ under different detection probabilities.
Based on above analysis, it is easy to find that this ratio
holds the

TABLE 5: The influence of ݐ ,ݏ under the different
corruption probabilities ߩ and the different detection
probabilities ܲ

࣪ {0.1,0.2
,0.01}

{0.01,0.0
2,0.001}

{0.001,0.00
2,0.0001}

{0.0001,0.00
02,0.00001}

0.5,0.3} ݎ
,0.2}

{0.5,0.3,
0.2}

{0.5,0.3,0.2
}

{0.5,0.3,0.2}

0.8/ 3 4 /7 20/ 23 62/ 71 71/202
0.85 /3 5 /8 21/ 26 65/ 79 79/214
0.9 /3 6/ 10 20 /28 73 /87 87/236
0.95 /3 8/ 11 29/ 31 86/ 100 100/267
0.99 /4 10/ 13 31/ 39 105 /119 119/345
0.999
/5

11/ 16 38 /48 128/ 146 146/433

equationݓ≈ ୪୭୥(ଵ ି ୔)
ୱ୸ ⋅Σ ୔୩∈࣪ ୰୩ ⋅ ୪୭୥(ଵ ିρ୩)

. When this probability ݇ߩ

is a constant probability, the verifier can detect sever
misbehavior with a certain probability ܲ by asking proof
for the number of blocks ݐ ≈ log (1−ܲ) ݏ.log (1−ߩ) for
DDR or forݐ ≈ ୪୭୥(ଵି ୔)

ୱ ⋅Σ ୔୩∈࣪ ୰୩ ⋅ ୪୭୥(ଵ ିρ୩)
CDDR, where ݓ⋅݊ = ݐ

= ୱ୸⋅୵
௦

 . Note that, the value of ݐ is dependent on the total
number of file blocks ݊ [2], because it is increased along
with the decrease of ݇ߩ and log (1 − ݇ߩ) < 0 for the
constant number of disrupted blocks ݁ and the larger
number ݊. Another advantage of probabilistic verification
based on random sampling is that it is easy to identify the
tampering or forging data blocks or tags. The identification
function is obvious: when the verification fails, we can
choose the partial set of challenge indexes as a new
challenge set, and continue to execute the verification
protocol. The above search process can be repeatedly

executed until the bad block is found. The complexity of
such a search process is (log ݊).

5.3 Parameter Optimization:In the fragment
structure, the number of sectors per block ݏ is an important
parameter to affect the performance of storage services and
audit services. Hence, we propose an optimization
algorithm for the value of s in this section. Our results show
that the optimal value can not only minimize the
computation and communication overheads, but also
reduce the size of extra storage, which is required to store
the verification tags in CSPs. Assume ߩ denotes the
probability of sector corruption. In the fragment structure,
the choosing of ݏ is extremely important for improving the
performance of the CDDR technique. Given the detection
probability ܲ and the probability of sector corruption ߩ for
multiple clouds ࣪ = {ܲ݇}, the optimal value of ݏ can be

computed by minݏ∈ℕ{ ୪୭୥(ଵି୔)
Σ୔୩∈࣪ ୰୩⋅୪୭୥(ଵିρ୩)

⋅ ௔
௦

 ,{ܿ + ݏ⋅ܾ +

where ܽ⋅ݏ⋅ܾ + ݐ + ܿ denotes the computational cost of
verification protocol in DDR technique, ܽ, ܾ, ܿ∈ℝ, and ܿ is
a constant. This conclusion can be obtained from following
process: Let ݏ⋅݊ = ݖݏ = (݂)/ ݈଴ . According to above-
mentioned results, the sampling probability holds ݓ ≥

୪୭୥(ଵି୔)
ୱ୸⋅Σ୔୩∈࣪ ୰୩⋅୪୭୥(ଵିρ୩)

 = ୪୭୥(ଵି୔)
୬⋅ୱ⋅Σ୔୩∈࣪ ୰୩⋅୪୭୥(ଵିρ୩)

 .In order to

minimize the computational cost, we have min ݏ∈ℕ {ܽ⋅ݐ +
 ℕ{Σlog (1∋ݏ min ≤ {ܿ + ݏ⋅ܾ + ݓ⋅݊⋅ܽ} ℕ∋ݏ min = {ܿ + ݏ⋅ܾ
 denotes ݇ݎWhere .{ܿ + ݏ⋅ܾ + ݏܽ (݇ߩ − 1) log⋅݇ݎ࣪∋݇ܲ (ܲ −
the proportion of data blocks in the ݇-th CSP, ݇ߩ denotes
the probability of file corruption in the ݇-th CSP. Since ௔

௦
 is

a monotone decreasing function and ܾ⋅ݏ is a monotone
increasing function for 0 <ݏ, there exists an optimal value
of ݏ∈ℕ in the above equation. The optimal value of ݏ is
unrelated to a certain file from this conclusion if the
probability ߩ is a constant value. For instance, we assume a
multi-cloud storage involves three CSPs ࣪ = {ܲ1, ܲ2, ܲ3}
and the probability of sector corruption is a constant value
 We set the detection .{0.001 ,0.02 ,0.01} = {3ߩ ,2ߩ ,1ߩ}
probability ܲ with the range from 0.8 to 1, e.g., ܲ = {0.8,
0.85, 0.9, 0.95, 0.99, and 0.999}. For a file, the proportion
of data blocks is 50%, 30%, and 20% in three CSPs,
respectively, that is, 0.3 = 2ݎ ,0.5 = 1ݎ, and 0.2 = 3ݎ. In
terms of Table 3, the computational cost of CSPs can be
simplified to 9+ݏ3 + ݐ. When ݏ is less than the optimal
value, the computational cost decreases evidently with the
increase of ݏ, and then it raises when ݏ is more than the
optimal value. More accurately, we show the influence of
parameters, ݏ ,ݓ⋅ݖݏ, and ݐ, under different detection
probabilities in Table 6. It is easy to see that computational
cost rises with the increase of ܲ. Moreover, we can make
sure the sampling number of challenge with
followingConclusion: Given the detection probability ܲ,
the probability of sector corruption ߩ, and the number of

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 205

sectors in each block ݏ, the sampling number of
verification protocol are a constantݓ⋅݊ = ݐ

≥ ୪୭୥(ଵି୔)
ୱ⋅Σ୔୩∈࣪ ୰୩⋅୪୭୥(ଵିρ୩)

 for different files. Finally, we observe

the change of ݏunder differentߩ and ܲ. The experimental

results are shown in Table 5. It is obvious that the optimal
value of ݏ rises with increase of ܲ and with the decrease
ofߩ. We choose the optimal value of ݏ on the basis ofߩ.
settings and system requisition. For NTFS format,

TABLE 6: The influence of parameters under different detection probabilities ܲ (࣪ = {3ߩ ,2ߩ ,1ߩ} = {0.001 ,0.02 ,0.01}, {1ݎ,
 ({0.2 ,0.3 ,0.5} = {3ݎ ,2ݎ

we suggest that the value of ݏ is 200 and the size of block is
4KBytes, which is the same as the default size of cluster
when the file size is less than 16TB in NTFS. In this case,
the value of ݏ ensures that the extra storage doesn’t exceed
1% in storage servers.

5.4 CDDR for Integrity Audit Services:Basedon
our CDDR technique, we introduce audit system
architecture for outsourced data in multiple clouds by
replacing the TTP with a third party auditor (TPA) in
Figure 1. In this architecture, this architecture can be
constructed into a visualization infrastructure of cloud-
based storage service [1]. In Figure 3, we show an example

of applying our CDDR technique in Hadoop distributed
filesystem (HDFS)ସ , with a distributed, scalable, and
portable

file system [9]. HDFS’ architecture is composed of
NameNode and DataNode, where NameNode maps a file
name to a set of indexes of blocks and DataNode indeed
stores data blocks. To support our CDDR technique, the
index-hash hierarchy and the metadata of NameNode
should be integrated together to provide an enquiry service
for the hash valueξ௜,௞

(ଷ), or index-hash record ߯݅.Based on the
hash value, the clients can implement the verification
protocol via CDDR services. Hence, it is easy to replace the
checksum methods with the CDDR technique for anomaly
detection in current HDFS. To validate the effectiveness
and efficiency of our proposed approach for audit services,
we have implemented a prototype of an audit system. We

simulated the auditservice and the storage service by using

Figure 3:Applying CDDR Technique in Hadoop distributed file system (HDFS)

two local IBM servers with two Intel Core 2 processors at
2.16 GHz and 500M RAM running Windows Server 2003.

These servers were connected via 250 MB/sec of network
bandwidth. Using GMP and PBC libraries, we have

P 0.8 0.85 0.9 0.95 0.99 0.999
 612.06 408.04 265.43 204.02 168.09 142.60 ݓ⋅ݖݏ
 16 13 11 10 8 7 ݏ
 38 31 29 20 21 20 ݐ

Verification Protocol DataBlocks DataBlocks

Third Party Auditor(TPA)

Client/Appl
ication

ClusterMemebership
 NameNode

NameNode CDDR
CDDR

DataNode DataNode DataNode

C

L

U

S

T

E

R

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 206

implemented a cryptographic library upon which our
technique can be constructed. This C library contains
approximately 5,200 lines of codes and has been tested on
both Windows and Linux platforms. The elliptic curve
utilized in the experiment is a MNT curve, with base field
size of 160 bits and the embedding degree 6. The security
level is chosen to be 80 bits, which means ∣160 = ∣݌.
Furthermore, the proportions of data blocks in each CSP
have greater influence on the computation costs of
“challenge” and “response” processes.

6 CONCLUSIONS

We make three key contributions in this paper, first we
have proposed a Cooperative DDR technique to support
dynamic scalability on multiple storage servers, and second
we presented the construction of an efficient DDR
technique for distributed cloud storage Based on
homomorphic verifiable response and hash index hierarchy.
Third we also showed that our technique provided all
security properties required by zeroknowledge interactive
proof system, so that it can resist various attacks even if it
is deployed as a public audit service in clouds.
Furthermore, we optimized the probabilistic query and
periodic verification to improve the audit performance. Our
experiments clearly demonstrated that our approaches only
introduce a small amount of computation and
communication overheads. Therefore, our solution can be
treated as a new candidate for data integrity verification in
outsourcing data storage systems. As part of future work,
we would extend our work to explore more effective
CDDR constructions. For a practical point of view, we still
need to address some issues about integrating our CDDR
technique smoothly with existing systems, for example,
how to match index structure with cluster-network model,
how to match index hash hierarchy with HDFS’s two-layer
name space, and how to dynamically update the CDDR
parameters according to HDFS’ specific requirements.
Finally, it is still a challenging problem for the generation
of tags with the length irrelevant to the size of data blocks.
We would explore such an issue to provide the support of
variable-length block verification.

7 ACKNOWLEDGEMENT

The work on “Cooperative demonstrable data retention
for integrity verification in multi-cloud Storage” was
supported by many members. We are highly obliged and
thankful to almighty who has provided us with the
opportunity to thank all the kins who stood by us in the
process of working on this project. First of all we would
like to thank Mr. Shubham Srivastavaour project guide

andwho was of utmost help to us throughout the
proceedings. Further, we would like to thank Head of
Computer Science department of Institute of Technology
and Management Mr. Rajeev Ranjan Kumar Tripathi,
who has been a great help and an inspiration in carrying out
the present work successfully. So it’s our pleasure to
present a cordial thanks to him.

8 REFERENCES

[1]. G. Ateniese, R. C. Burns, R. Curtmola, J. Herring, L.
Kissner, Z. N. J. Peterson, and D. X. Song, “Provable
data possession at untrusted stores,” in ACM
Conference on Computer and Communications
Security, P. Ning, S. D. C. di Vimercati, and P. F.
Syverson, Eds. ACM, 2007, pp. 598–609.

[2]. A. Juels and B. S. K. Jr., “Pors: proofs of retrievability
for large files,” in ACMConference on Computer and
Communications Security, P. Ning, S. D. C. di
Vimercati, and P. F. Syverson, Eds. ACM, 2007, pp.
584–597.

[3]. B. Sotomayor, R. S. Montero, I. M. Llorente, and I. T.
Foster, “Virtual infrastructure management in private
and hybrid clouds,” IEEE Internet omputing, vol. 13,
no. 5, pp. 14–22, 2009.

[4]. G. Ateniese, R. D. Pietro, L. V. Mancini, and G.
Tsudik, “Scalable and efficient provable data
possession,” in Proceedings of the 4th international
conference on Security and privacy in communi -
cation netowrks, SecureComm, 2008, pp. 1–10.

[5]. C. C. Erway, A. K¨upc ̧ ¨u, C. Papamanthou, and R.
Tamassia, “Dynamic provable data possession,” in
ACM Conference on Computer and Communications
Security, E. Al-Shaer, S. Jha, and A. D. Keromytis,
Eds. ACM, 2009, pp. 213–222.

[6] H. Shacham and B. Waters, “Compact proofs of
retrievability,” in ASIACRYPT, ser. Lecture Notes in
Computer Science, J. Pieprzyk, Ed., vol. 5350.
Springer, 2008, pp. 90–107.

[7] Q. Wang, C.Wang, J. Li, K. Ren, and W. Lou,
“Enabling public verifiability and data dynamics for
storage security in cloud computing,” in ESORICS,
ser. Lecture Notes in ComputerScience, M. Backes
and P. Ning, Eds., vol. 5789. Springer,2009, pp. 355–
370.

[8] Y. Zhu, H. Wang, Z. Hu, G.-J. Ahn, H. Hu, and S. S.
Yau, “Dynamicaudit services for integrity verification
of outsourcedstorages in clouds,” in SAC, W. C. Chu,
W. E. Wong, M. J.Palakal, and C.-C. Hung, Eds.
ACM, 2011, pp. 1550–1557.

[9] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a high-
availabilityand integrity layer for cloud storage,” in
ACM Conference onComputer and Communications
Security, E. Al-Shaer, S. Jha, andA. D. Keromytis,
Eds. ACM, 2009, pp. 187–198.

International Journal of Computer Applications Technology and Research
Volume 2– Issue 2, 195 - 207, 2013, ISSN: 2319–8656

www.ijcat.com 207

[10] Y. Dodis, S. P. Vadhan, and D. Wichs, “Proofs of
retrievabilityvia hardness amplification,” in TCC, ser.
Lecture Notes inComputer Science, O. Reingold, Ed.,
vol. 5444. Springer, 2009,pp. 109–127.

[11] L. Fortnow, J. Rompel, and M. Sipser, “On the power
of multiprover interactive protocols,” in Theoretical
Computer Science, 1988, pp. 156–161.

[12] Y. Zhu, H. Hu, G.-J. Ahn, Y. Han, and S. Chen,
“Collaborative integrity verification in hybrid clouds,”
in IEEE Conference on the 7th International
Conference on Collaborative Computing: Networking,
Applications and Worksharing, CollaborateCom,
Orlando, Florida, USA, October 15-18, 2011, pp. 197–
206.

[13] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H.
Katz, A. Konwinski, G. Lee, D. A. Patterson, A.
Rabkin, I. Stoica, and M. Zaharia, “Above the clouds:
A berkeley view of cloud computing”.

