
International Journal of Computer Applications Technology and Research

Volume 2– Issue 3, 277 - 281, 2013, ISSN: 2319–8656

www.ijcat.com 277

Test Driven Development with Continuous Integration: A
Literature Review

Sheikh Fahad Ahmad

Deptt. of Computer Science &

Engg.

Integral University
Lucknow, India

Mohd. Rizwan Beg
Deptt. of Computer Science &

Engg.

Integral University
Lucknow, India

Mohd. Haleem
Deptt. of Computer

Applications

Integral University
Lucknow, India

Abstract: When a software product is composed of hundreds of components with complicated dependency relationship among them,
change in one component can affect lots of other components' behaviour. Test Driven Development (TDD) is an approach for
developing programs incrementally by first writing tests and then writing enough code to satisfy them. Continuous integration is a
process that provides rapid and automatic feedback on the security of the applications that are undergoing development. Test-driven

development (TDD) and continuous integration (CI) has changed the way software is tested. Software testing was often a separate
process at the end of a project. It is now being worked on during the entire development period. TDD and CI rely on unit tests. This
paper provides a literature study on two closely related software development approaches viz. Test Driven Development and
Continuous Integration.
Keywords: test driven development; continuous integration; extreme programming; agile development; pair programming

1. INTRODUCTION
Extreme Programming (XP) is one of the key components of
the set of “relatively light” adaptive software
development methods commonly known as agile practices.
Agile practices have prompted an amount of excitement

and debate in industry and education, e.g., [1]. In the Test-
Driven Development process, the code that is written is
determined by the tests that an engineer writes. The developer
first write the test, then write the code it is meant to test. This
approach is, to a great extent, counterintuitive. Developers
tend to think of tests as the thing that proves that code works,
but Test Driven Development requires that engineers think of
code as the thing that makes the tests pass. In XP, TDD is one
of the several interrelated principles that developers use to

write software [2]. Continuous integration is used in
most industrial projects that are developed using agile
methods. In such a system, developers keep their code and
accompanying unit tests in a version control server, which is
continuously monitored for changes by a continuous
integration server. When changes are detected, the continuous
integration server executes a build script for the project.
Typically the build script retrieves the latest versions of all the

code and test classes, compiles the code and tests, then runs
the tests. If code fails to compile or a test fails, the build is
said to have failed, otherwise it is said to have succeeded.
This build result is then published to the developers – usually
sent by email and/or via a build results intranet webpage.

2. TEST DRIVEN DEVELOPMENT
Test Driven Development (TDD) is a technique for
developing software that uses automated tests to guide the
design of the target software. There are three aspects of TDD
that characterize the development method: features, customer
tests, and developer tests.

Features are essentially high-level requirements that the
customer identifies and prioritizes. An XP team typically

adopts the term “user story” to represent a feature or a task
associated with implementing the feature. The project team‟s
job is to develop software that satisfies the high-level
requirements that the features represent. In a typical TDD
project the work is conducted in a highly iterative fashion

with only a small number of features being actively developed
in any given time period.

A customer test characterizes one of the features of the target

system. These tests get the label “customer tests” from the
fact that in a typical XP project, the customer identifies and
describes the test cases that make up these tests. Even for
simpler target system features it typically takes several
customer tests to fully characterize the feature‟s associated
requirements. While customer tests map approximately to the
tests at the traditional acceptance test level, the customer
identifies and automates them (with the help of a test

programmer or a tool) before the target feature actually exists,
so the word “test” in their label is slightly misleading [3].
When they are first built, they characterize the target feature,
so their role is for „specification‟ as opposed to „verification‟
or „validation‟. Once the team completes the target feature,
however, these tests do perform traditional verification and
validation and are used in regression testing.

A developer test – the third aspect of TDD to consider is a test

that a developer identifies and automates as they design and
construct the software. A developer typically works on one
customer test at a time and starts by first writing one or more
tests that specify a desired design characteristic. The focus of
the design effort is to specify the modules that satisfy that one
customer test. Again the use of the word “test” to describe the
resulting test-like artefacts is misleading since they are
specification-oriented as opposed to verification or validation-
oriented. As with customer tests, developer tests are

automated so that they can be executed many times over the
course of the development project. Both sets of automated
tests are also used for regression testing.

2.1 TDD METHODOLOGY
On the surface, TDD is a very simple methodology that relies

on two main concepts: unit tests and refactoring. TDD is

basically composed of the following steps:

• Writing a test that defines how a small part of the software

should behave.

International Journal of Computer Applications Technology and Research

Volume 2– Issue 3, 277 - 281, 2013, ISSN: 2319–8656

www.ijcat.com 278

• Making the test run as easily and quickly as possible. Design

of the code is not a concern; the sole aim is just getting it to

work.

• Cleaning up the code. A step back is taken and any

duplication or any other problems that were introduced to get

the test to run is refactored and removed.

Figure. 1 TDD Cycle [4]

TDD is an iterative process, and these steps are repeated a

number of times until satisfaction with the new code is

achieved. TDD doesn't rely on a lot of up-front design to

determine how the software is structured. The way TDD

works is that requirements, or use cases, are decomposed into

a set of behaviours that are needed to fulfil the requirement.

For each behaviour of the system, the first thing done is to

write a unit test that will test this behaviour. The unit test is

written first so that a well-defined set of criteria is formed that

can be used to tell when just enough code to implement the

behaviour has been written. One of the benefits of writing the

test first is that it actually helps better define the behaviour of

the system and answer some design questions. George and

Williams also has a hypothesis that code written in TDD is

easier to maintain and have better design than using

traditional software development methods [6].

2.2 TDD PRINCIPLES
The process of test-driven development is to write unit tests
before the programmer writes any code. After the test is
written the goal is to make it succeed. After the test has
succeeded the programmer refactors the code to remove any
duplication inside the code and between the code and the test.
New code should only be written to refactor2 the existing
code or to make a test pass. One should never write a new test

if another test is already failing. A simpler way to look at the
test-driven development cycle is “red/green/refactor”
Kent Beck [5] refers to this as the TDD mantra:
Red: Write a test before writing new code. The test will fail
and be “red”.
Green: Make the test succeed, turn green, taking as many
shortcuts as necessary.
Refactor: Remove any duplication in the code necessary to

make the test go green.

Figure. 1 Simplified test-driven development cycle, red-green-

refactor

2.3 BENEFITS OF TEST DRIVEN

DEVELOPMENT
Test Driven Development contributes to software

development practice from many aspects such as requirements

definition, writing clean and well designed code, and change

and configuration management. The promises of TDD can be

summarized as follows:

1. Simple, Incremental Development: TDD takes a simple,

incremental approach to the development of software. One of

the main benefits to this approach is having a working

software system almost immediately. The first iteration of this

software system is very simple and doesn't have much

functionality, but the functionality will improve as the

development continues. This is a less risky approach than

trying to build the entire system all at once, hoping it will

work when all the pieces are put together.

2. Simpler Development Process: Developers who use TDD

are more focused. The only thing that a TDD developer has to

worry about is getting the next test to pass. The goal is

focusing the attention on a small piece of the software, getting

it to work, and moving on rather than trying to create the

software by doing a lot of up-front design. Thousands of

decisions have to be made to create a piece of software. To

make all those decisions correctly before starting writing the

code is a complex challenge to undergo many times. It is

much easier to make those decisions as developing the code.

3. Constant Regression Testing: The domino effect is well

known in software development. Sometimes a simple change

to one module may have unforeseen consequences throughout

the rest of the project. This is why regression testing is

important. Regression testing is like self-defence against bugs.

It's usually done only when a new release is sent to quality

assurance (QA). By then it's sometimes hard to trace which

code change introduced a particular bug and makes it harder

to fix. TDD runs the full set of unit tests every time a change

is made to the code, in effect running a full regression test

every time a minor change is made. This means any change to

the code that has an undesired side effect will be detected

almost immediately and be corrected, which should prevent

any regression surprises when the software is handed over to

International Journal of Computer Applications Technology and Research

Volume 2– Issue 3, 277 - 281, 2013, ISSN: 2319–8656

www.ijcat.com 279

QA. The other benefit of constant regression testing is having

a fully working system at every iteration of development. This

allows the development team to stop development at any time

and quickly respond to any changes in requirements.

4. Improved Communication: Communicating the ideas

needed to explain how a piece of software should work is not

always easy with words or pictures. Words are often

imprecise when it comes to explaining the complexities of the

function of a software component. The unit tests can serve as

a common language that can be used to communicate the

exact behaviour of a software component without ambiguities.

5. Improved Understanding of Required Software Behaviour:

The level of requirements on a project varies greatly.

Sometimes requirements are very detailed and other times

they are vague. Writing unit tests before writing the code

helps developers focus on understanding the required

behaviour of the software. As writing a unit test, pass/fail

criteria for the behaviour of the software is being added. Each

of these pass/fail criteria adds to the knowledge of how the

software must behave. As more unit tests are added because

of new features or new bugs, the set of unit tests come to

represent a set of required behaviours of higher and higher

fidelity.

6. Centralization of Knowledge: Humans all have a collective

consciousness that stores ideas they all have in common.

Unfortunately, programming is mostly a solitary pursuit.

Modules are usually developed by a single individual, and a

lot of the knowledge that went into designing the module is

usually stuck in the head of the person who wrote the code.

Even if it's well documented, clean code, it's sometimes hard

to understand some of the design decisions that went into

building the code. With TDD, the unit tests constitute a

repository that provides some information about the design

decisions that went into the design of the module. Together

with the source code, this provides two different points of

view for the module. The unit tests provide a list of

requirements for the module. The source code provides the

implementation of the requirements. Using these two sources

of information makes it a lot easier for other developers to

understand the module and make changes that won't introduce

bugs.

7. Better Encapsulation and Modularity: Encapsulation and

modularity help managing the chaos of software development.

Developers cannot think about all the factors of a software

project at one time. A good design will break up software into

small, logical, manageable pieces with well defined interfaces.

This encapsulation allows developers concentrate on one

thing at a time as the application is built. The problem is that

sometimes during the fog of development one may stray from

the ideas of encapsulation and introduce some unintended

coupling between classes. Unit tests can help detect non-

encapsulated modules. One of the principles of TDD says that

the unit tests should be easy to run. This means that the

requirements needed to run any of the unit tests should be

minimized. Focusing on making testing easier will force a

developer making more modular classes that have fewer

dependencies.

8. Simpler Class Relationships: A well designed piece of

software will have well defined levels that build upon each

other and clearly defined interfaces between the levels. One of

the results of having software that has well defined levels is

that it's easier to test. The corollary to this is also true. If code

is designed by writing tests, the focus will be very narrow, so

the tests will tend not to create complex class relationships.

The resulting code will be in the form of small building

blocks that fit neatly together. If a unit test is hard to write,

then this usually means there is a problem in the design of the

code. Code that is hard to test is usually bad code. Since the

creation of the unit tests help point out the bad code, this

allows to correct the problem and produce better designed,

more modular code.

9. Reduced Design Complexity: Developers try to be forward

looking and build flexibility into software so that it can adapt

to the ever-changing requirements and requests for new

features. Developers are always adding methods into classes

just in case they may be needed. This flexibility comes at the

price of complexity. It's not that developers want to make the

software more complex, it's just that they feel that it's easier to

add the extra code up front than make changes later. Having a

suite of unit tests allows to quickly tell if a change in code has

unforeseen consequences. This will give the developer the

confidence to make more radical changes to the software. In

the TDD process, developers will constantly be refactoring

code. Having the confidence to make major code changes any

time during the development cycle will prevent developers

from overbuilding the software and allow them to keep the

design simple. The approach to developing software using

TDD also helps reduce software complexity. With TDD the

goal is only adding the code to satisfy the unit tests. This is

usually called developing by intention. Using TDD, it's hard

to add extra code that isn't needed. Since the unit tests are

derived from the requirements of the system, the end result is

just enough code to have the software work as required.

3. CONTINUOUS INTEGRATION
Continuous Integration is a process where software is built at

every change. This means that when a change made by

developer has been detected in source code, an automated

build will be triggered on a separate build machine. The build

contains several predefined steps like compiling, testing, code

inspection and deployment - among other things. After the

build has been finished a build report will be sent to specified

project members. The build report tells the result of each build

step with detailed information about possible errors that may

have occurred. Fowler [7] describes CI as “Continuous

Integration is a software development practice where

members of a team integrate their work frequently; usually

each person integrates at least daily - leading to multiple

integrations per day. Each integration is verified by an

International Journal of Computer Applications Technology and Research

Volume 2– Issue 3, 277 - 281, 2013, ISSN: 2319–8656

www.ijcat.com 280

automated build (including test) to detect integration errors as

quickly as possible. Many teams find that this approach leads

to significantly reduced integration problems and allows a

team to develop cohesive software more rapidly”. Continuous

integration was conceived to avoid the indeterminately long

integration processes common in large software projects.

Integration is among the last phases in a software

development project where all the different parts of the

software are joined together and put under integration tests to

verify that they can interact with each other as planned [8].

Fig 3: Continuous integration Cycle [9]

4. CONTINUOUS INTEGRATION

BUILD PROCESS
The following section will discuss the practices of continuous
integration from Fowler‟s article [8].

4.1 CODE REPOSITORY
A code repository is maintained by using a version control
system where each developer can commit code into the
project, revert to an earlier stage or merge conflicting changes.
For CI to work the repository needs to be used actively by the
developers - committing after every change in the software.

The code repository should contain everything the build
machine needs to build the software.

4.2 AUTOMATED BUILD
The entire build process should be automated to a simple
process that does not require user interaction. There are
several tools available for creating build scripts. For Java,
Maven [10] and Ant [11] are often used, for .NET Nant [12]
and MSBuild [13] are available. There are also language
independent tools available, like FinalBuilder [14], which can
build and test software from almost any source.

4.3 TESTING THE BUILD
The build should be self-testing using a set of unit tests. Unit
testing is a method by which individual units of source code,
sets of one or more computer program modules together with
associated control data, usage procedures, and operating
procedures, are tested to determine if they are fit for use.

4.4 CODE COMMITS
Each developer should commit changes to the main repository
at least once a day. Every time a commit is made, a build
should be checked out into the integration environment and go

through all the tests. The integration environment should
resemble the production environment as closely as possible.

4.5 BUILD TIME
For a continuous integration process to be effective, the build
must be fully automated and not be too time consuming. A CI
build should never last more than 10 minutes according to the
extreme programming guidelines. If it does, the tests should
be optimized until they take less than ten minutes [15]. This is

because the programmer should still have the changes made to
the code fresh in his mind in case the build fails. If the
programmer has started working on a new task, it will be
harder to look back at the last problem and find the bug.

4.6 FEEDBACK
Finally, it is important that the entire team can get feedback
from the integration tests when they want it. Some use lights
or lava-lamps showing if the build is currently integration
correctly or not. In addition websites can give deeper insight
in where the problem lies and show statistics of how well the
build is working over time. E-mail notifications are also a nice

way to be notified of a builds success, but they should be
targeted to the developer(s) that sent the build, not the entire
team.

5. Benefits Of Continuous Integration

SQM are composed of software metrics and SQFs. According
to Duvall [16], integrating software is not an issue in small,

one person, projects, but when multiple persons or even teams
start to work together in one project, integrating software
becomes a problem, because several people are modifying
pieces of code which ought to work together. To verify that
different software components work together raises the need
to integrate earlier and more often. The following sections
describe what kind of benefits Duvall has been able to
identify.

1. Reduce risks: By integrating many times a day, risks can be
reduced. Problems will be noticed earlier and often only a
short while after they have been introduced. This is possible
because CI integrates and runs tests and inspections
automatically after each change.
2. Reduce repetitive processes: CI automates code
compilation, testing, database integration, inspection,
deployment and feedback. Doing these steps automatically

saves time, cost and effort. By automating the process, it is
also made sure that all steps are done exactly the same way
every time. All this frees people to do more thought-
provoking, higher-value work and helps to avoid making
mistakes in repetitive tasks.
3. Generate deployable software: One of the goals of agile
software development is to deploy early and often. CI helps to
achieve this by automating the steps to produce deployable
software. Deployable and working software is the most

obvious benefit of CI from an outside perspective, because
customer or end user is not usually interested if CI was used
as part of QA. It is also the most tangible asset, as software
which works and is deployed, is the final output of CI.
4. Enable better project visibility: The fact that CI runs often
provides the ability to notice trends and make decision based
on real information. Without CI, the information must be
gathered manually and this takes a lot of time and effort. A CI

system can provide just-in-time information on the recent
build status and quality metrics such as test coverage or
number coding convention violations.

International Journal of Computer Applications Technology and Research

Volume 2– Issue 3, 277 - 281, 2013, ISSN: 2319–8656

www.ijcat.com 281

5. Greater product confidence: By having CI in place, the
project team will know that certain actions are always made
against the code base. CI will act as a safety net to spot errors
early and often and that will result in greater confidence for
the team to do their job. Even bigger changes can be made

with confidence.

6. CONCLUSION AND FUTURE WORK

This study provided substantial evidence that Test-Driven
Development is, indeed, an effective tool for improving the
quality of source code. Every time a programmer writes code

that interacts with a class, she is given a reminder of that
class's responsibilities. Test-Driven Development, because it
requires writing the test for the responsibility as well as the
implementation of that responsibility, faces programmers with
this reminder twice as often before the code is written.
Subramaniam and Hunt [17] argue that writing tests first
forces programmers to look at their classes as users of the
class's interface, rather than as implementers of that class.

This perspective shift provides constant opportunity for the
programmer to be confronted by the question of how cohesive
a code change is. Software quality is hard to measure, but
considering the increased test coverage and that tests are
always run with latest version of all dependencies, it is safe to
say that possible problems are noticed sooner than what they
used to. Additionally problems were also fixed sooner.
However it can also be said that the observed improvement

may have not been achieved only by having all the features of
CI, but also because the mindset in the team changed by the
motivation they got from using CI.
This paper provides a basis for researchers and practitioners
for better understanding of the abovementioned software
development approaches for their purposes. In the next phase,
this study can be used to develop a new software development
framework based on Test Driven Development and
Continuous Integration which can be validated by employing

the technique on a software project.

7. REFERENCES
[1] Gotterburn, D. UML and Agile Methods: In support of

Irresponsible Development. Inroads – The SIGCSE
Bulletin, 36, 2 (June 2004), 11-13.

[2] K. Beck, Extreme Programming Explained. Don Mills:
Addison-Wesley Publishing Co., 1999.

[3] B. Marick, "Testing in the Agile Manifesto,"
http://www.testing.com/cgi-bin/blog ed, 2004.

[4] ACM Transactions on Computational Logic, Vol. V, No.
N, December 2011, Pages 1-21.

[5] K. Beck. Test-driven development: by example.
Addison-Wesley Professional, 2003.

[6] B. George and L. Williams. “An initial investigation of
test driven development in industry”. In: Proceedings of
the 2003 ACM symposium on Applied computing.
ACM. 2003, pp. 1135–1139.

[7] Martin Fowler. Continuous Integration. Internet, 2006.
www.martinfowler.com/articles/continuousIntegration.ht
ml

[8] M. Fowler. Continuous integration.
http://www.martinfowler.com/articles/continuousIntegrat
ion.html. 2006.

[9] P. Duvall, S. Matyas, and A. Glover. Continuous
integration: improving software quality and reducing
risk. Addison-Wesley Professional, 2007.

[10] Apache Software Foundation. Welcome to Apache
Maven. http://maven.apache.org/.

[11] Apache Software Foundation. Apache Ant - Welcome.
http://ant.apache.org/.

[12] NAnt. NAnt - A .NET Build Tool.
http://nant.sourceforge.net/.

[13] Microsoft. MSBuild Reference.
http://msdn.microsoft.com/en-us/library/0k6kkbsd.aspx.

[14] FinalBuilder. VSoft Technologies > Home.
http://www.finalbuilder.com/.

[15] K. Beck and C. Andres. Extreme programming
explained: embrace change. second. Addison-Wesley
Professional, 2004.

[16] Paul M. Duvall. Continuous Integration: Improving
Software Quality and Reducing Risk. Addison-Wesley,
1st edition, 2007.

[17] R Subramaniam, V., & Hunt, A. (2006). Practices of an
agile developer: Working in the real world. Raleigh, NC:
Pragmatic Bookshelf. 68

