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Abstract: The surfacing of dynamic execution environments such as „grids‟ forces scientific applications to take dynamicity. Dynamic 
adaptation of Grid Components in Grid Computing is a critical issue for the design of framework for dynamic adaptation towards 
self-adaptable software development components for the grid. T h i s  paper carries the systematic design of dynamic adaptation 
framework with the effective implementation of the structure of adaptable component. i . e .  incorporating the layered architecture 
e n vi r on me n t  with the concept of dynamicity. 
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1. INTRODUCTION 
A grid [4] is a type of parallel and distributed system, which 

aims at exploiting the ability to share and aggregate 

distributed computational capabilities. Number of resources 

may differ from processor to processor or processor to grid [4] 

while performing scientific applications. Therefore, adopting 

the software components for the programming model enables 

security and portability on different resource infrastructures. 

This adaptability framework project model can be used to 

adapt the software components at run time to varying 

conditions. This framework report gives the transparency of 

adaptability in scientific and distributed applications by giving 

the framework impact and its requirement. This gives the 

ability of software to autonomously react and repair non 

convenient events observed during program execution without 

any intervention by the programmers.  

Adaptability ensures that the application continuously 

executes the best configuration depending on the actual 

execution environment. 

2. PROPOSED SCHEME 
In this scheme, the applications involve several services like 

information services, resources reservation/allocation, file 

transfer and job launching and monitoring, which are 

executed on different environments. Grid components may 

change in processor availability, network availability, 

resource sharing between applications, administration tasks, 

failures etc...These environments constitute a disseminated, 

heterogeneous, highly dynamic communication structure that 

makes the applications as adaptive software includes different 

mechanisms to modify the behavior of application or 

components dynamically. This scheme suggests a layered 

approach model to put together self-adaptive entities:  

The central stage level defines the mandatory functionalities 

for adaptive entities, while upper stage levels define the 

structure to bring together primitive or composite components 

adaptation [11]. 

With the allocated resources, we may define the best way that 

is used by scientific applications modify themselves 

depending on their actual execution environment.  This 

framework gives the ability of software to autonomously react 

to and repair non convenient events observed during program 

execution without any intervention by the programmers 

/users. In the autonomous computing, adaptation is further 

characterized as activity performed by code, acts to events, 

performs suitable actions, identifies wrong behavior etc.. 

This paper presents a framework intended to help developers 

in the task of designing dynamically adaptable components, 

which puts the emphasis on an experimental evaluation of the 

cost of using such a framework.  

3. DYNAMIC ADAPTATION 
In order to achieve an adaptation, a component needs to be 

able to get information about the system (the component itself 

and its environment), to make a decision according to some 

optimization rules and to modify or replace some parts of its 

code. Any scientific system amalgamates its modifications in 

a crystal clear way for its end users. These modifications 

include adapting to variable run-time conditions, masking 

failures, performance measures and the evolution of scientific 

application components. „Dynamic adaptation‟ [1] coats 

different techniques for managing all these modifications in 

the execution environment. 

Dynamic adaptation [5] is classified into three dimensions 

named kinds, characteristics and techniques. These 

dimensions are introduced because they answer the frequent 

questions of administrators and developers of the application. 

This classification is the result of our investigation of existing 

adaptable platforms.  

For the sake of reusability, it is highly desirable to separate 

the adaptation engine from the content of the component. I 

capture adaptability within a framework as Dynamic 

Adaptation for Components (Dynaco [1]). Associated to a 

component's content, it forms a dynamically adaptable 

component. 

This paper presents a framework intended to help developers 

in the task of designing dynamically adaptable components, 
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which puts the emphasis on an experimental evaluation of the 

cost of using such a framework. 

4. DYNAMIC ADAPTATION 
Applications are of 2 types as, Resource-Aware: describe 

resources options, select resources and then run and Dynamic 

Adaptive: collect runtime information, consider/decide to 

change resources, select resources and run. 

A generic adaptability framework for decomposition of 

adaptability in 4 steps: Observe the execution environment as 

it evolves, Decide that the component should adapt, Plan how 

to achieve the adaptation, Schedule and execute planned 

actions.  

 

 

 

 

 

 

 

 

 

Figure  1.   Proposed Design Architecture 

4.1 Architectural Design 
This divides adaptability into some number of sub-

functionalities as Able to observe characteristics of the 

environment in order to trigger adaptability; When a change is 

detected, the framework has to decide an adaptation strategy 

according to observed measures; Once a strategy has been 

decided, the framework has to plan actions to implement it;  

At last; planned actions have to be executed synchronously 

with the execution of applicative code. 

This model exhibits the functional description for the 

adaptation process with the entities Decider, Planner and 

Executor. The environmental changes received as events will 

affect the decider and produces as a strategic plan for dynamic 

adaptation.  

The Planner derives list of actions from the strategy in order 

to achieve the different steps of the process of adaptation. The 

executor implements the different steps of adaptation to 

modify the component. 

Software components that are used in the adaptability 

framework are separated into some number of functional 

“boxes” disseminated into 3 levels as shown in figure 1. At the 

functional level, the service provides an expected 

implementation of the component is expected to do. If the 

component was not dynamically adaptable, then it would have 

the service. 

The component-independent level [1] contains all mechanisms 

that can be defined independently of the content of the 

service functional box.  The decider box is the start point of 

any adaptation.  It decides whether the component should be 

adapted or not.   

The component-specific level [1] holds the specializations of the 

adaptation framework for the developers.  The speci fi ed 

framework consent  the developer to focus  the decider 

for the needs of its component. It describes how decisions 

can be made. The plan templates describe how the planner 

can build plans depending on the requested reaction and on the 

current execution environment. 

4.2 Structural Design 
This splits adaptability into four sub-functionalities as Able to 

observe characteristics of the environment in order to trigger 

adaptability; When a change is detected, the framework has to 

decide an adaptation strategy [5] according to observed 

measures; Once a strategy has been decided, the framework 

has to plan actions to implement it;  

At last; planned actions have to be executed synchronously 

with the execution of applicative code. 

4.3 Events Generation 
The Decision making process[2] of dynamic adaptation given 

by the policy procedure which will give the information about  

the decisions and strategies that are used to change the 

component‟s behavior depending on the execution 

environment. 

Monitors [13] are the entities that are used to create the events 

and these events are helpful in the monitoring of components 

execution. All these events are observed by decider or 

monitor. 

 

4.4 Adapting the Components 
Subsequent to adaptation plan, next is the executor‟s turn, 

which is regarded as a virtual machine [13] that will monitor 

the control flow instructions with in the adaptation plan 

depending on the execution schedule. To do so executor 

depends on the adaptation points [2] this will have the 

information about component states. The component states are 

constrained by integrity and consistency requirements. 
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Figure  2.    Basic Design Principle 

4.5 Algorithms  
Following are the two algorithms that are used in this 

framework. 

4.5.1 Converter 
The first algorithm, the converter converts a given component 

to particular interface by deterministically matching the given 

component/interface pair to an adapter on demand. The 

algorithm will rely on the executable notations for interfaces, 

adapters and components, e.g., it will have to find out at 

runtime which edges a given component supports and which 

borders a given adapter maps to.  

4.5.2 Binder 
The second algorithm, the binder combines the given 

interface with an implementation instance, which is 

considered as a component or a component enclosed by 

adaptors. 

4.6 Autonomic Implementation of the 

Schema 
The schema notation of this framework is as below. 

do  

{ 

    decide: 

          what has to adapt 

          what has to discard 

          how to adapt 

    on trigger: 

         decide possible implementations for the policy 

    commit: 

             plan for predefined implementation 

             plan adaptive code mechanisms 

    schedule all the executable operations 

} while(!end) 

 

Monitors (push) 
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Figure  3.   Structure of an adaptable component using this 

Framework [13] 

4.7 Realization as a Framework Model 
In the Framework model realization, the two contents are 

defined as: The content description realizes the component 

state functionalities; the membrane [2] is a possessor 

consisting of non-functional services that manage the 

component‟s behavior. In an adaptation plan, dynamic 

execution environments depend on the behavior of 

dynamically adaptable components. The Control Manager is 

responsible for the existed components. A modification 

controller (mc) realizes the adaptable component‟s actions. 

The executor [13] execute actions depending on the plans 

given by the planner. Server sides (push model) and client 
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sides (pull model) are applicable to the adaptable component 

while executing them.    

Modifications are possible by pushing and pulling the 

adaptation methods by which the model implements the 

adaptability concept on components. 

5. CONCLUSION 
This framework analyses how to design dynamic 

adaptability support for scientific applications. It is 

independent of formalisms and technologies. Also 

evaluate the proposed model as well as the possibilities 

to write generic adaptation policies at the collection and 

application levels.  

This framework for adaptability is independent of the 

applications like numerical algorithms, transaction 

systems etc… 

Still lot of problems to be investigated / solved 

(adaptation policies, performance models ...). For the 

future work, the activity of generalizing the approach is 

considered. i.e., generic definition of global adaptation 

points should be implemented. 
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