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Abstract: The main purpose of this paper is to study the zero-divisor graph for direct product of finite commutative rings. In our 
present investigation we discuss the zero-divisor graphs for the following direct products: direct product of the ring of integers under 
addition and multiplication modulo p and  the ring of integers under addition and multiplication modulo p2 for a prime number p, 
direct product of the ring of integers under addition and multiplication modulo p and  the ring of integers under addition and 
multiplication modulo 2p for an odd prime number p and direct product of the ring of integers under addition and multiplication 

modulo p and  the ring of integers under addition and multiplication modulo p2 – 2 for that odd prime p for which p2 – 2 is a prime 
number. The aim of this paper is to give some new ideas about the neighborhood, the neighborhood number and the adjacency matrix 
corresponding to zero-divisor graphs for the above mentioned direct products. Finally, we prove some results of annihilators on zero-
divisor graph for direct product of A and B for any two commutative rings A and B with unity  
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1. INTRODUCTION 
 

The idea of zero-divisor graph of a commutative 
ring was first introduced by I. Beck [2] in 1988. D. F. 
Anderson and P.S. Livinsgston [1] redefined the concept of 
zero-divisor graph in 1999. F. R. DeMeyer, T. Mckenzie and 
K. Schneider [3] extended the concept of zero-divisor graph 
for commutative semi-group in 2002. The notion of zero-
divisor graph had been extended for non-commutative rings 
by S. P. Redmond [9] in 2002. Recently, P. Sharma, A. 
Sharma and R. K. Vats [10] have discussed the neighborhood 
set, the neighborhood number and the adjacency matrix of 

zero-divisor graphs for the rings pp ZZ   and 

],[][ iZiZ pp   where p is a prime number. 

In this paper R1 denotes the finite commutative ring 

such that R1 = 2pp ZZ  ( p is a prime number), R2 denotes 

the finite commutative ring such that R2 = pp ZZ 2  ( p is 

an odd prime number) and R3 denotes the finite commutative 

ring such that R3 =
22


pp ZZ ( for that odd prime p for 

which p2 – 2 is a prime number). Let R be a commutative ring 

with unity and Z(R) be the set of zero-divisors of  R; that is 

Z(R) = {xR: xy = 0 or yx = 0 for some yR* = R –
{0}}.Then zero-divisor graph of R is an undirected graph 

Γ(R) with vertex set Z(R)* = Z(R) – {0} such that distinct 

vertices x and y of Z(R)* are adjacent if and only if xy = 0. 
The neighborhood (or open neighborhood) NG(v) of  a vertex 
v of a graph G is the set of vertices adjacent to v. The closed 

neighborhood NG[v] of a vertex v is the set NG(v) {v}.  For 
a set S of vertices, the neighborhood of S is the union of the 
neighborhoods of the vertices and so it is the set of all vertices 

adjacent to at least one member of S. For a graph G with 
vertex set V, the union of the neighborhoods of all the vertices 
is neighborhood of V and it is denoted by NG(V). The 
neighborhood number nG(V) is the cardinality of NG(V). If the 
graph G with vertex set V  is connected, then NG(V)  is the 
vertex set V  and the cardinality of NG(V)  is equal to the 
cardinality of V.  If  Γ(R) is the zero-divisor graph of a 
commutative ring R with vertex set  Z(R)* and since zero-

divisor graph is always connected [1], we have NΓ(R)(Z(R)*) = 

Z(R)* andNΓ(R)(Z(R)*) = Z(R)*). Throughout this paper 

 (G) denotes the maximum degree of a graph G and  (G) 

denotes the minimum degree of a graph G. The adjacency 
matrix corresponding to zero-divisor graph G is defined as     
A = [aij], where    aij = 1, if vi vj = 0 for any vertex vi and vj of 
G and aij = 0, otherwise. 

  In this paper, we construct zero-divisor graphs for 

the rings R1, R2 and R3. We obtain the neighborhood and the 
adjacency matrices corresponding to zero-divisor graphs of 
R1, R2 and R3. Some properties of adjacency matrices are also 
obtained. We prove some theorems related to neighborhood 
and adjacency matrices corresponding to zero-divisor graphs 
of R1, R2 and R3. Finally, we prove some results of annihilators 

on zero-divisor graph of A  B, for any two commutative rings 

A and B with unity.  
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2. CONSTRUCTION OF ZERO -DIVISOR 

GRAPH FOR R1 = 2pp ZZ  ( p IS A PRIME 

NUMBER):  
 

First, we construct the zero-divisor graph for the 

ring R1 = 2pp ZZ  (p is a prime number) and analyze the 

graph. We start with the cases p = 2 and p = 3 and then 
generalize the cases. 

 

Case1: When p = 2 we have R1 = Z2×Z4.  
The ring R1 has 5 non-zero zero-divisors. In this case V = 
Z(R1)* = {(1,0), (0,1), (0,2), (0,3), (1,2)} and the zero-divisor 

graph G = Γ(R1)  is given by: 

 

 

         
                        Fig: 1 

 
The closed neighborhoods of the vertices  are 

NG[(1,0)] = {(1,0), (0,1), (0,2),(0,3)}, NG[(0,1)] ={(1,0),(0,1)}, 
NG[(0,2)]  = {(1,0), (1,2), (0,2)},  NG[(0,3)] = {(1,0),(0,3)} and 
NG[(1,2)] = {(0,2),(1,2)}.  The neighborhood of V is given by 
NG(V) ={(1,0), (0,1), (0,2), (0,3), (1,2)}. The maximum degree 

is  (G) = 3 and minimum degree is  (G) = 1. The 

adjacency matrix for the zero-divisor graph of R1 = Z2×Z4 is 

M1 =

55
31

133313

31

00

00
























T

T

B

BOA

A

 where, 31A  = [1 1 1],  

13B  =

















0

1

0

, 13
TA  is the transpose of  31A , 31

TB  is 

the transpose of 13B and 33O  is the zero matrix.   

 

Properties of adjacency matrix M1: 
 
(i) The determinant of the adjacency matrix M1 corresponding 

to G = Γ(R1) is 0.  
(ii) The rank of the adjacency matrix M1 corresponding to G = 

Γ(R1) is 2. 

(iii) The adjacency matrix M1 corresponding to G = Γ(R1) is 

symmetric and singular.  

 
Case2: When p = 3 we have R1 = Z3×Z9.  
The ring R1 has 14 non-zero zero-divisors. In this case  V = 
Z(R1)* = {(1,0), (2,0), (1,3), (1,6), (2,3), (2,6), (0,1), (0,2), 
(0,3), (0,4), (0,5),(0,6),(0,7),(0,8)}  and the  zero-divisor graph   

G = Γ(R1) is given by: 

  

                                          Fig: 2 
 
The closed neighborhoods of the vertices are  

NG[(1,0)] = {(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8), 
(1,0)}, NG[(2,0)] ={(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), 
(0,8),(2,0)}, NG[(1,3)] = {(0,3),(0,6),(1,3)}, NG[(1,6)] = {(0,3), 
(0,6),(1,6)}, NG[(2,3)] = {(0,3),(0,6),(2,3)}, NG[(2,6)] = {(0,3), 
(0,6),(2,6)}, NG[(0,1)] = {(1,0),(2,0),(0,1)}, NG[(0,2)] = {(1,0), 
(2,0),(0,2)}, NG[(0,3)] = {(1,0), (2,0), (1,3), (1,6), (2,3), (2,6), 

(0,6),(0,3)}, NG[(0,4)] ={(1,0),(2,0),(0,4)},  NG[(0,5)] ={(1,0), 
(2,0),(0,5)}, NG[(0,6)] = {(1,0), (2,0), (1,3), (1,6), (2,3), (2,6), 
(0,3),(0,6)}, NG[(0,7)] ={(1,0), (2,0), (0,7)}, NG[(0,8)] ={(1,0), 
(2,0), (0,8)}. The neighborhood of V is given by NG(V) = 
{(1,0), (0,2), (1,3), (1,6), (2,3), (2,6), (0,1), (0,2), (0,3), (0,4), 

(0,5), (0,6), (0,7), (0,8)}. The maximum degree is  (G) = 8 

and minimum degree is  (G) = 2. The adjacency matrix for 

the zero-divisor graph of R1 = Z3×Z9 is M1 ═ 

1414
335363

355565

365666
























OCB

COA

BAO

TT

T where A65 =



























00100

00100

00100

00100

11111

11111

 , 

B63 =



























001

001

001

001

111

111

, C53 =























000

000

001

000

000

, O66, O55, O33 are 

the zero matrices and AT
56, B

T
36, C

T
35 are the transposes of 

A65, B63, C53 respectively. 

 

Properties of adjacency matrix M1:  
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(i) The determinant of the adjacency matrix M1 corresponding 

to G = Γ(R1) is 0.  
(ii) The rank of the adjacency matrix M1 corresponding to G = 

Γ(R1) is 2. 

(iii) The adjacency matrix M1 corresponding to G = Γ(R1) is 

symmetric and singular. 
 

Generalization for R1 = Zp× 2p
Z ( p is a prime 

number):  

Lemma 2.1: The number of vertices of G = ( 2p
Z ) is p – 1 

and G = ( 2p
Z ) is Kp -1, where p is a prime number [4] 

 
Proof: The multiples of p less than p2 are p, 2p, 3p,………,   
(p - 1)p. These multiples of p are the only non-zero zero-

divisors of 2p
Z . If G = ( 2p

Z ) is the zero-divisor graph 

of 2p
Z , then the vertices of G = ( 2p

Z ) are the non-zero 

zero-divisors of 2p
Z . So, the vertex set of G = ( 2p

Z ) is     

Z ( 2p
Z )* and p, 2p, 3p,………,(p - 1)p are the vertices of   

G = ( 2p
Z ). Hence, the number of vertices of G = ( 2p

Z ) 

is p – 1. Also, in G = ( 2p
Z ), every vertex is adjacent to 

every other vertex. This gives G = ( 2p
Z ) is Kp -1. 

 
Theorem 2.2: Let R1 be a finite commutative ring such that 

R1 = 2pp ZZ  ( p is a prime number). Let G = (R1) be the 

zero-divisor graph with vertex set Z(R1)*. Then number of 

vertices of   G = (R1)   is 2p2 – p – 1, (G) = p2 – 1 and    

(G) = p – 1. 

 

Proof: Let R1 be a finite commutative ring such that R1 = 

2pp ZZ  (p is a prime number). Let R1*= R1 – {0}. Then 

R1* can be partitioned into  disjoint sets A, B, C, D and E such 

that  A = {(u, 0) : u  Zp*},  B = {(0, v) : v 
*

2p
Z

 
and v                

Z ( 2p
Z )* },  C = {(0, w) : w 

*
2p

Z  and w  Z ( 2p
Z )* },  

D = {(a ,b) : a  Zp*, b
*

2p
Z

 
and b  Z ( 2p

Z )* } and  E = 

{(c ,d) : c  Zp*, d 
*

2p
Z

 
and  d Z ( 2p

Z )* }. Clearly, all 

the elements in A, B, C are non-zero zero-divisors. Let         

(a, b)  D and (0, w)  C. Here b, w  Z ( 2p
Z )*. So, bp  

and wp . This gives bwp2
. Therefore, (a, b) (0, w) =   

(0, 0). Hence, every element of D is a non-zero zero-divisor. 
But product of any two elements of E is not equal to zero. 
Also, product of any element of E with any element of A, B, C 

and D is  not  equal to  zero  because,   cu  0 for c, u  Zp*,     

dv  0 for  d, v
*

2p
Z  and d, v  Z ( 2p

Z )*, dw  0 for d, w 


*

2p
Z   and d  Z ( 2p

Z )*, w  Z ( 2p
Z )* and  ca  0 for 

c, a  Zp* respectively. So, no element of E is a non-zero 

zero-divisor. Let G = (R1) be the zero-divisor graph with 

vertex set Z(R1)*.Then Z(R1)* can be partitioned into four 
disjoint sets A, B, C and D. Now using the Lemma 2.1 we 

have A= Zp*= p – 1, B =
*

2p
Z –Z ( 2p

Z )* = 

(p2–1) – (p – 1) = p2 – 1 – p + 1 = p2 – p, C=                       

Z ( 2p
Z )* =  p – 1,D= Zp* Z ( 2p

Z )* = (p – 1) 

(p – 1) = p2– 2p + 1. 

Therefore, Z(R1)*=A+B+C+D = (p – 1) +     

(p2– p) + (p – 1) + (p2– 2p + 1) = 2p2 – p – 1.  
 

So, the number of vertices of G = (R1) is 2p2 – p – 1. 

 
Let s = (u, 0) be any vertex of A. 
(i)  Every vertex of A is adjacent to every vertex of B. So, s is 
adjacent to p2- p vertices of B. 
(ii) Every vertex of A is adjacent to every vertex of C. So, s is 
adjacent to p -1 vertices of C. 

(iii) Any vertex of A is not adjacent to any vertex of D as ua  0 

for u, a  Zp*. 

Therefore, degG (s) = (p2- p) + (p -1) = p2- 1.  
 

Let t = (0, v) be any vertex of B.  
(i)  Every vertex of B is adjacent to every vertex of A. So, t is 
adjacent to p – 1 vertices of A. 

(ii) Any vertex of B is not adjacent to any vertex of C as vw  0 

for v, w 
*

2p
Z  and v   Z ( 2p

Z )*, w  Z ( 2p
Z )*. 

(iii) Any vertex of B is not adjacent to any vertex of D as vb  0 

for v, b 
*

2p
Z  and v   Z( 2p

Z )*,  b  Z ( 2p
Z )*. 

Therefore, degG (t) = p – 1.  
 
Let x = (0, w) be any vertex of C.  
(i) Every vertex of C is adjacent to every vertex of A. So, x is 
adjacent to p – 1 vertices of A. 
(ii) Any two vertices of C are adjacent to each other. So, x is 
adjacent to p – 2 vertices of C.  
(iii) Every vertex of C is adjacent to every vertex of D. So, x is 

adjacent to p2- 2p + 1 vertices of D.  

(iv) Any vertex of C is not adjacent to any vertex of B as wv  0 

for w, v 
*

2p
Z  and w  Z ( 2p

Z )*, v   Z ( 2p
Z )*. 

Therefore, degG (x) = (p -1) + (p – 2) + (p2- 2p + 1) = p2- 2.  

 
Let y = (a, b) be any vertex of D.  
(i)  Every vertex of D is adjacent to every vertex of C. So, y is 
adjacent to p – 1 vertices of C.  

(ii) Any vertex of D is not adjacent to any vertex of A as au  0 

for u, a  Zp*. 

(iii) Any vertex of D is not adjacent to any vertex of B as bv  0 

for b, v
*

2p
Z  and b   Z ( 2p

Z )*, v Z ( 2p
Z )*. 

Therefore, degG (y) = p -1.  
 

Hence, we have (G) = p2 –1 and (G) = p – 1.  

Theorem 2.3: Let M1 be of the adjacency matrix for the zero-

divisor graph G = Γ(R1)  of R1 = 2pp ZZ  (p is a prime 

number). Then (i) determinant of M1 is zero (ii) M1 is 
symmetric and singular.  
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Proof: Let R1 be a finite commutative ring such that R1 = 

2pp ZZ  (p is a prime number). Let G = Γ(R1) be the zero-

divisor graph with vertex set V  =  Z(R1)* and M1 be the 
adjacency matrix for the zero-divisor graph of R1 = 

2pp ZZ  . 

(i) Since, at least two vertices of G = Γ(R1) are 
adjacent to same vertex of G, so M1 contains at least two 

identical rows (eg. for Z2×Z4 ). Therefore, the determinant of 
the adjacency matrix M1 is zero.  

(ii) Clearly M1 is symmetric. Since, the determinant 
of the adjacency matrix M1 is zero, M1 is singular. 

 
Theorem 2.4: Let R1 be a finite commutative ring such that R1 

= 2pp ZZ  (p is a prime number). Let G = Γ(R1) be the 

zero-divisor graph with vertex set V  =  Z(R1)*.Then   nG(V) = 

2 (G) – (G), where nG(V) is the neighborhood number, 

 (G) and (G)  denote the maximum and minimum degree 
of G respectively. 

 
Proof: Let R1 be a finite commutative ring such that R1 = 

2pp ZZ  (p is a prime number). Let G = Γ(R1) be the zero-

divisor graph with vertex set V  =  Z(R1)*.  Since, G = Γ(R1) is 

connected [1], we have nG(V) = )(VNG = V =
*

1)(RZ . 

But from Theorem 2.2, we have 
*

1)(RZ = 2p2 – p – 1. 

Therefore, nG(V) = 2p2 – p – 1. This implies nG(V) = 2(p2 – 1) 

– (p – 1). Also, (G) = p2 – 1 and (G) = p – 1 [from 

Theorem 2.2]. This gives nG(V) =   2 (G) – (G). 

 

3. CONSTRUCTION OF ZERO -DIVISOR 

GRAPH FOR R2 = pp ZZ 2   ( p IS AN ODD 

PRIME NUMBER):  
 

Secondly, we construct the zero-divisor graph for 

the ring R2 = pp ZZ 2 (p is an odd prime number) and 

analyze the graph. We start with the cases p = 3 and p = 5 and 
then generalize the cases. 

 
Case1: When p = 3 we have R2 = Z3×Z6. 

The ring R2   has 13 non-zero zero-divisors. In this case  V = 

Z(R2)* = {(1,0),(2,0),(1,2),(1,3), (1,4), (2,2), (2,3), (2,4), (0,1), 
(0,2),(0,3),(0,4),(0,5)}  and the zero-divisor graph  G = Γ(R2)  
is given by: 
 
 

         
 
                                          Fig: 3     

 

The closed neighborhoods of the vertices are 
NG[(1,0)] = {(0,1), (0,2), (0,3), (0,4), (0,5), (1,0)}, NG[(2,0)]= 

{(0,1), (0,2), (0,3), (0,4),(0,5),(2,0)}, NG[(1,2)] = {(0,3),(1,2)}, 
NG[(1,3)] = {(0,2), (0,4), (1,3)}, NG[(1,4)] = {(0,3), (1,4)}, 
NG[(2,2)] = {(0,3), (2,2)}, NG[(2,3)] = {(0,2),(0,4),(2,3)},  
NG[(2,4)] = {(0,3), (2,4)}, NG[(0,1)] = {(1,0), (2,0), (0,1)}, 
NG[(0,2)] = {(1,0), (2,0), (1,3), (2,3), (0,3), (0,2)},  NG[(0,3)] = 
{(1,0), (2,0), (1,2),(1,4),(2,2),(2,4),(0,2),(0,4),(0,3)}, NG[(0,4)] 
= {(1,0),(2,0),(1,3),(2,3),(0,3),(0,4)}, NG[(0,5)] = {(1,0), (2,0), 
(0,5)}.The neighborhood of V is given by NG(V) = {(1,0), 

(2,0), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (0,1), (0,2), (0,3), 

(0,4), (0,5)}.The maximum degree is  (G) = 8 and minimum 

degree is  (G) = 1. The adjacency matrix for the zero-

divisor graph of R2 = Z3×Z6 is M2 ═   

13135585

5888














BA

AO
T  , 

where A8 5 =

































00100

01010

00100

00100

01010

00100

11111

11111

, B5 5 = 























00000

00100

01010

00100

00000

,  

O88  is the zero matrix and AT 58 is the transpose of A85.  

 

Properties of adjacency matrix M2:  
 
(i) The determinant of the adjacency matrix M2 corresponding 

to G = Γ(R2) is 0. 
(ii) The rank of the adjacency matrix M2   corresponding to G 
= Γ(R2) is 2. 

(iii) The adjacency matrix M2 corresponding to G = Γ(R2 ) is 

symmetric and singular. 

 
Case2: When p = 5 we have R2 = Z5×Z10. 
 The ring R2   has 33 non-zero zero-divisors. In this case V = 

Z(R2)* = {(1,0),(2,0),(3,0),(4,0), (1,2), (1,4), (1,5), (1,6), (1,8), 
(2,2),(2,4),(2,5),(2,6),(2,8),(3,2),(3,4), (3,5), (3,6), (3,8), (4,2), 
(4,4), (4,5), (4,6), (4,8), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6), 

(0,7), (0,8), (0,9)}  and the zero-divisor graph  G = Γ(R2)  is 

given by: 
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                     Fig: 4 

 

The closed neighborhoods of the vertices are 
NG[(1,0)]  = {(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8), 
(0,9), (1,0)}, NG[(2,0)] = {(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), 
(0,7), (0,8), (0,9), (2,0)},  NG[(3,0)] = {(0,1), (0,2), (0,3), (0,4), 
(0,5), (0,6), (0,7), (0,8), (0,9), (3,0)},  NG[(4,0)] = {(0,1), (0,2), 
(0,3), (0,4), (0,5), (0,6), (0,7), (0,8), (0,9), (4,0)},  NG[(1,2)] = 
{(0,5), (1,2)},  NG[(1,4)] = {(0,5), (1,4)},  NG[(1,5)] = {(0,2), 
(0,4), (0,6), (0,8), (1,5)},  NG[(1,6)] = {(0,5), (1,6)},  NG[(1,8)] 

= {(0,5),(1,8)},   NG[(2,2)] = {(0,5),(2,2)}, NG[(2,4)] = {(0,5), 
(2,4)}}, NG[(2,5)] = {(0,2), (0,4), (0,6), (0,8), (2,5)},  NG[(2,6)] 
= {(0,5), (2,6)}, NG[(2,8)] = {(0,5),(2,8)}, NG[(3,2)] = {(0,5), 
(3,2)},  NG[(3,4)] = {(0,5), (3,4)},  NG[(3,5)] = {(0,2), (0,4), 
(0,6),(0,8),(3,5)}, NG[(3,6)] ={(0,5), (3,6)}, NG[(3,8)] = {(0,5), 
(3,8)},  NG[(4,2)] = {(0,5), (4,2)}},  NG[(4,4)] = {(0,5), (4,4)},  
NG[(4,5)] = {(0,2), (0,4), (0,6), (0,8), (4,5)}, NG[(4,6)] = {(0,5), 
(4,6)}, NG[(4,8)] = {(0,5), (4,8)},  NG[(0,1)] = {(1,0), (2,0), 
(3,0), (4,0), (0,1)},  NG[(0,2)] = {(1,0), (2,0), (3,0), (4,0), (0,5), 

(1,5), (2,5), (3,5), (4,5), (0,2)},  NG[(0,3)] = {(1,0), (2,0), (3,0), 
(4,0),(0,3)},  NG[(0,4)] = {(1,0), (2,0), (3,0), (4,0), (0,5), (1,5), 
(2,5), (3,5), (4,5), (0,4)},  NG[(0,5)] = {(1,0), (2,0),(3,0), (4,0), 
(1,2), (1,4),(1,6), (1,8), (2,2), (2,4), (2,6), (2,8), (3,2), (3,4), 
(3,6), (3,8), (4,2), (4,4), (4,6), (4,8), (0,2), (0,4), (0,6), (0,8), 
(0,5)},  NG[(0,6)] = {(1,0),(2,0),(3,0), (4,0), (1,5),(2,5), (3,5), 
(4,5), (0,5),(0,6)},  NG[(0,7)] = {(1,0), (2,0), (3,0), (4,0), (0,7)}, 
NG[(0,8)] = {(1,0), (2,0), (3,0), (4,0), (1,5), (2,5), (3,5), (4,5), 

(0,5),(0,8)}, NG[(0,9)] = {(1,0), (2,0), (3,0), (4,0), (0,9)}.The 
neighborhood  of V  is given by NG(V) = {(1,0), (2,0), (3,0), 
(4,0), (1,2), (1,4), (1,5), (1,6), (1,8), (2,2), (2,4), (2,5), (2,6), 
(2,8), (3,2), (3,4),(3,5),(3,6),(3,8), (4,2), (4,4), (4,5),(4,6), (4,8), 
(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8), (0,9)}. The 

maximum degree is  (G) = 24 and minimum degree is    

 (G) = 1. The adjacency matrix for the zero-divisor graph of 

R2 = Z5×Z10 is M2 ═  

333399249

9242424














BA

AO
T ,             

   A24 9   =



















































































000010000

000010000

010101010

000010000

000010000

000010000

000010000

010101010

000010000

000010000

000010000

000010000

010101010

000010000

000010000

000010000

000010000

010101010

000010000

000010000

111111111

111111111

111111111

111111111

,        

                 B99 =



































000000000

000010000

000000000

000010000

010101010

000010000

000000000

000010000

000000000

 and  

O2424   is the zero matrix and AT 924 is the transpose of A249. 

 

Properties of adjacency matrix M2: 
 
(i) The determinant of the adjacency matrix M2 corresponding 

to G = Γ(R2) is 0. 

(ii) The rank of the adjacency matrix M2   corresponding to    

G = Γ(R2) is 2. 

(iii) The adjacency matrix M2 corresponding to G = Γ(R2)           

is symmetric and singular.  

 

Generalization for R2 = Zp×Z2p ( p is an odd 

prime number):  
 

Lemma 3.1: The number of vertices of G = ( pZ 2 ) is p and 

G = ( pZ 2 ) is K1, p – 1, where p is an odd prime number. 

 
Proof: The multiples of 2 less than 2p are 2, 4, 6, ……,      

2(p – 1 ). The non-zero zero-divisors of pZ 2  are p and 2, 4, 

6, ……,2(p – 1 ). If G = ( pZ 2 ) is the zero-divisor graph 

of pZ 2 , then the vertices of G = ( pZ 2 ) are the non-zero 

zero-divisors of pZ 2 . So, the vertex set of G =   ( pZ 2 ) is  

Z( pZ 2 )* and p and 2, 4, 6, ……,2(p – 1 ) are the vertices of 

( pZ 2 ). Hence, the number of vertices of G = ( pZ 2 ) is p. 

Also, in G = ( pZ 2 ), p is adjacent to remaining vertices 2, 4, 

6, ……,2(p – 1 ). This gives G = ( pZ 2 ) is K1, p – 1.  

 
Theorem 3.2: Let R2 be a finite commutative ring such that R2 = 

pp ZZ 2 (p is an odd prime number). Let G = (R2) be the 

zero-divisor graph with vertex set Z(R2)*. Then number of 

vertices of   G = (R2)   is p
2+2p – 2, (G) = p2–1 and (G) = 1.  
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Proof: Let R2 be a finite commutative ring such that that R2 = 

pp ZZ 2 (p is an odd prime number). Let R2* = R2 – {0}. 

Then R2* can be partitioned into  disjoint sets A, B, C, D and E 

such that A = {(u, 0) : u  Zp* }, B = {(0, v) : v 
*

2 pZ  and       

v Z ( pZ 2 )* }, C = {(0, w) : w 
*

2 pZ  and w  Z ( pZ 2 )* },  

D = {(a ,b) : a  Zp*, b
*

2 pZ  and b   Z ( pZ 2 )* } and E = 

{(c ,d) : c  Zp*, d 
*

2 pZ  and d   Z ( pZ 2 )*} respectively. 

Clearly, all the elements in A, B, C are non-zero zero-divisors. 

Let (a, b)  D. Then (a, b) is of the form either (a, p) or (a, q), 

where q = 2m, 1 ≤ m ≤ p – 1.  Again let (0, w)  C. Similarly,   

(0, w) is of the form either (0, p) or (0, q), where q = 2m, 1 ≤ m ≤    

p – 1. Now pp and q2 . This gives pqp2 . Therefore,     

(a, p) (0, q) = (0, 0) and (a, q) (0, p) = (0, 0). Hence, every 

element of D is a non-zero zero-divisor. But product of any two 
elements of E is not equal to zero. Also, product of any element 
of E with any element of A, B, C and D is not equal to zero 

because, cu  0 for c, u  Zp*,  dv  0 for  d,  v 
*

2 pZ  and   d, 

v Z ( pZ 2 )*,  dw  0 for d, w 
*

2 pZ  and d  Z ( pZ 2 )*,    

w   Z ( pZ 2 )* and      ca  0 for c, a  Zp* respectively. So, no 

element of E is a non-zero zero-divisor. Let G = (R2) be the 

zero-divisor graph with vertex set Z(R2)*.Then Z(R2)* can be 
partitioned into four disjoint sets A, B, C and D. Now using the 

Lemma 3.1 we have A=Zp*= p – 1,    B = 
*

2 pZ  –

 Z ( pZ 2 )* = (2p-1) – p = p – 1, C= Z ( pZ 2 )* = p,   

D= Zp* Z ( pZ 2 )* = (p – 1) p = p2 – p.   

Therefore, Z(R2)*= A+B+C+D= (p – 1) +        

(p – 1) + p + (p2 – p)  =  p2+2p – 2  

So, the number of vertices of G = (R2) is p
2+2p – 2.  

 
Let s = (u, 0) be any vertex of A. 
(i)  Every vertex of A is adjacent to every vertex of B. So, s is 
adjacent to p – 1 vertices of B.  
(ii) Every vertex of A is adjacent to every vertex of C. So, s is 

adjacent to p vertices of C.     

(iii) Any vertex of A is not adjacent to any vertex of D as ua  0 

for u, a  Zp*. 

Therefore, degG (s) = (p - 1) + p = 2p -1.  
 
Let t = (0, v) be any vertex of B.  
(i) Every vertex of B is adjacent to every vertex of A. So, t is 
adjacent to p – 1 vertices of A 

(ii) Any vertex of B is not adjacent to any vertex of C as vw  0 

for and v, w
*

2 pZ   and v   Z ( pZ 2 )*, w  Z ( pZ 2 )* 

(iii) Any vertex of B is not adjacent to any vertex of D as vb  0 

for v, b
*

2 pZ and v  Z ( pZ 2 )*, b  Z ( pZ 2 )*. 

Therefore, degG (t) = p - 1 
 
Let x = (0, w) be any vertex of C. Then either x = (0, p) or          
x =   (0, q), where q = 2m, 1 ≤ m ≤  p – 1  

(i)  Every vertex of C is adjacent to every vertex of A. So, x is 
adjacent to p – 1 vertices of A.  

(ii) Case 1: If x = (0, p), then it is adjacent to p - 1 vertices of C.       

      Case 2: If x = (0, q), then it is adjacent to only one vertex of 
C. 

(iii) Case 1: If x = (0, p), then it is adjacent to  Zp*
2 = (p – 1)2      

vertices of D. 

       Case 2: If x = (0, q), then it is adjacent to Zp*= p – 1 

vertices of D. 

(iv) Any vertex of C is not adjacent to any vertex of B as wv  0 

for w, v 
*

2 pZ   and w   Z ( pZ 2 )*, v  Z ( pZ 2 )*. 

Therefore, if x = (0, p), then degG (x) = (p - 1) + (p - 1) + (p – 1)2 
= p2 – 1 and if x = (0, q), then degG (x) = (p - 1) + 1 + (p - 1) =  
2p – 1.  
 
Let y = (a, b) be any vertex of D. Then either y = (a, p) or y =  

(a, q), where a Zp* and q = 2m, 1 ≤ m ≤ p – 1 

 (i) Case 1: If y = (a, p), then it is adjacent to p - 1 vertices of C.  

     Case 2: If y = (a, q), then it is adjacent to only one vertex of 
C. 

(ii) Any vertex of D is not adjacent to any vertex of A as au  0 

for u, a  Zp*  

(iii) Any vertex of D is not adjacent to any vertex of B as bv  0 

for b, v 
*

2 pZ  and b   Z ( pZ 2 )*, v Z ( pZ 2 )*. 

Therefore, if y = (a, p), then degG (y) = p - 1 and if y = (a, q), 
then degG (y) = 1.  
 

Hence, we have (G) = p2 – 1 and (G) = 1. 

 
Theorem 3.3: Let M2 be of the adjacency matrix for the zero-

divisor graph G = Γ(R2)  of R2 = pp ZZ 2
 
(p is an odd prime 

number). Then (i) determinant of M2 is zero (ii) M2 is symmetric 

and singular. 

 
Proof: Follows from Theorem 2.3. 

 
Theorem 3.4: Let R2 be a finite commutative ring such that  

R2 = pp ZZ 2  (p is an odd prime number). Let G = (R2) 

be the zero-divisor graph with vertex set V = Z(R2)*.Then 

nG(V) = 2p + (G) – (G), where nG(V) is the neighborhood 

number, (G)  and  (G) denote the maximum and minimum 
degree of G respectively. 
 
.Proof: Let R2 be a finite commutative ring such that R2 = 

pp ZZ 2  (p is an odd prime number). Let G   = (R2) be the 

zero-divisor graph with vertex set V = Z(R2)*. Since, G = Γ(R2) 

is connected [1], we have nG(V) = )(VNG  = V =
*

2 )(RZ . 

But from Theorem 3.2, we have 
*

2 )(RZ = p2 +2p – 2. 

Therefore, nG(V) = p2 +2p – 2.This implies nG(V) =2p + (p2 –1)  

– 1. Also (G) = p2 – 1 and   (G) = 1 [from Theorem 3.2]. This 

gives nG(V) = 2p  +  (G) – (G).  

 

Remark: If p = 2, then R2 = Z2  Z4.  So, this case coincides 

with the case 1 of section 2. 
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4. CONSTRUCTION OF ZERO -DIVISOR 

GRAPH FOR R3 =
22


pp ZZ  ( FOR THAT 

ODD PRIME p FOR WHICH p
2 

– 2 IS A 

PRIME NUMBER): 

  
Thirdly, we construct the zero-divisor graph for the 

ring R3 =
22


pp ZZ  (for that odd prime p for which p2– 2 

is a prime number) and analyze the graph. We start with the 
cases p = 3 and p = 5 and then generalize the cases. 

 
Case1: When p = 3 we have R3 = Z3×Z7.  

The ring R3   has 8 non-zero zero-divisors. In this case V = 
Z(R3)* = {(1,0), (2,0), (0,1), (0,2),(0,3), (0,4), (0,5),(0,6)}  and 

the zero-divisor graph G = Γ(R3)  is given by:  

 

 

 
 
                                Fig: 5 

  
The closed neighborhoods of the vertices are 

NG[(1,0)] = {(0,1), (0,2), (0,3), (0,5), (0,6), (1,0)}, NG[(2,0)] = 

{(0,1), (0,2), (0,3), (0,5),(0,6),(2,0)},  NG[(0,1)] = {(1,0), (2,0), 
(0,1)}, NG[(0,2)] = {(1,0), (2,0), (0,2)}, NG[(0,3)] = {(1,0), 
(2,0), (0,3)}, NG[(0,4)] = {(1,0), (2,0),(0,4)}, NG[(0,5)]={(1,0), 
(2,0),(0,5)}, NG[(0,6)] ={(1,0),(2,0),(0,6)}. The neighborhood  
of V  is given by NG(V) = {(1,0), (2,0), (0,1), (0,2), (0,3), (0,4), 

(0,5),(0,6)}.The maximum degree is  (G) = 6 and minimum 

degree is  (G) =  2. The adjacency matrix for the zero-

divisor graph of R3 = Z3×Z7   is M3 ═ 

886626

6222














OA

AO
T

where 

all the entries of 62A is 1,  26
TA  is the transpose of 62A  

and 22O , 66O  are the zero matrices. 

 

Properties of adjacency matrix M3: 

 
(i)  The determinant of the adjacency matrix M3 corresponding 

to G = Γ(R3) is 0. 

(ii) The rank of the adjacency matrix M3   corresponding to G  
= Γ(R3) is 2. 

(iii) The adjacency matrix M3 corresponding to G = Γ(R3) is 

symmetric and singular. 
  
Case2: When p = 5 we have R3 = Z5×Z23.  
The ring R3   has 26 non-zero zero-divisors. In this case  V = 
Z(R3)* = {(1,0), (2,0), (3,0), (4,0), (0,1),(0,2),(0,3),(0,4), (0,5), 
(0,6), (0,7), (0,8), (0,9), (0,10), (0,11), (0,12), (0,13), (0,14), 

(0,15), (0,16), (0,17), (0,18), (0,19),(0,20), (0,21), (0,22)}   

and the zero-divisor graph G = Γ(R3)  is  given by: 

 

  
 
 

                  Fig: 6 

 

The closed neighborhoods of the vertices are 
NG[(1,0)] = {(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8), 
(0,9), (0,10), (0,11), (0,12), (0,13), (0,14), (0,15), (0,16), 

(0,17), (0,18)}, (0,19), (0,20), (0,21),(0,22),(1,0)}, NG[(2,0)] = 
{(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7),(0,8),(0,9), (0,10), 
(0,11), (0,12), (0,13), (0,14), (0,15), (0,16), (0,17),(0,18)}, 
(0,19), (0,20), (0,21), (0,22), (2,0)},  NG[(3,0)] = {(0,1), (0,2),  
(0,3), (0,4), (0,5), (0,6), (0,7),(0,8),(0,9), (0,10), (0,11), (0,12), 
(0,13), (0,14), (0,15), (0,16), (0,17), (0,18)}, (0,19), (0,20), 
(0,21), (0,22), (3,0)}, NG[(4,0)] = {(0,1), (0,2), (0,3), (0,4), 
(0,5), (0,6), (0,7), (0,8), (0,9), (0,10), (0,11), (0,12), (0,13), 

(0,14), (0,15), (0,16), (0,17), (0,18)}, (0,19), (0,20), (0,21), 
(0,22), (4,0)}, NG[(0,1)] = {(1,0), (2,0), (3,0), (4,0), (0,1)},  
NG[(0,2)] = {(1,0), (2,0), (3,0), (4,0), (0,2)},  NG[(0,3)] = 
{(1,0), (2,0), (3,0), (4,0), (0,3)},  NG[(0,4)] = {(1,0), (2,0), 
(3,0),(4,0),(0,4)}, NG[(0,5)] = {(1,0),(2,0),(3,0), (4,0),(0,5)}, 
NG[(0,6)] = {(1,0), (2,0),(3,0),(4,0),(0,6)},  NG[(0,7)] = {(1,0), 
(2,0), (3,0), (4,0), (0,7)}, NG[(0,8)] ={(1,0),(2,0),(3,0),(4,0), 
(0,8)}, NG[(0,9)] = {(1,0), (2,0), (3,0),(4,0),(0,9)}, NG[(0,10)] 

={(1,0), (2,0), (3,0), (4,0),(0,10)},  NG[(0,11)] = {(1,0), (2,0), 
(3,0), (4,0), (0,11)},  NG[(0,12)] = {(1,0),(2,0), (3,0), (4,0), 
(0,12)}, NG[(0,13)] = {(1,0), (2,0), (3,0),(4,0),(0,13)}, 
NG[(0,14)] ={(1,0), (2,0), (3,0), (4,0),(0,14)}, NG[(0,15)] = 
{(1,0), (2,0), (3,0), (4,0), (0,15)}, NG[(0,16)] = {(1,0), (2,0), 
(3,0), (4,0), (0,16)}, NG[(0,17)] = {(1,0), (2,0), (3,0), (4,0), 
(0,17)},  NG[(0,18)] = {(1,0), (2,0), (3,0), (4,0), (0,18)}, 
NG[(0,19)] = {(1,0), (2,0), (3,0),(4,0),(0,19)},  NG[(0,20)] = 

{(1,0), (2,0), (3,0), (4,0), (0,20)}, NG[(0,21)] = {(1,0), (2,0), 
(3,0), (4,0), (0,21)}, NG[(0,22)] ={(1,0), (2,0), (3,0), (4,0), 
(0,22)}. The neighborhood of V  is given by NG(V)  = {(1,0), 
(2,0), (3,0), (4,0), (0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), 
(0,8), (0,9), (0,10), (0,11), (0,12), (0,13),(0,14), (0,15), (0,16), 
(0,17), (0,18), (0,19), (0,20), (0,21),(0,22)}. The maximum 
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degree is  (G) = 22 and minimum degree is  (G) = 4. The 

adjacency matrix for the zero-divisor graph of R3 = Z5×Z23   is 

M3   ═

26262222422

22444














OA

AO
T  where all the entries of 

224A is 1,  422
TA  is the transpose of 224A  

and 44O , 2222O  are the zero matrices.  

 

Properties of adjacency matrix M3: 
 
 (i) The determinant of the adjacency matrix M3 corresponding 

to G = Γ(R3) is 0. 

(ii) The rank of the adjacency matrix M3   corresponding to G 
= Γ(R3) is 2. 

(iii) The adjacency matrix M3 corresponding to G = Γ(R3) is 

symmetric and singular. 
  

Generalization for R3 =
22


pp ZZ  (for that 

odd prime p for which p
2
–2 is a prime 

number):  
 
Theorem 4.1: Let R3 be a finite commutative ring such that R3 = 

22


pp ZZ (for that odd prime p for which p2 – 2 is a prime 

number). Let G = (R3) be the zero-divisor graph with vertex set 

Z(R3)*. Then number of vertices of G = (R3)   is p2 + p – 4,   

(G) = p2 – 3 and (G) = p – 1.  

 
Proof: Let R3 be a finite commutative ring such that that R3 = 

22


pp ZZ (for that odd prime p for which p2 – 2 is a prime 

number). Let R3*= R3 – {0}. Then R3* can be partitioned into 

disjoint sets A, B and C such that A = {(u, 0): u  Zp*}, B =    

{(0, v): v  2
*

2pZ } and C = {(a, b) : a  Zp* and 

b 2
*

2pZ } respectively. Clearly, all the elements of A and B 

are non-zero zero-divisors.  But product of any two elements of 
C is not equal to zero. Also, product of any element of C with 

any element of A and B is not equal to zero because, au  0 for  

a, u  Zp*,   bv  0 for b, v  2
*

2pZ  respectively. So, no 

element of C is a non-zero zero-divisor. Let G = (R3) be the 

zero-divisor graph with vertex set Z(R3)*.Then Z(R3)* can be 

partitioned into two disjoint sets A and B. Now, A=  Zp*= 

p – 1 and B=  2
*

2pZ  = p2 – 3. Therefore, Z(R3)* = 

A+B= Zp*+ 2
*

2pZ = (p - 1) + (p2 - 3) = p2 + p – 4.  

So, the number of vertices of G = (R3) is p
2 + p – 4.  

 
Let x = (u, 0) be any vertex of A. 
(i)  Every vertex of A is adjacent to every vertex of B. So, x is 

adjacent to p2 – 3 vertices of B. Therefore, degG (x) = p2 – 3. 
 
Let y = (0, v) be any vertex of B.  
(i)  Every vertex of B is adjacent to every vertex of A. So, y is 
adjacent to p – 1 vertices of A.  Therefore, degG (y) = p – 1. 
 

Hence, we have (G) = p2 – 3 and (G) = p – 1.  

 

Theorem 4 .2: Let M3 be of the adjacency matrix for the zero-

divisor graph G = Γ(R3)  of R3 = 
22


pp ZZ  (for that odd 

prime p for which p2 – 2 is a prime number). Then (i) 
determinant of M3 is zero (ii) M3   is symmetric and singular.  

 
Proof: Follows from Theorem 2.3. 

 
Theorem 4.3: Let R3 be a finite commutative ring such that R3 

=
22


pp ZZ  (for that odd prime p for which p2 – 2 is a 

prime number). Let G = (R3) be the zero-divisor graph with 

vertex set V = Z(R3)*. Then nG(V) =  (G) + (G), where 

nG(V) is the neighborhood number, (G)  and (G)  denote 
the maximum and minimum  degree of G respectively.  

 
Proof: Let R3 be a finite commutative ring such that R3 

=
22


pp ZZ  (for that odd prime p for which p2 – 2 is a prime 

number). Let G = (R3) be the zero-divisor graph with vertex set   

V = Z(R3)*. Since, G = Γ(R3) is connected [1],  we have       

nG(V) = )(VNG  = V =
*

3 )(RZ . But from Theorem 4.1, 

we have 
*

3 )(RZ = p2+p – 4. Therefore, nG(V) = p2+p – 4. 

This implies nG(V) =   (p2 – 3) + (p –1). Also, (G) = p2 – 3 and 

(G) = p –1 [from Theorem 4.1]. This gives nG(V) =  (G) + 

(G).   

 

Remark: If p = 2, then R3 = Z2Z2. In this case V = Z(R3)* =   

{(0, 1),(1, 0)} and G = (R3) is a 1- regular graph. Also, nG(V) 

= 2 = 2 (G) = 2 (G). 

 

 

 5.  DEFINITIONS AND RELATIONS:  

 
Let R be a commutative ring with unity and let aR. 

Then annihilator of a is denoted by ann(a) and defined by 

ann(a) = {x R :ax = 0}. Let ann*(a) = {x ( 0) R: ax = 0}. 

The degree of a vertex v  of a graph G denoted by  
deg(v) is the number of lines incident with v.  

Given a zero-divisor graph Γ(R) with vertex set 
Z(R)*, then degree of a vertex v of Γ(R) is given by deg(v) = 

ann*(v). 

Let A and B   be two commutative rings with unity. 

Then the direct product A  B of A and B is also a 

commutative ring with unity. 
 Let G be a graph and V(G) be the vertex set of G. 

Let a, b V(G). We define a relation R on V(G) as follows. 

For a, b V(G), a is related to b under the relation R  if and 

only if a and b are not adjacent and for any  x V(G),   a and x 

are adjacent if and only if b and x are adjacent. We denote this 
relation by aR b. 

 

 

 6. Results of annihilators on Γ(A B):  
 
Theorem 6.1: The relation R is an equivalence relation on 

V(G), where G is any  graph. 

 

Proof: For every a  V(G), we have aR a, as G has no self- 

loop. For a, b  V(G),  aR b, then clearly, bR a. Again let    



International Journal of Computer Applications Technology and Research 

Volume 2– Issue 3, 315 - 323, 2013, ISSN:  2319–8656 

www.ijcat.com  323 

 

aRb and bR c. If possible suppose,  a and c are adjacent. Then 

we have b and c are also adjacent, a contradiction. So, a and c 

are not adjacent.  Also for x V(G), a and x are adjacent  b 

and x are adjacent  c and x are adjacent. Therefore, aR c.  

Hence, the relation R is an equivalence relation on V(G).  

 

Theorem 6.2: For distinct a, bZ (A  B)*, aR b in Γ(A  B) 

if and only if ann(a) – {a} =  ann(b) – {b}. Moreover, if aR b 

in Γ(R1 R2), then ann(a1) – {a1} =  ann(b1) – {b1}  and  

ann(a2) – {a2} =  ann(b2) – {b2}, where a = (a1,a2), b = 

(b1,b2),  a1,a2  A and  b1,b2  B.  

 

Proof: First suppose, for distinct a, b  Z(A  B)*, aR b in  

Γ(A  B). Let x ann(a) – {a}. This gives ax = 0, a  x.  So,  

a and x are adjacent. Since aR b we have b and x are adjacent. 

Therefore, we have bx = 0, b  x. Hence, x ann(b) – {b}. 

This implies ann(a) – {a}  ann(b) – {b}. Similarly, ann(b) – 

{b}  ann(a) – {a}. This gives ann(a) – {a} =  ann(b) – {b}. 

 Conversely suppose, ann(a) – {a} =  ann(b) – {b}.  

Assume that a and b are adjacent. This gives ab = 0         

b ann(a) – {a} = ann(b) – {b}, a contradiction. So,  a  and b 

are not adjacent. Again for x Z(A  B)*, a and x are adjacent 

   ax = 0  x ann(b) – {b}  bx = 0  b and x are 

adjacent. This gives aR b in Γ(A B).  

If a = (a1, a2), b = (b1,b2)  Z(A  B)* , let x ann(a) 

– {a}, where x = (x1,x2). Then   ax = 0, a  x. Therefore, a and 

x are adjacent. Since aR b in Γ(A  B), we have  a and x are 

adjacent  b and x are adjacent. So, ax = 0  bx = 0. This 

gives a1x1 = 0, a2x2 = 0  b1x1 = 0, b2x2 = 0. Hence we have  

a1x1 = 0  b1x1 = 0, (x1  a1,b1)  in A and a2x2 = 0  b2x2 = 0 

(x2  a2,b2)  in B. Therefore, ann(a1) – {a1} =  ann(b1) – {b1} 

and  ann(a2) – {a2} =  ann(b2) – {b2}. 

 
Example 6.3: Consider the commutative ring Z2×Z4  = {(0,0), 

(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)} and zero-divisor 
graph Γ(Z2×Z4). Here Z(Z2×Z4)* = {(0,1), (0,2), (0,3), (1,0), 
(1,2)}.The possible edges are {(0, 1), (1,0)}, {(0,2), (1,0)}, 
{(0,3), (1,0)} and {(0,2), (1,2)}. The pairs {(0, 1), (0, 2)},       
{(0, 1), (0, 3)}, {(0, 2), (0, 3)} and {(1, 0), (1, 2)} establish the 
existence of relation R and Theorem 6.1:  

 

 

7. CONCLUSIONS:  
 

In this paper, we study the adjacency matrix and 

neighborhood associated with zero-divisor graph for direct 
product of finite commutative rings. Neighborhoods may be 
used to represent graphs in computer algorithms, via the 
adjacency list and adjacency matrix representations. 
Neighborhoods are also used in the clustering coefficient of a 
graph, which is a measure of the average density of its 
neighborhoods. In addition, many important classes of graphs 
may be defined by properties of their neighborhoods.   
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