
International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 455 - 458, 2013, ISSN: 2319–8656

www.ijcat.com 455

Dynamically Adapting Software Components for the Grid

B. Dhanalakshmi

Aryabahata Institute Of Technology and Science
Jawaharlal Nehru Technological University

Hyderabad, India

Abstract: The surfacing of dynamic execution environments such as „grids‟ forces scientific applications to take dynamicity. Dynamic
adaptation of Grid Components in Grid Computing is a critical issue for the design of framework for dynamic adaptation towards
self-adaptable software development components for the grid. T h i s paper carries the systematic design of dynamic adaptation
framework with the effective implementation of the structure of adaptable component. i . e . incorporating the layered architecture
e n vi r on me n t with the concept of dynamicity.

Keywords: grid; adaptation; resources; entities; component specific level; component independent level.

1. INTRODUCTION
A grid [4] is a type of parallel and distributed system, which

aims at exploiting the ability to share and aggregate

distributed computational capabilities. Number of resources

may differ from processor to processor or processor to grid [4]

while performing scientific applications. Therefore, adopting

the software components for the programming model enables

security and portability on different resource infrastructures.

This adaptability framework project model can be used to

adapt the software components at run time to varying

conditions. This framework report gives the transparency of

adaptability in scientific and distributed applications by giving

the framework impact and its requirement. This gives the

ability of software to autonomously react and repair non

convenient events observed during program execution without

any intervention by the programmers.

Adaptability ensures that the application continuously

executes the best configuration depending on the actual

execution environment.

2. PROPOSED SCHEME
In this scheme, the applications involve several services like

information services, resources reservation/allocation, file

transfer and job launching and monitoring, which are

executed on different environments. Grid components may

change in processor availability, network availability,

resource sharing between applications, administration tasks,

failures etc...These environments constitute a disseminated,

heterogeneous, highly dynamic communication structure that

makes the applications as adaptive software includes different

mechanisms to modify the behavior of application or

components dynamically. This scheme suggests a layered

approach model to put together self-adaptive entities:

The central stage level defines the mandatory functionalities

for adaptive entities, while upper stage levels define the

structure to bring together primitive or composite components

adaptation [11].

With the allocated resources, we may define the best way that

is used by scientific applications modify themselves

depending on their actual execution environment. This

framework gives the ability of software to autonomously react

to and repair non convenient events observed during program

execution without any intervention by the programmers

/users. In the autonomous computing, adaptation is further

characterized as activity performed by code, acts to events,

performs suitable actions, identifies wrong behavior etc..

This paper presents a framework intended to help developers

in the task of designing dynamically adaptable components,

which puts the emphasis on an experimental evaluation of the

cost of using such a framework.

3. DYNAMIC ADAPTATION
In order to achieve an adaptation, a component needs to be

able to get information about the system (the component itself

and its environment), to make a decision according to some

optimization rules and to modify or replace some parts of its

code. Any scientific system amalgamates its modifications in

a crystal clear way for its end users. These modifications

include adapting to variable run-time conditions, masking

failures, performance measures and the evolution of scientific

application components. „Dynamic adaptation‟ [1] coats

different techniques for managing all these modifications in

the execution environment.

Dynamic adaptation [5] is classified into three dimensions

named kinds, characteristics and techniques. These

dimensions are introduced because they answer the frequent

questions of administrators and developers of the application.

This classification is the result of our investigation of existing

adaptable platforms.

For the sake of reusability, it is highly desirable to separate

the adaptation engine from the content of the component. I

capture adaptability within a framework as Dynamic

Adaptation for Components (Dynaco [1]). Associated to a

component's content, it forms a dynamically adaptable

component.

This paper presents a framework intended to help developers

in the task of designing dynamically adaptable components,

International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 455 - 458, 2013, ISSN: 2319–8656

www.ijcat.com 456

which puts the emphasis on an experimental evaluation of the

cost of using such a framework.

4. DYNAMIC ADAPTATION
Applications are of 2 types as, Resource-Aware: describe

resources options, select resources and then run and Dynamic

Adaptive: collect runtime information, consider/decide to

change resources, select resources and run.

A generic adaptability framework for decomposition of

adaptability in 4 steps: Observe the execution environment as

it evolves, Decide that the component should adapt, Plan how

to achieve the adaptation, Schedule and execute planned

actions.

Figure 1. Proposed Design Architecture

4.1 Architectural Design
This divides adaptability into some number of sub-

functionalities as Able to observe characteristics of the

environment in order to trigger adaptability; When a change is

detected, the framework has to decide an adaptation strategy

according to observed measures; Once a strategy has been

decided, the framework has to plan actions to implement it;

At last; planned actions have to be executed synchronously

with the execution of applicative code.

This model exhibits the functional description for the

adaptation process with the entities Decider, Planner and

Executor. The environmental changes received as events will

affect the decider and produces as a strategic plan for dynamic

adaptation.

The Planner derives list of actions from the strategy in order

to achieve the different steps of the process of adaptation. The

executor implements the different steps of adaptation to

modify the component.

Software components that are used in the adaptability

framework are separated into some number of functional

“boxes” disseminated into 3 levels as shown in figure 1. At the

functional level, the service provides an expected

implementation of the component is expected to do. If the

component was not dynamically adaptable, then it would have

the service.

The component-independent level [1] contains all mechanisms

that can be defined independently of the content of the

service functional box. The decider box is the start point of

any adaptation. It decides whether the component should be

adapted or not.

The component-specific level [1] holds the specializations of the

adaptation framework for the developers. The speci fi ed

framework consent the developer to focus the decider

for the needs of its component. It describes how decisions

can be made. The plan templates describe how the planner

can build plans depending on the requested reaction and on the

current execution environment.

4.2 Structural Design
This splits adaptability into four sub-functionalities as Able to

observe characteristics of the environment in order to trigger

adaptability; When a change is detected, the framework has to

decide an adaptation strategy [5] according to observed

measures; Once a strategy has been decided, the framework

has to plan actions to implement it;

At last; planned actions have to be executed synchronously

with the execution of applicative code.

4.3 Events Generation
The Decision making process[2] of dynamic adaptation given

by the policy procedure which will give the information about

the decisions and strategies that are used to change the

component‟s behavior depending on the execution

environment.

Monitors [13] are the entities that are used to create the events

and these events are helpful in the monitoring of components

execution. All these events are observed by decider or

monitor.

4.4 Adapting the Components
Subsequent to adaptation plan, next is the executor‟s turn,

which is regarded as a virtual machine [13] that will monitor

the control flow instructions with in the adaptation plan

depending on the execution schedule. To do so executor

depends on the adaptation points [2] this will have the

information about component states. The component states are

constrained by integrity and consistency requirements.

Observe

Decide

Plan

Schedule

International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 455 - 458, 2013, ISSN: 2319–8656

www.ijcat.com 457

Figure 2. Basic Design Principle

4.5 Algorithms
Following are the two algorithms that are used in this

framework.

4.5.1 Converter
The first algorithm, the converter converts a given component

to particular interface by deterministically matching the given

component/interface pair to an adapter on demand. The

algorithm will rely on the executable notations for interfaces,

adapters and components, e.g., it will have to find out at

runtime which edges a given component supports and which

borders a given adapter maps to.

4.5.2 Binder
The second algorithm, the binder combines the given

interface with an implementation instance, which is

considered as a component or a component enclosed by

adaptors.

4.6 Autonomic Implementation of the

Schema
The schema notation of this framework is as below.

do

{

 decide:

 what has to adapt

 what has to discard

 how to adapt

 on trigger:

 decide possible implementations for the policy

 commit:

 plan for predefined implementation

 plan adaptive code mechanisms

 schedule all the executable operations

} while(!end)

Monitors (push)

 Monitors (pull)

Figure 3. Structure of an adaptable component using this

Framework [13]

4.7 Realization as a Framework Model
In the Framework model realization, the two contents are

defined as: The content description realizes the component

state functionalities; the membrane [2] is a possessor

consisting of non-functional services that manage the

component‟s behavior. In an adaptation plan, dynamic

execution environments depend on the behavior of

dynamically adaptable components. The Control Manager is

responsible for the existed components. A modification

controller (mc) realizes the adaptable component‟s actions.

The executor [13] execute actions depending on the plans

given by the planner. Server sides (push model) and client

Decid

er

Policy Guid

e

Event Strate

gy

Plan

Plann

er

Execu

tor

Observe

r

Planner Executor

Control Manager

Monitor Controller

 Content Description

Server Side Client Side

mc mc mc

Membrane

International Journal of Computer Applications Technology and Research

Volume 2– Issue 4, 455 - 458, 2013, ISSN: 2319–8656

www.ijcat.com 458

sides (pull model) are applicable to the adaptable component

while executing them.

Modifications are possible by pushing and pulling the

adaptation methods by which the model implements the

adaptability concept on components.

5. CONCLUSION
This framework analyses how to design dynamic

adaptability support for scientific applications. It is

independent of formalisms and technologies. Also

evaluate the proposed model as well as the possibilities

to write generic adaptation policies at the collection and

application levels.

This framework for adaptability is independent of the

applications like numerical algorithms, transaction

systems etc…

Still lot of problems to be investigated / solved

(adaptation policies, performance models ...). For the

future work, the activity of generalizing the approach is

considered. i.e., generic definition of global adaptation

points should be implemented.

6. ACKNOWLEDGMENTS
My sincere thanks to the experts, who have contributed

towards development of this framework.

7. REFERENCES
[1] Jérémy Buisson, Françoise André, and Jean-Louis

Pazat. Dynamic adaptation for grid computing. In

P.M.A. Sloot, A.G. Hoekstra, T. Priol, A. Reinefeld,

and M. Bubak, editors, Advances in Grid

Computing- EGC 2005 (European Grid

Conference, Amsterdam, The Netherlands,

February 14-16, 2005, Revised Selected Papers),

volume 3470 of LNCS, pages 538–547,

Amsterdam, February 2005. Springer-Verlag.

[2] Je´re´my Buisson, Franc¸oise Andre´, and Jean-

Louis Pazat. Performance and practicability of

dynamic adaptation of parallel computing : an

experience feedback from Dynaco. Publication

interne 2006 Projeeects Paris.

[3] Jérémy Buisson, Françoise André, and Jean-Louis

Pazat. Enforcing consistency during the adaptation

of a parallel component. In The 4th International

Symposium on Parallel and Distributed

Computing, July 2005.Eason, B. Noble, and I. N.

Sneddon, “On certain integrals of Lipschitz-Hankel

type involving products of Bessel functions,” Phil.

Trans. Roy. Soc. London, vol. A247, pp. 529–551,

April 1955.

[4] Greg Burns, Raja Daoud, and James Vaigl. LAM:

An Open Cluster Environment for MPI. In

Proceed- ings of Supercomputing Symposium,

pages 379–386, 1994.

[5] Introduction to Grid Computing – A IBM‟s red

book for details about Grid Computing is also

useful for installation of Globus Tool Kit 4.

[6] Jérémy Buisson, Françoise André and Jean-Louis

Pazat. A framework for dynamic adaptation of

parallel components. In ParCo 2005, Málaga,

Spain, 13-16 September 2005.

[7] Pierre-Charles David and Thomas Ledoux.

Towards a framework for self-adaptive

component-based applications. In DAIS’03, volume

2893 of LNCS. Springer-Verlag, November 2003.

[8] Brian Ensink and Vikram Adve. Coordinating

adaptations in distributed systems. In 24th

International Conference on Distributed

Computing Systems, pages 446–455, March 2004.

[9] Brian Ensink, Joel Stanley, and Vikram Adve.

Program control language: a programming

language for adaptive distributed applications.

Journal of Parallel and Distributed Computing,

63(11):1082–1104, November 2003.

[10] Introduction to Grid Computing – A IBM‟s red

book for details about Grid Computing is also

useful for installation of Globus Tool Kit 4.

[11] Research group on “Performance models and

adaptivity”:

http://www.di.unipi.it/~marcod/WP3homepage/RG

_adaptivity/index.html

[12] Segarra, M.T. ; Dept. of Comput. Sci.,

IT/TELECOM-Bretagne, Brest ; Andre,

F.Autonomic and Autonomous Systems, 2009.

ICAS '09. Fifth International Conference on

« Building a context-aware ambient assisted living

application using a self adaptive distributed model

[13] http://hal.archives-

ouvertes.fr/docs/00/05/76/49/PDF/PI-1782.pdf

.

http://www.irisa.fr/paris/bibadmin/show.php?author=J%E9r%E9my_Buisson
http://www.irisa.fr/paris/bibadmin/show.php?author=Fran%E7oise_Andr%E9
http://www.irisa.fr/paris/bibadmin/show.php?author=Jean-Louis_Pazat
http://www.irisa.fr/paris/bibadmin/show.php?author=Jean-Louis_Pazat
http://www.irisa.fr/paris/bibadmin/show.php?year=2005
http://www.di.unipi.it/~marcod/WP3homepage/RG_adaptivity/index.html
http://www.di.unipi.it/~marcod/WP3homepage/RG_adaptivity/index.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Segarra,%20M.T..QT.&searchWithin=p_Author_Ids:38075743000&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Andre,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Andre,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4976562
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4976562

