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Abstract: The main purpose of this paper is to study the zero-divisor graph for direct product of finite commutative rings. In our
present investigation we discuss the zero-divisor graphs for the following direct products: direct product of the ring of integers under
addition and multiplication modulo p and the ring of integers under addition and multiplication modulo p? for a prime number p,
direct product of the ring of integers under addition and multiplication modulo p and the ring of integers under addition and
multiplication modulo 2p for an odd prime number p and direct product of the ring of integers under addition and multiplication
modulo p and the ring of integers under addition and multiplication modulo p? — 2 for that odd prime p for which p?— 2 is a prime
number. The aim of this paper is to give some new ideas about the neighborhood, the neighborhood number and the adjacency matrix
corresponding to zero-divisor graphs for the above mentioned direct products. Finally, we prove some results of annihilators on zero-

divisor graph for direct product of A and B for any two commutative rings A and B with unity
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1. INTRODUCTION

The idea of zero-divisor graph of a commutative
ring was first introduced by 1. Beck [2] in 1988. D. F.
Anderson and P.S. Livinsgston [1] redefined the concept of
zero-divisor graph in 1999. F. R. DeMeyer, T. Mckenzie and
K. Schneider [3] extended the concept of zero-divisor graph
for commutative semi-group in 2002. The notion of zero-
divisor graph had been extended for non-commutative rings
by S. P. Redmond [9] in 2002. Recently, P. Sharma, A.
Sharma and R. K. Vats [10] have discussed the neighborhood
set, the neighborhood number and the adjacency matrix of

zero-divisor graphs for the rings Zp><Zp and

Z ,[i]x Z ,[i], where pis a prime number.
In this paper R; denotes the finite commutative ring
suchthat R, = Z p X Z 02 ('p is a prime number), R, denotes

the finite commutative ring such that R, = Z p X Z2p (pis
an odd prime number) and R; denotes the finite commutative
ring such that Rs :Zp X sziz( for that odd prime p for

which p?— 2 is a prime number). Let R be a commutative ring
with unity and Z(R) be the set of zero-divisors of R; that is
Z(R) = {x€R: xy = 0 or yx = 0 for some yeER* = R —
{0}}.Then zero-divisor graph of R is an undirected graph
I'(R) with vertex set Z(R)* = Z(R) — {0} such that distinct
vertices x and y of Z(R)* are adjacent if and only if xy = 0.
The neighborhood (or open neighborhood) Ng(v) of a vertex
v of a graph G is the set of vertices adjacent to v. The closed
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neighborhood Ng[v] of a vertex v is the set Ng(v) U {v}. For
a set S of vertices, the neighborhood of S is the union of the
neighborhoods of the vertices and so it is the set of all vertices
adjacent to at least one member of S. For a graph G with
vertex set V, the union of the neighborhoods of all the vertices
is neighborhood of V and it is denoted by Ng(V). The
neighborhood number ng(V) is the cardinality of Ng(V). If the
graph G with vertex set V is connected, then Ng(V) is the
vertex set V and the cardinality of Ng(V) is equal to the
cardinality of V. If T(R) is the zero-divisor graph of a
commutative ring R with vertex set Z(R)* and since zero-
divisor graph is always connected [1], we have Nrg)(Z(R)*) =
Z(R)* and FNF(R)(Z(R)*) | = | Z(R)*) |. Throughout this paper
A (G) denotes the maximum degree of a graph G and O (G)
denotes the minimum degree of a graph G. The adjacency
matrix corresponding to zero-divisor graph G is defined as
A = [a;], where a;=1, if v; v = 0 for any vertex v; and v; of
G and a;;= 0, otherwise.

In this paper, we construct zero-divisor graphs for
the rings Ry, R, and R;. We obtain the neighborhood and the
adjacency matrices corresponding to zero-divisor graphs of
R1, R, and R3. Some properties of adjacency matrices are also
obtained. We prove some theorems related to neighborhood
and adjacency matrices corresponding to zero-divisor graphs
of Ry, R, and Rs. Finally, we prove some results of annihilators
on zero-divisor graph of A x B, for any two commutative rings
A and B with unity.
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2. CONSTRUCTION OF ZERO -DIVISOR
GRAPH FOR R =2 ><Zpz (p IS APRIME

NUMBER):

First, we construct the zero-divisor graph for the
ringR,= Z o X Z o2 (p is a prime number) and analyze the

graph. We start with the cases p = 2 and p = 3 and then
generalize the cases.

Casel: When p =2 we have Ry = Z,xZ,,

The ring R; has 5 non-zero zero-divisors. In this case V =
Z(R)* = {(1,0), (0,2), (0,2), (0,3), (1,2)} and the zero-divisor
graph G =T'(R,) is given by:

Fifxd g

Fig: 1

The closed neighborhoods of the vertices are
Ne[(1,0)] ={(1,0), (0,1), (0,2),(0,3)}, Ns[(0,1)] ={(1,0),(0,1)},
Ns[(0.2)] ={(1.0), (1.2), (0.2)}, Ng[(0,3)] = {(1,0),(0,3)} and
Nel(1,2)] = {(0,2),(1,2)}. The neighborhood of V is given by
Ne(V) ={(1,0), (0,1), (0,2), (0,3), (1,2)}. The maximum degree
is A(G) = 3 and minimum degree is O (G) = 1. The
adjacency matrix for the zero-divisor graph of Ry = Z,xZ, is

0 A1><3 O
Mi=| Alsci O, By, | where, A =[111],
T
0 B'ws 0 |,
0
By =| 1|, A'sa is the transpose of A, B'wa is
0

the transpose of B, ; and O, is the zero matrix.

Properties of adjacency matrix My:

(i) The determinant of the adjacency matrix M; corresponding
to G=T(Ry)isO.

(ii) The rank of the adjacency matrix M; corresponding to G =
I'(Ry) is 2.
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(iii) The adjacency matrix M; corresponding to G = ['(Ry) is
symmetric and singular.

Case2: When p = 3 we have R; = Z3xZg,

The ring R; has 14 non-zero zero-divisors. In this case V =
Z(Ry)* = {(1,0), (2,0), (1.3). (1,6), (2.3), (2.6), (0.1), (0,2),
(0,3), (0,4), (0,5),(0,6),(0,7),(0,8)} and the zero-divisor graph
G =T(Ry) is given by:
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Fig: 2

The closed neighborhoods of the vertices are
Ns[(1,0)] = {(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8),
(1,0)}, Ng[(2,00] ={(0,1), (0,2), (0,3), (0,4), (0.5), (0,6), (0,7),
(0!8)1(2!0)}1 NG[(113)] = {(013)1(016)1(113)}! NG[(llG)] = {(013)1
(0!6)1(1!6)}1 NG[(213)] = {(013)1(016)1(213)}! NG[(216)] = {(013)1
(0!6)1(2!6)}1 NG[(Oll)] = {(110)1(210)1(011)}! NG[(OlZ)] = {(110)1
(2,0),(0,2)}, N6[(0,3)] = {(1,0), (2,0), (1,3), (1.6), (2,3), (2,6),
(0v6)v(0v3)}v NG[(014)] :{(110)1(210)1(014)}v NG[(OIS)] :{(110):
(20),(0,9)} Ng[(0,6)] = {(1,0), (2,0), (1.3), (1.,6), (2,3), (2,6),
(0,3),(0,6)}, NG[(017)]:{(110)1 (210)1 (017)}1 NG[(018)] :{(110):
(2,0), (0,8)}. The neighborhood of V is given by Ng(V) =
{(1,0), (0.2), (1.3), (1.6), (2.3), (26). (0,1), (0,2), (0,3), (0.4),
(0,5), (0,6), (0,7), (0,8)}. The maximum degree is A (G) =8

and minimum degree is O (G) = 2. The adjacency matrix for

the zero-divisor graph of R; = Z3xZg is M; =
1111 1]
O 6 x6 AG><5 BG><3 11111
T =
ATM OTM Cocs Where Ass S 0 10 o)
B'axe Claxs Oy, i 00100
00100
00100
71 1 17 0 0 O
B 11l C 000 Og.6, Os.5, O
X = 1 X = ’ , 3 X are
6x3 10 0 5x3 1 O 0 66 5x5 3x3
1 0 O 00O
1 00 00 0
1 00

the zero matrices and A's,e, B's.6, C's.s are the transposes of
As s, Bg.a, Cs.a respectively.

Properties of adjacency matrix My:
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(i) The determinant of the adjacency matrix M, corresponding
to G=T(Ry) is 0.

(ii) The rank of the adjacency matrix M; corresponding to G =
L(Ry) is 2.

(iii) The adjacency matrix M; corresponding to G = I'(R;) is
symmetric and singular.

Generalization for Ry = Zpx sz( p is a prime
number):

Lemma 2.1: The number of vertices of G = T'(Z 02 )isp-1

andG=T(Z 02 ) is K, 1, where p is a prime number [4]

Proof: The multiples of p less than p® are p, 2p, 3p.......... s
(p - 1)p. These multiples of p are the only non-zero zero-

divisors onpz. If G = F(sz) is the zero-divisor graph
onp2 , then the vertices of G = F(sz) are the non-zero
zero-divisors OfZp2 . So, the vertex set of G = F(sz) is
zZ(Z 02 )* and p, 2p, 3p.......... ,(p - 1)p are the vertices of
G=1(Z o ). Hence, the number of vertices of G = I'( Z o )
isp-1. Also, in G = F(sz ), every vertex is adjacent to
every other vertex. This gives G = I'(Z 02 ) is Kp

Theorem 2.2: Let R; be a finite commutative ring such that
Ri=Z o X Z o (p is a prime number). Let G = I'(R,) be the

zero-divisor graph with vertex set Z(R,)*. Then number of
vertices of G =T(Ry) is2p?—p -1, A(G) = p*- 1 and
3(G)=p-1

Proof: Let R; be a finite commutative ring such that R; =
Z o X Z o2 (P is a prime number). Let Ry*= Ry — {0}. Then
R1* can be partitioned into disjoint sets A, B, C, D and E such
that A={(u,0):ueZ*} B={0 V):v esz* and v ¢

Z(Z )% C:{(O,W)ZWEZpZ* andw e Z (Z ,)*},
D:{(a,b):anp*,besz*andbeZ(ZpZ)*}and E=

{cd):cez*de sz* and de Z (sz )* }. Clearly, all

the elements in A, B, C are non-zero zero-divisors. Let
(a,b) e Dand (0, w) < C. Hereb,w e Z (Z ,)*. So, p/b

and p/W. This gives pz/bW. Therefore, (a, b) (0, w) =

(0, 0). Hence, every element of D is a non-zero zero-divisor.
But product of any two elements of E is not equal to zero.
Also, product of any element of E with any element of A, B, C
and Dis not equal to zero because, cu=0forc,u e Z,*,

dv = 0 for d,Vesz* andd, v eZ(Z ;)% dw=0ford,w

esz* andde‘Z(sz)*,WGZ(ZpZ)*and ca = 0 for
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C, a € Z,* respectively. So, no element of E is a non-zero
zero-divisor. Let G = I'(R;) be the zero-divisor graph with
vertex set Z(R;)*.Then Z(R;)* can be partitioned into four
disjoint sets A, B, C and D. Now using the Lemma 2.1 we

have |Al=| z*|=p-1, |BI =|sz |—|Z(sz)* |=

-1 - -D=p-1-p+1=p"-p lcl=
IZ(sz)*I =p-t1lpl=l z*I| Z(sz)*l =(p-1)

(p-1)=p-2p+1.
Therefore, |Z(R)*|=|Al+|Bl+[cl+ID] = (p - 1) +
(P*=p)+(-1)+(-2p+1)=2p°—p-1.

So, the number of vertices of G = I'(Ry) is 2p°—p — 1.

Let s = (u, 0) be any vertex of A.

(i) Every vertex of A is adjacent to every vertex of B. So, s is
adjacent to p*- p vertices of B.

(ii) Every vertex of A is adjacent to every vertex of C. So, s is
adjacent to p -1 vertices of C.

(iiif) Any vertex of A is not adjacent to any vertex of D as ua = 0
foru, a e Z,*

Therefore, degg (s) = (p*- p) + (p -1) = p* 1.

Let t = (0, v) be any vertex of B.

(i) Every vertex of B is adjacent to every vertex of A. So, t is
adjacent to p — 1 vertices of A.

(i) Any vertex of B is not adjacent to any vertex of C as vw = 0

fOfV,Wesz* andv ¢ Z(sz)*,WeZ(sz)*.

(iii) Any vertex of B is not adjacent to any vertex of D asvb = 0
forv, b esz* andve Z(Z ;)% beZ(Z )"

Therefore, degg (t) =p - 1.

Let x = (0, w) be any vertex of C.

(i) Every vertex of C is adjacent to every vertex of A. So, x is
adjacent to p — 1 vertices of A.

(if) Any two vertices of C are adjacent to each other. So, x is
adjacent to p — 2 vertices of C.

(iii) Every vertex of C is adjacent to every vertex of D. So, X is
adjacent to p?- 2p + 1 vertices of D.

(iv) Any vertex of C is not adjacent to any vertex of B as wv = 0

forw,v.esz* andWEZ(sz)*,v ¢ Z(sz)*.
Therefore, dege (x) = (P -1) + (p—2) + (p- 2p + 1) =p’- 2.

Lety = (a, b) be any vertex of D.

(i) Every vertex of D is adjacent to every vertex of C. So, y is
adjacent to p — 1 vertices of C.

(i) Any vertex of D is not adjacent to any vertex of A as au = 0

foru, a e Z,*.
(iii) Any vertex of D is not adjacent to any vertex of B as bv = 0

for b, ve sz* andbe Z(Z )5 veZ(Z ;)%
Therefore, degg (y) =p -1.

Hence, we have A(G) = p?~1 and §(G) =p - 1.
Theorem 2.3: Let M, be of the adjacency matrix for the zero-

divisor graph G = T'(R;) of Ry = Zp X sz (p is a prime

number). Then (i) determinant of M; is zero (ii) My is
symmetric and singular.
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Proof: Let R; be a finite commutative ring such that R; =
Z p X Z 02 (p is a prime number). Let G = I'(R,) be the zero-

divisor graph with vertex set V. = Z(Ry)* and M; be the
adjacency matrix for the zero-divisor graph of R; =

Zp ><Zp2.

(i) Since, at least two vertices of G = I'(R;) are
adjacent to same vertex of G, so M; contains at least two
identical rows (eg. for Z,xZ, ). Therefore, the determinant of
the adjacency matrix M; is zero.

(ii) Clearly My is symmetric. Since, the determinant
of the adjacency matrix M is zero, M, is singular.

Theorem 2.4: Let R, be a finite commutative ring such that R;
= Zp x sz (p is a prime number). Let G = I'(R,) be the
zero-divisor graph with vertex set V. = Z(Ry)*.Then ng(V) =

2 A (G) - 3(G), where ng(V) is the neighborhood number,

A (G) and 5(G) denote the maximum and minimum degree
of G respectively.

Proof: Let R; be a finite commutative ring such that R; =
Z o X Z . (p is a prime number). Let G = I'(Ry) be the zero-
divisor graph with vertex set V. = Z(Ry)*. Since, G=T(Ry) is

connected [1], we have ng(V) = |NG (V)| = [\/|=‘Z(Rl)*

But from Theorem 2.2, we have ‘Z(Rl)*‘ =2p°-p-1
Therefore, ng(V) = 2p* — p — 1. This implies ng(V) = 2(p* — 1)
—(p - 1). Also, AG) = p> — 1 and 8(G) = p — 1 [from
Theorem 2.2]. This gives ng(V) = 2A (G) - §(G).

3. CONSTRUCTION OF ZERO -DIVISOR
GRAPHFORR;=Z,xZ,, (pISANODD

PRIME NUMBER):

Secondly, we construct the zero-divisor graph for
the ring R, = Zp X Zzp(p is an odd prime number) and

analyze the graph. We start with the cases p =3 and p =5 and
then generalize the cases.

Casel: When p = 3 we have Ry = Z3xZg,

The ring R, has 13 non-zero zero-divisors. In this case V =
Z(Ro)* = {(1,0),(2,0),(1,2),(1,3), (1,4). (2.2), (2.3), (24), (O.1),
(0,2),(0,3),(0,4),(0,5)} and the zero-divisor graph G =T(R,)
is given by:
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The closed neighborhoods of the vertices are
NG[(lro)] = {(Orl)r (012)1 (013)1 (014)1 (015)1 (110)}1 NG[(ZlO)]:
{(0,1), (0,2), (0,3), (0,4),(0,5),(2,0)}, Ng[(1,2)] = {(0,3),(1,2)},
NG[(lrs)] = {(0,2), (014)1 (113)}1 NG[(114)] = {(013)1 (114)}1
NG[(212)] = {(0,3), (212)}1 NG[(213)] = {(012)1(014)r(213)}1
NG[(214)] = {(0,3), (214)}1 NG[(Oll)] = {(110)r (210)1 (011)}1
NG[(Orz)] = {(110)r (210)1 (113)1 (213)1 (013)1 (012)}1 NG[(013)] =
{(1,0), (2,0), (1,2),(1,4),(2,2),(2,4),(0,2),(0,4),(0,3)}, Ng[(0,4)]
={(1,0),(2,0),(1,3),(2,3),(0,3),(0,4)}, Ng[(0,5)] = {(1,0), (2,0),
(0,5)}.The neighborhood of V is given by Ng(V) = {(1,0),
(2,0), (1,2), (1,3), (1,4), (2,2), (2,3), (24), (0,1), (0,2, (0,3),
(0,4), (0,5)}.The maximum degree is A (G) = 8 and minimum

degree is O (G) = 1. The adjacency matrix for the zero-

OBXS ABXS

divisor graph of R, = Z3xZgis M,= AT5 ; B ,
x 5%5
13x13
0 0

where Ag, 5 = , Bsxs =

o O O o o
o O O O

1
0
1
0

O OO0 OO PR K
P OO R OPR K
R O R PR O R Rk
O OO0 OO0 O Rr Rk
O O B O O

o O O O

0 0
Og.s is the zero matrix an

5. IS the transpose of Ag,s,

O Or OO Fr Ok
=

A

Properties of adjacency matrix M,:

(i) The determinant of the adjacency matrix M, corresponding

to G=T(Ry) isO.

(ii) The rank of the adjacency matrix M, corresponding to G

= F(Rz) is 2.

(iii) The adjacency matrix M, corresponding to G = T'(R; ) is
symmetric and singular.

Case2: When p =5 we have Ry = ZgxZyg,

The ring R, has 33 non-zero zero-divisors. In this case V =
Z(Ro)* = {(1.0).(2,0),(3,0),(4,0), (1.2), (1.4), (1.5), (1.6), (1,8),
(22),(2,4),(2,5),(2,6).(2,8),(3,2),(3:4), (3,5). (3.6), (3.8), (4.2),
(4.4), (45), (46), (48), (0.1), (0,2), (0,3), (0.4), (0,5). (0.6),
(0,7), (0,8), (0,9} and the zero-divisor graph G = T'(Ry) is
given by:
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The closed neighborhoods of the vertices are
Ng[(1,0)] ={(0.1), (0,2), (0.3), (0.4), (0,5), (0.6), (0,7), (0,8),
(0,9), (1,00}, Ns[(2,0)] = {(0.,1), (0,2), (0,3), (0,4), (0,5), (0.6),
(0,7), (0,8), (0,9), (2,0)}, Ng[(3,0)] ={(0,1), (0,2), (0.3), (0,4),
(0,5), (0,6), (0,7), (0,8), (0,9), (3,0)}, Ng[(4,0)] = {(0,1), (0.2),
(0,3), (0,4), (0,5), (0,6), (0.7), (0,8), (0,9), (4,0)}, Ng[(1,2)] =
{(0,5), (1v2)}! NG[(114)] = {(015)1 (114)}v NG[(lvB)] = {(012)1
(074)v (016)1 (018)1 (115)}v NG[(116)] = {(015)1 (116)}1 NG[(1!8)]
= {(Ov5)7(118)}1 NG[(ZvZ)] = {(015)1(212)}7 NG[(2!4)] = {(015)1
(274)}}v NG[(215)] = {(012)1 (074)v (016)1 (018)1 (215)}1 Ng[(2,6)]
= {(0,5), (216)}1 NG[(ZvS)] = {(015)1(218)}7 NG[(?’!Z)] = {(015)1
(3v2)}! NG[(314)] = {(0,5), (314)}1 NG[(315)] = {(012)1 (014)1
(0,6),(0,8),(3,5)}, NG[(316)] :{(015)1 (316)}1 NG[(S!S)] = {(015)1
(378)}1 NG[(412)] = {(0,5), (412)}}1 NG[(414)] = {(0v5)v (4v4)}v
Ne[(4,5)] = {(0,2), (0,4), (0.6). (0.8), (4.5)}, Nc[(4.6)] = {(0.5),
(476)}1 NG[(418)] = {(0,5), (418)}1 NG[(Ovl)] = {(170)1 (2,0),
(3.0), (4,0), (0.} Ng[(0,2)] = {(1,0), (2,0), (3,0), (4,0), (0,5),
(15), (2.9), (355), (4,5), (0.2)}, Ng[(0,3)] ={(1,0), (2,0), (3,0),
(4.0),(0.3)}, Ng[(0,4)] = {(1,0), (2,0), (3,0), (4,0), (0,5), (1,5),
(25), 359), (4.5), (04}, Ng[(0,5)] = {(1,0), (2,0),(3,0), (4.0),
(1.2), (1.4),(1,6), (18), (2.2), (24), (2,6). (28), (3.2), (3:4),
(36), (3.8), (42), (44), (46), (48), (0,2), (04), (0,6), (0,8),
(05} Ng[(0.6)] = {(1,0),(2,0),(3,0), (4,0), (1,5),(2,5), (3,5),
(45), (0,5),(0.6)}, No[(0,7)] ={(1,0), (2,0), (3,0), (4.0), (0,7)},
Ns[(0,8)] = {(1,0), (2,0), (3,0), (4,0), (1,5), (2,5), (3,5), (4.5),
(0,5),(0.8)} Ng[(0,9)] = {(1,0), (2,0), (3,0), (4,0), (0,9)}.The
neighborhood of V is given by Ng(V) = {(1,0), (2,0), (3,0),
(40), 1,2), (1,4), (1.5), (1,6), (1.8), (2,2), (24), (2.5), (2.6),
(28), (3,2), (34),(3,5),(3,6),(3.8), (4.2), (4,4), (4,5),(4,6), (4.8),
0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8), (0,9)}. The
maximum degree is A (G) = 24 and minimum degree is

O (G) = 1. The adjacency matrix for the zero-divisor graph of
024><24 Azma}
33x33

R2225><Zlois M,= |:AT9 2 B
x 9x9
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Agsng =

0000000000000 0000000RRREER
OOFROOOOFROOOOFROOOOROORRRE
OOFPOOOOFRPOOOOROOOOROORRREER
0000000000000 0000000RRRE
OOFROOOOKFROOOOROOOOROORRRE
0000000000000 0000000RRREER

O O 0O O 0O 0O 0 o 000000000000000000000RRRE

Bo.g = and

©O O O O ©O O ORKRORKRRROKRRRRERORRRERRORRRRRR

O O O O O ©O o o

© 0 0 o0 Fr OO0 9 9©Qg0rR0000FO0000R0000RO0OKRRRE

OOOOOOOOO‘

0
0
0
0
1
0
0
0
0

o
o

0
0
0
0
0
0
0
0
0
i

- O P O P O P O+ O
D O O O O B O O O ©

Agsa

=

Oa4x04 i the zero matrix and AT g, is the ranspose o

Properties of adjacency matrix M,:

(i) The determinant of the adjacency matrix M, corresponding
toG=T(Ry) isO.

(ii) The rank of the adjacency matrix M, corresponding to
G=T(Ry)is2.

(iii) The adjacency matrix M, corresponding to G = T'(R,)
is symmetric and singular.

Generalization for R, = Z,xZ, ( p is an odd
prime number):

Lemma 3.1: The number of vertices of G = I'( Z2p ) ispand
G= 1"(Z2p ) is Ky, p_1, where p is an odd prime number.
Proof: The multiples of 2 less than 2p are 2, 4, 6, ......,
2(p — 1). The non-zero zero-divisors of Z2p are p and 2, 4,
6, .ccents 2p-1). IfG= F(Zzp) is the zero-divisor graph
of Z,,, then the vertices of G = I'(Z,,,) are the non-zero
zero-divisors of Z,, . So, the vertex set of G = T(Z,,) is
Z(Z2p )*andpand2,4,6,......,2(p — 1) are the vertices of
I'(Z,,). Hence, the number of vertices of G =T'(Z,, ) is p.
Also, in G=TY( 22 p ), p is adjacent to remaining vertices 2, 4,
6,......, 2(p—1). This gives G=T(Z,,) is Ky 1
Theorem 3.2: Let R, be a finite commutative ring such that R, =

Z,xZ,,(pisan odd prime number). Let G = T'(R,) be the

zero-divisor graph with vertex set Z(R,)*. Then number of
verticesof G=T(R,) isp*+2p—2, A(G) =p*~1and &(G) = 1.
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Proof: Let R, be a finite commutative ring such that that R, =
Zp X Z2p (p is an odd prime number). Let Ry* = R, — {0}.
Then R,* can be partitioned into disjoint sets A, B, C, D and E
such that A= {(u, 0):u e z*}B={0,V):v GZZp* and

VEZ(Z,y )} C={0 W) iweZ,, andweZ(Z,,)*},
D={(@b):acz*beZ,, andbe Z(Z,,)*}andE=

{cdy:cezxde Zzp* andd ¢ Z (Z2p )*} respectively.

Clearly, all the elements in A, B, C are non-zero zero-divisors.
Let (a, b) € D. Then (a, b) is of the form either (a, p) or (a, q),
where g =2m, I <m<p-1. Again let (0, w) € C. Similarly,
(0, w) is of the form either (0, p) or (0, g), where g =2m, 1 <m <
p—1 Now P/pand2/q. This gives2p/pq. Therefore,

(a, p) (0, @) = (0, 0) and (a, q) (0, p) = (0, 0). Hence, every
element of D is a non-zero zero-divisor. But product of any two
elements of E is not equal to zero. Also, product of any element
of E with any element of A, B, C and D is not equal to zero

because, cu = 0 for ¢, u € Z,*, dv=0 for d, VGZZP* and d,
ve Z (Zzp)*, dw = 0 for d, w eZzp* andd ¢ Z (Zzp)*,

we Z(Zzp)*and

element of E is a non-zero zero-divisor. Let G = I'(R,) be the
zero-divisor graph with vertex set Z(R,)*.Then Z(R,)* can be
partitioned into four disjoint sets A, B, C and D. Now using the

Lemma3.1wehave |Al=|Z*[=p-1, [B]= |Zzp* | -

ca=0forc, a e Z,* respectively. So, no

| 2(Z,,)* I=@-1)-p=p-1, |Cl=1Z(Z,,)* I=p,

IDl=1z*11Z(Z,,)* |=(p-Dp=p-p.
Therefore, |Z(Ry)*|= |Al+[Bl+Icl+|ID|= (p - 1) +

(P-1)+p+(p°~p) = p+2p-2
So, the number of vertices of G = I'(R,) is p?+2p — 2.

Let s = (u, 0) be any vertex of A.

(i) Every vertex of A is adjacent to every vertex of B. So, s is
adjacent to p — 1 vertices of B.

(ii) Every vertex of A is adjacent to every vertex of C. So, s is
adjacent to p vertices of C.

(iii) Any vertex of A is not adjacent to any vertex of D asua = 0
foru, a e Z,*

Therefore, degs (s) =(p-1) +p=2p-1.

Let t = (0, v) be any vertex of B.

(i) Every vertex of B is adjacent to every vertex of A. So, t is
adjacent to p — 1 vertices of A

(ii) Any vertex of B is not adjacent to any vertex of C as vw = 0

for and v, we Zzp* andveg Z (Z2p Y weZ (Z2p )*

(iii) Any vertex of B is not adjacent to any vertex of D as vb = 0
forv,be Z,, andve Z(Z,,)*beZ(Z,,)~

Therefore, degg () =p- 1

Let x = (0, w) be any vertex of C. Then either x = (0, p) or
x= (0,q),whereq=2m,1<m< p-1

(i) Every vertex of C is adjacent to every vertex of A. So, x is

adjacent to p — 1 vertices of A.
(ii) Case 1: If x = (0, p), then it is adjacent to p - 1 vertices of C.
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Case 2: If x = (0, q), then it is adjacent to only one vertex of
C.
(iii) Case 1: If x = (0, p), then it is adjacent to | Z,* |?= (p — 1)?
vertices of D.

Case 2: If x = (0, @), then it is adjacent to | Z* l=p-1
vertices of D.
(iv) Any vertex of C is not adjacent to any vertex of B as wv = 0
forw, v e Z2p andw g Z(Zy,)*veZ(Zy,)*
Therefore, if x = (0, p), then degg (X) = (p - 1) + (p - 1) + (p — 1)
=p?’~1landifx=(0,q), thendegs (x) = (p-1) +1+(p-1) =
2p-1

Let y = (a, b) be any vertex of D. Then eithery = (a, p) ory =

(a, q), whereae Z,*and g=2m,1<m<p-1

(i) Case 1: If y = (&, p), then it is adjacent to p - 1 vertices of C.
Case 2: If y = (a, q), then it is adjacent to only one vertex of

C.

(i) Any vertex of D is not adjacent to any vertex of A as au = 0

foru,a e z*

(iii) Any vertex of D is not adjacent to any vertex of B as bv = 0

forbveZ,, andbe Z(Z,,)*veZ(Z,,)*

Therefore, if y = (a, p), then degg (y) =p - 1 and if y = (a, q),
then degg (y) = 1.
Hence, we have A(G) = p?>— 1 and 8(G) = 1.

Theorem 3.3: Let M, be of the adjacency matrix for the zero-
divisor graph G =T'(R,) of R,= Z p X Z2p (p is an odd prime

number). Then (i) determinant of M, is zero (ii) M, is symmetric
and singular.

Proof: Follows from Theorem 2.3.

Theorem 3.4: Let R, be a finite commutative ring such that
Ry=Z,xZ,, (pisan odd prime number). Let G = ['(R,)
be the zero-divisor graph with vertex set V = Z(R,)*.Then
ne(V) = 2p + A (G) — 8(G), where ng(V) is the neighborhood

number, A (G) and &(G) denote the maximum and minimum
degree of G respectively.

Proof: Let R, be a finite commutative ring such that R, =
Z,xZ,, (pisanodd prime number). Let G =T(R;) be the
zero-divisor graph with vertex set V = Z(Ry)*. Since, G = T'(R,)
is connected [1], we have ng(V) :| Ng (V)| :[\/| :‘Z (R,)

But from Theorem 3.2, we have ‘Z(Rz)*‘: p? +2p — 2.

Therefore, ng(V) = p? +2p — 2.This implies ng(V) =2p + (p*-1)
—1. Also A(G) =p’~1and §(G) = 1 [from Theorem 3.2]. This
gives ng(V) =2p + A (G) - 8(G).

Remark: If p = 2, then R, = Z, x Z4 So, this case coincides
with the case 1 of section 2.
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4. CONSTRUCTION OF ZERO -DIVISOR
GRAPH FOR R; =Z ><Zp272 (FOR THAT

ODD PRIME p FOR WHICH p?>-2 IS A
PRIME NUMBER):

Thirdly, we construct the zero-divisor graph for the
ringR; =7 o X Z 0?2 (for that odd prime p for which p*- 2

is a prime number) and analyze the graph. We start with the
cases p =3 and p =5 and then generalize the cases.

Casel: When p = 3 we have Ry = Z3xZ;.

The ring R; has 8 non-zero zero-divisors. In this case V =
Z(R3)* ={(1,0), (2,0), (0,1), (0,2),(0,3), (0,4), (0,5),(0,6)} and
the zero-divisor graph G = T'(R3) is given by:

CiFaxfr)

o, 4]
2,

[N

Fig: 5

The closed neighborhoods of the vertices are
Ne[(1,0)] = {(0.,1), (0,2), (0,3), (0.,5), (0.6), (1,0)}, N6[(2,0)] =
{(0.1), (0,2), (0,3), (0,5),(0,6).(2,0)}, Ng[(0,1)] ={(1,0), (2,0),
(0,1)}, NG[(OYZ)] = {(1,0), (2|0)l (012)}1 NG[(Ovs)] = {(110)7
(2.0), (0.3)}, Na[(0,4)] = {(1,0), (2,0),(0,4)}, N[(0,5)]={(1,0),
(2,0),(0,5)}, Ng[(0,6)] ={(1,0),(2,0),(0,6)}. The neighborhood
of V is given by Ng(V) = {(1,0), (2,0), (0,1), (0,2), (0,3), (0,4),
(0,5),(0,6)}.The maximum degree is A (G) = 6 and minimum
degree is O (G) = 2. The adjacency matrix for the zero-

OZXZ A2><6

AT 0 ] where
6x2
T Jgg

all the entries of A, g is1, Al g2 isthe transpose of A, ¢

divisor graph of Ry = Z3xZ; is My =

andO,,,, O, ¢ are the zero matrices.

Properties of adjacency matrix M:

(i) The determinant of the adjacency matrix M corresponding
to G=T(Ry) is 0.

(i) The rank of the adjacency matrix M3 corresponding to G
= F(Rg) is 2.
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(iii) The adjacency matrix M3 corresponding to G = I'(Ry) is
symmetric and singular.

Case2: When p =5 we have Rz = Z5xZy3,

The ring Rz has 26 non-zero zero-divisors. In this case V =
Z(Re)* ={(1,0), (2.0). (3,0), (4,0). (0,1),(0,2),(0,3),(0,4), (0,5),
(0,6), (0,7), (0,8), (0,9), (0,10), (0,11), (0,12), (0,13), (0,14),
(0,15), (0,16), (0,17), (0,18), (0,19),(0,20), (0,21), (0,22)}
and the zero-divisor graph G =T'(R3) is given by:

N Fsxfm)

Fig: 6

The closed neighborhoods of the vertices are
Ns[(1,0)] = {(0,1), (0,2), (0,3), (0,4), (0,5), (0,6), (0,7), (0,8),
(0,9), (0,20), (0,11), (0,12), (0,13), (0,14), (0,15), (0,16),
(0,17), (0,18)}, (0,19), (0,20), (0,21),(0,22),(1,0)}, Ns[(2,0)] =
{(0.1), (0,2), (0,3), (0.4), (0.,5), (0.6), (0.7),(0,8),(0,9), (0,10),
(0,11), (0,12), (0,13), (0,14), (0,15), (0,16), (0,17),(0,18)},
(0,19), (0,20), (0,21), (0.22), (2,0)}, Ng[(3,0)] = {(0,1), (0,2),
(0,3), (0,4), (0,5), (0,6), (0,7),(0,8),(0,9), (0,10), (0,11), (0,12),
(0,13), (0,14), (0,15), (0,16), (0,17), (0,18)}, (0,19), (0,20),
(0,.21), (0,22), 3,0}, Ng[(4.0)] = {(0.2), (0,2), (0.3), (0,4),
(0,5), (0,6), (0,7), (0,8), (0,9), (0,10), (0,11), (0,12), (0,13),
(0,14), (0,15), (0,16), (0,17), (0,18)}, (0,19), (0,20), (0,21),
(0.22), (4,0}, Ne[(0,1)] = {(1,0), (2,0), (3,0), (40). (0,1)},
Ng[(0,2)] = {(1,0), (20), (3.0), (4,0), (0.2}, Ng[(0,3)] =
{(1,0), (2,0), (3,0), (40). (0.3}, Nc[(0.4)] = {(1,0), (2,0),
(3.0),(4,0),(0.4)}, Ng[(0,5)] = {(1,0),(2,0),(3,0), (4,0),(0,5)},
N[(0,6)] = {(1.,0), (2,0).(3,0),(4.0),(0.6)}, Ng[(0,7)] = {(1,0),
(20), (3,0), (4,0), (0.0}, Ng[(0,8)] ={(1,0).(2,0).(3,0).(4,0),
(0.8)}, Nc[(0,9)] = {(1,0), (2,0), (3,0),(4,0),(0,9)}, Ns[(0,10)]
={(1,0), (2,0), (3,0), (4.0),(0,10)}, Ng[(0,11)] = {(1,0), (2,0),
(30), (40), (0,11)}, Ng[(0,12)] = {(1,0),(2,0), (3,0), (4,0),
(0.12)}, Ng[(0,13)] = {(1,0), (2,0), (30),(4,0),(013)},
Ng[(0,14)] ={(1,0), (2.0), (3,0), (4,0),(0.14)}, Ng[(0,15)] =
{(1,0), (2,0), (3,0), (4,0), (0,15)}, Ng[(0,16)] = {(1,0), (2.0),
(30), (40), (0,16)}, Ng[(0.17)] = {(1,0), (2,0), (3,0). (4,0),
(017}, Ng[(0,18)] = {(1,0), (2,0), (3,0), (4,0), (0,18)},
Ng[(0,19)] = {(1,0), (2,0), (3.0),(4.0),(0,19)}, Ng[(0,20)] =
{(1,0), 2,0), (3,0), (4,0), (0,20)}, Ng[(0,21)] = {(1,0), (2.,0),
(30), (40), (0.21)}, Ng[(0,22)] ={(1,0), (2,0). (3,0), (4,0),
(0,22)}. The neighborhood of V is given by Ng(V) = {(1,0),
(20), (3.0), (4.0), (0,1), (0,2), (0,3), (0.4), (0,5), (0,6), (0,7),
(0,8), (0,9), (0,10), (0,12), (0,12), (0,13),(0,14), (0,15), (0,16),
(0,17), (0,18), (0,19), (0,20), (0,21),(0,22)}. The maximum
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degree is A (G) = 22 and minimum degree is & (G) = 4. The
adjacency matrix for the zero-divisor graph of Ry = ZsxZy; is

Ora  Avaz .
M; = AT 0 where all the entries of
22x4
g 2222 J26x26
. T -
Aoois 1, Al2a is the transpose of A, .,

andO,_,,0,,,,, are the zero matrices.

Properties of adjacency matrix Ms:

(i) The determinant of the adjacency matrix M3 corresponding
to G =T'(Ry) is 0.

(ii) The rank of the adjacency matrix Mz corresponding to G
=T(R,) is 2.

(iii) The adjacency matrix Mz corresponding to G = T'(Rs) is
symmetric and singular.

Generalization for Ry =Z xZ .., (for that

odd prime p for which p?>2 is a prime
number):

Theorem 4.1: Let R; be a finite commutative ring such that R; =
Z o % Z b2 (for that odd prime p for which p? — 2 is a prime
number). Let G =T'(R3) be the zero-divisor graph with vertex set

Z(R3)*. Then number of vertices of G = I'(R;) isp?+p — 4,
A(G)=p*~3and §(G) =p—1.

Proof: Let R; be a finite commutative ring such that that Rs =
Z b X Z 02 (for that odd prime p for which p?— 2 is a prime
number). Let Ry*= R; — {0}. Then Rs* can be partitioned into
disjoint sets A, B and C such that A = {(u, 0): u € Z,*}, B =
{0, V): v eZ p22} and C = {(@ b) : a Z,* and
be Z*pz—z} respectively. Clearly, all the elements of A and B

are non-zero zero-divisors. But product of any two elements of
C is not equal to zero. Also, product of any element of C with
any element of A and B is not equal to zero because, au = 0 for

a, ueZ* bvz0forb ve Z*pZ—Z respectively. So, no

element of C is a non-zero zero-divisor. Let G = T'(Rs) be the
zero-divisor graph with vertex set Z(Rs)*.Then Z(Rs)* can be
partitioned into two disjoint sets A and B. Now, |A|= | Z,* |=

p—1and [Bl=|Z p22 | = p?—3. Therefore, |zRy)*| =
|Al+1Bl=l z* |+ Z7p2 2 |=(p-1) + (p2-3) =p?+p -4
So, the number of vertices of G =T'(Ry) is p2 +p-4.

Let x = (u, 0) be any vertex of A.
(i) Every vertex of A is adjacent to every vertex of B. So, x is
adjacent to p? — 3 vertices of B. Therefore, degg (x) = p>— 3.

Lety = (0, v) be any vertex of B.
(i) Every vertex of B is adjacent to every vertex of A. So, y is
adjacent to p — 1 vertices of A. Therefore, degg (y) =p - 1.

Hence, we have A(G) = p>~3and §(G) =p - 1.
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Theorem 4 .2: Let M3 be of the adjacency matrix for the zero-
divisor graph G =T(R;) of Ry= Z p X 4 0?2 (for that odd

prime p for which p? — 2 is a prime number). Then (i)
determinant of Msis zero (ii) M3 is symmetric and singular.

Proof: Follows from Theorem 2.3.

Theorem 4.3: Let Rz be a finite commutative ring such that R;
:Zp X sziz (for that odd prime p for which p? - 2 is a

prime number). Let G = T'(R;) be the zero-divisor graph with
vertex set V = Z(Rg)*. Then ng(V) = A (G) + 8(G), where

ng(V) is the neighborhood number, A (G) and §(G) denote
the maximum and minimum degree of G respectively.

Proof: Let R; be a finite commutative ring such that R
=Z o X Z 0?2 (for that odd prime p for which p?— 2 is a prime

number). Let G =T'(R;) be the zero-divisor graph with vertex set
V = Z(R3)*. Since, G = T'(R;) is connected [1], we have

ne(V) = |NG (V)| :[\/|:‘Z(R3)*‘ . But from Theorem 4.1,

we have ‘Z(R3)*‘ = p?+p — 4. Therefore, ng(V) = p?+p — 4.

This implies ng(V) = (p?— 3) + (p —-1). Also, A(G) = p* — 3 and
3(G) = p -1 [from Theorem 4.1]. This gives ng(V) = A (G) +
3(G).

Remark: If p = 2, then Rz = Z,xZ,. In this case V = Z(R3)* =
{(0, 1),(1, 0)} and G =T'(R5) is a 1- regular graph. Also, ng(V)
=2=2A(G) =23(G).

5. DEFINITIONS AND RELATIONS:

Let R be a commutative ring with unity and let aeR.
Then annihilator of a is denoted by ann(a) and defined by
ann(a) = {xe R :ax = 0}. Let ann*(a) = {x (= 0)e R: ax =0}.

The degree of a vertex v of a graph G denoted by
deg(v) is the number of lines incident with v.

Given a zero-divisor graph T(R) with vertex set
Z(R)*, then degree of a vertex v of T'(R) is given by deg(v) =
| ann*(v) |.

Let A and B be two commutative rings with unity.
Then the direct product A x B of A and B is also a
commutative ring with unity.

Let G be a graph and V(G) be the vertex set of G.
Let a, be V(G). We define a relation & on V(G) as follows.
For a, be V(G), a is related to b under the relation < if and
only if a and b are not adjacent and for any xe V(G), aand x
are adjacent if and only if b and x are adjacent. We denote this
relation by a® b.

6. Results of annihilators on I'(Ax B):

Theorem 6.1: The relation % is an equivalence relation on
V(G), where G is any graph.

Proof: For every a € V(G), we have a® a, as G has no self-
loop. For a, b € V(G), a<® b, then clearly, b&# a. Again let
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afb and b« c. If possible suppose, a and c are adjacent. Then
we have b and c are also adjacent, a contradiction. So, a and c
are not adjacent. Also for xe V(G), a and x are adjacent < b
and x are adjacent < ¢ and x are adjacent. Therefore, a< c.
Hence, the relation < is an equivalence relation on V(G).

Theorem 6.2: For distinct a, beZ (A xB)*, a® b in '(A xB)
if and only if ann(a) — {a} = ann(b) — {b}. Moreover, if a® b
in T'(Ryx Ry), then ann(a;) — {a;} = ann(b,) — {b;} and
ann(a,) — {ax} = ann(b,) — {by}, where a = (a1 @), b =
(bl‘bz), Q€ A and bl‘bz e B.

Proof: First suppose, for distinct a, b € Z(A x B)*, a® b in
I'(A x B). Let xe ann(a) — {a}. This gives ax = 0, a # X. So,
a and x are adjacent. Since a&® b we have b and x are adjacent.
Therefore, we have bx = 0, b # x. Hence, xe ann(b) — {b}.
This implies ann(a) — {a} < ann(b) — {b}. Similarly, ann(b) —
{b} c ann(a) — {a}. This gives ann(a) — {a} = ann(b) — {b}.

Conversely suppose, ann(a) — {a} = ann(b) — {b}.
Assume that a and b are adjacent. This gives ab = 0 =
be ann(a) — {a} = ann(b) — {b}, a contradiction. So, a and b
are not adjacent. Again for xe Z(A x B)*, a and x are adjacent
< ax =0« xe ann(b) - {b} < bx =0 < b and x are
adjacent. This gives a® b in T(Ax B).

Ifa=(a;ay), b=(byby) € Z(A x B)*, let xe ann(a)
—{a}, where x = (X; o). Then ax =0, a = X. Therefore, a and
x are adjacent. Since a® b in T'(A x B), we have a and x are
adjacent < b and x are adjacent. So, ax = 0 < bx = 0. This
gives a;x; = 0, axx, = 0 < byxg = 0, box, = 0. Hence we have
ax, =0 blxl =0, (Xl £ al,bl) in Aand X =0 b2X2 =0
(X2 # az,b,) in B. Therefore, ann(a;) — {a;} = ann(b,) — {b.}
and ann(ay) — {a,} = ann(b,) — {b,}.

Example 6.3: Consider the commutative ring Z,xZ, = {(0,0),
(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3)} and zero-divisor
graph T'(Z,xZy4). Here Z(Z,xZ4)* = {(0,1), (0,2), (0,3), (1,0),
(1,2)}.The possible edges are {(0, 1), (1,0)}, {(0,2), (1,0)},
{(0,3), (1,0)} and {(0,2), (1,2)}. The pairs {(0, 1), (0, 2)},
{(0, 1), (0, 3)}, {(0, 2), (0, 3)} and {(1, 0), (1, 2)} establish the
existence of relation % and Theorem 6.1:

7. CONCLUSIONS:

In this paper, we study the adjacency matrix and
neighborhood associated with zero-divisor graph for direct
product of finite commutative rings. Neighborhoods may be
used to represent graphs in computer algorithms, via the
adjacency list and adjacency matrix representations.
Neighborhoods are also used in the clustering coefficient of a
graph, which is a measure of the average density of its
neighborhoods. In addition, many important classes of graphs
may be defined by properties of their neighborhoods.
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