
International Journal of Computer Applications Technology and Research
Volume 3– Issue 1, 73 - 78, 2014, ISSN: 2319–8656

www.ijcat.com 73

Modeling and Evaluation of Performance and Reliability
of Component-based Software Systems using Formal

Models
Fakhraddin Farjaminejad
Department of Computer,

Science and Research branch,
Islamic Azad University,

Ardabil, Iran

Ali Harounabadi
Department of Computer

Engineering, Central Branch,
Islamic Azad University,

Tehran, Iran

Sayed Javad Mirabedini
Department of Computer

Engineering, Central Branch,
Islamic Azad University,

Tehran, Iran

Abstract: Validation of software systems is very useful at the primary stages of their development cycle. Evaluation of functional
requirements is supported by clear and appropriate approaches, but there is no similar strategy for evaluation of non-functional requirements
(such as performance and reliability). Whereas establishing the non-functional requirements have significant effect on success of software
systems, therefore considerable necessities are needed for evaluation of non-functional requirements. Also, if the software performance has
been specified based on performance models, may be evaluated at the primary stages of software development cycle. Therefore, modeling
and evaluation of non-functional requirements in software architecture level, that are designed at the primary stages of software systems
development cycle and prior to implementation, will be very effective.
We propose an approach for evaluate the performance and reliability of software systems, based on formal models (hierarchical timed
colored petri nets) in software architecture level. In this approach, the software architecture is described by UML use case, activity and
component diagrams, then UML model is transformed to an executable model based on hierarchical timed colored petri nets (HTCPN) by a
proposed algorithm. Consequently, upon execution of an executive model and analysis of its results, non-functional requirements including
performance (such as response time) and reliability may be evaluated in software architecture level.

Keywords: software architecture; colored petri nets; object-oriented design; non-functional requirements; unified modeling language;
performance modeling

1. INTRODUCTION
Within the recent decades, the software complexities have been
increased day to day and demands for more powerful and high
quality software have been increased. Therefore, software
development based on principles and methodologies that in
addition to reduction of costs, meet all expected features of
shareholders (functional and non-functional requirements) seems
to be necessary. Establishing non-functional requirements in
software engineering was raised recently whilst they have
considerable effect on success of software systems. Software
Architecture (SA) is established at the first stages of design and
has a significant effect on access to nonfunctional requirements
of software system. Therefore, establishment of an executive
model of SA and evaluation of nonfunctional requirements
thereby is a cheap solution for prevention of time and cost waste
for achieving the qualitative goals for development of software
systems.
Unified modeling language (UML) is a semiformal and standard
language for easy description of software, but performance and
reliability of SA may not be evaluated thereby. Therefore, to
evaluate the performance and reliability, pragmatic model
(UML) must be transformed to formal model (HTCPN).
HTCPN is very suitable for displaying the behavior of systems
with concurrent and interactive components and in addition to
having a virtual structure and behavior have the capability of
graphic display, hence modeling by them is easy. Moreover,
these nets provide a framework for analysis, validation and
evaluation of nonfunctional requirements such as performance
and reliability in complex systems [10].
In this paper, we have proposed an approach, therein SA is
described by UML Use Case, Activity and Component
diagrams. Then, the required information related to non-
functional requirements are annotated to these diagrams as
stereotypes and tags. In continue, an algorithm is offered which
has been assumed from UML diagrams and establishes the

executive model based on HTCPN. Ultimately, upon execution
of this model and analysis of its results, nonfunctional
requirements including performance (such as response time) and
reliability may be evaluated in SA level.
The next sections of this paper have been organized as follows:
In section 2, a general description of performance modeling in
UML and hierarchical timed colored petri net models has been
presented. In section 3, some works related to paper subjects
have been reviewed and in section 4, procedure together with
details are described. In section 5, a case study is investigated
for evaluation of suggested method and ultimately in section 6, a
general conclusion of suggested method is explained.

2. BACKGROUND
In this section, a general description of performance modeling in
UML and timed colored petri net models is presented.

2.1 Performance Modeling in UML
The UML may describe the behavioral and structural aspects of
SA. But in order to evaluate the SA, features of SA are required
that UML has not the capability of their exhibition. Accordingly,
a strategy has been presented by OMG including profiles
consisted of stereotypes, tags and limitations that provide the
capability of exhibiting these features for UML. These profiles
and their complete details have been explained in [11].

2.2 Timed Colored Petri Nets
Colored petri nets are used for formal description of activities
flow in the complex systems and provide the requirements of
concurrency and parallelism exhibition. Classic petri nets are not
suitable for modeling the systems with large space or a complex
temporary behavior. In these cases, we must use a developed
petri net model having color and time. This model is the base of
a framework that is used for solving the problems related to
design and control in complex systems.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 1, 73 - 78, 2014, ISSN: 2319–8656

www.ijcat.com 74

In these networks, the concept of time is introduced by global
element called global time. The values selected by this time
explains the model time. This model may be an integral number
that indicates the discrete time or maybe a true number
explaining the continuous time. This value of time that is
pertained to each token is referred to as stamp time that indicates
the first time of model therein token may be used. As a result,
these nets will be appropriate for evaluation of qualitative
requirements (response time etc.) and reliability in SA.
Specifications of colored petri nets and its different types have
been explained in [7].

3. RELATED WORKS
In the past various techniques have been presented for
evaluation of nonfunctional requirements of performance and
reliability in component-based software systems. In general,
these techniques may be divided in various groups. Some of
these groups such as models based on state and path may be
referred that commonly are used for evaluation of reliability. It
is notable that in plenty of these methods, evaluation of
performance and reliability nonfunctional requirements have not
been considered at the primary stages of software systems
development cycle and prior to implementation stage. For
instance, in place-based models [5, 9], control graph is used to
describe the software architecture, so that control graphs are
commonly extracted from programs code source. Therefore,
applying these techniques will be possible after implementation
stage. There are some other methods that provides the
prerequisites for evaluation of performance or reliability
nonfunctional requirements at the design stage. It is notable that
in most of these methods, no integrated executive model has
been used for evaluation of performance and reliability of
nonfunctional requirements and their analysis. In continue, some
of these methods are raised.
Zhu and Wang [13] have introduced a platform for evaluation of
software systems performance by UML and hierarchical timed
colored petri net. In this method, the software system is modeled
by UML Use Case, Collaboration and Deployment diagrams and
then these models are transformed to a hierarchical timed
colored petri net model. Consequently, an evaluation of software
system performance is provided.
Fukuzawa and Saeki [4] presented a method therein software
architecture is described by UML Component diagram. Then,
the above algorithm has been transformed to colored petri net by
an algorithm and ultimately the performance is evaluated, so that
the own component and its connector are transformed to a
colored petri net but its interface is transformed to a place of
colored petri net.
Balsamo and Marzolla [2] presented a method therein software
architecture is described by UML Use Case, Activity and
Deployment diagrams, then operational profiles related to
performance are annotated therein. Ultimately, to evaluate the
performance, UML diagrams are transformed to an executive
model based on Queuing Networks.
Balsam et al [1, 3] presented a method therein software
architecture is described by UML Use Case, Collaboration and
State diagrams, in this method, to evaluate the performance of
software architecture, an executable model based on generalized
stochastic petri nets is established. The main objective in this
method is transforming the State diagram and each one of
objects of Collaboration diagram to Petri Net that a stochastic
petri net is established upon combination thereof and indicates
the whole system.

In general, whereas the mentioned methods may provide better
basic techniques for evaluation of performance or reliability of
software system, but a few ones may be used at the primary
stages of software systems development cycle and prior to
implementation. In addition, in these methods, there is no
unified model for evaluation of performance and reliability
simultaneously. Therefore, the techniques will be appropriate
and important that use an executive model for evaluation of
several nonfunctional requirements (such as performance,
reliability).
Therefore the main objectives of technique presented in this
paper are as follows:

 Development of a method based on probability for
evaluation of reliability in SA Level and prior to
implementation stage;

 Capability in studying the performance and reliability
of components and connectors so that the system
architect is enabled to use an implementer (collection
of activities) superseding the components, in case of
non-complying with appropriate performance and
reliability features;

 Establishing a unified model for evaluation of
performance and reliability of nonfunctional
requirements simultaneously.

4. THE PROPOSED METHOD
The main approach in this paper is establishing the HTCPN-
based execution model of UML diagrams and evaluation of
performance (such as response time) and reliability of
nonfunctional requirements of software architecture.
For this purpose, firstly the SA is described by UML, later
operational profiles related to performance and reliability
features are annotated therein. In continue, an algorithm is
offered for transformation of UML model to HTCPN model and
ultimately the said nonfunctional requirements are evaluated by
suggested techniques at the SA level.

4.1 Description of Software Architecture
by UML Diagrams
Different methods has been presented for description of SA by
UML. In this paper, to describe the SA, a UML-based method is
used, therefore UML Use Case, Activity and Component
diagrams are applied for description of SA structure and
behavior. In continue, the effect of diagrams and annotations
related to performance and reliability therein is explained.

4.1.1 The Role of Use Case Diagram and Annotation
of Performance Specification Therein
Use case diagram describes the functional requirements of
system and interaction between system and environment [12]. In
this paper, this diagram is used for exhibition of functional
requirements and working load applied to the system in SA
description. Annotations related to performance in this diagram
are related to actors that requesting service from system.
The actors indicating a sequence of unlimited requests out of
system are annotated by “PAopenLoad” stereotype and actors
indicating a fixed population of requests from system are
annotated by “PAclosedLoad” stereotype.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 1, 73 - 78, 2014, ISSN: 2319–8656

www.ijcat.com 75

“PAclosedLoad” stereotype has a tag called PAoccurrence that
indicates the interarrival time between two subsequent requests.
“PAclosedLoad” stereotype has two tags named PApopulation
and PAextDelay that respectively indicates “the number of
requests” and “the time spent by each completed request before
the next interaction with the system”. An annotated use case
diagram is exhibited in figure 1.

4.1.2 The Role of Activity Diagram and Annotation of
Performance Specifications Therein
Activity diagrams are used for description of further details of
contents of each use case. This diagram specifies the sequence,
order and conditions of operation execution. The operation
sequence from beginning to the end is referred to as an activity
performed by the system [12]. In this paper, this diagram is used
for exhibition of activities flow inside and out of components.
Showing the boundaries of each component in activity diagram
is not possible but it may be shown by Swimline of activity
diagram.
Annotations related to performance and reliability in this
diagram are related to actions. In this diagram, each action is
annotated by “PAstep” stereotype that indicates the service
demand from an active source of system.
“PAstep” stereotype has two tags named PAdemand and failprob
that respectively indicates “service demand” and “failure
probability in actions”. It is notable that failprob tag has not been
defined based on OMG standard for “PAstep” stereotype, but
here “PAstep” stereotype tag has been placed for easy to show
that. Transitions of activity diagrams are annotated by PAprob
probability that indicates the probability of applying a specified
transition and is signified when we have several output
transitions from an action; in this mode, sum total of transitions
probability outputted from same action must be equal to 1. In
figure 1, an annotated activity diagram has been shown.

4.1.3 The Role of Component Diagram and annotation of
Performance Specifications Therein
The component diagram indicates the logical structure of a
software system. In addition, each component may use the
services provided by other components. Services provided by
each component is accessible by its interfaces [12]. In this paper,
this diagram is used for describing the logical structure of
software system, relationship between components and show the
interfaces of each component.
Annotations related to reliability in this diagram are related to
the connectors. In this diagram, each connector is annotated by
“REconnector” stereotype that indicates the reliability
specifications in connectors.
“REconnector” stereotype has a tag named REconnfailprob that
indicates the probability failure in connector. An annotated
component diagram is shown in figure 1.

4.2 Suggested Algorithm for Transformation
of Annotated UML Model to HTCPN Model
Our suggested algorithm has been assumed for transforming
annotated UML model to HTCPN-based executive model
according to a three stage design including as below:

First step: Transformation of component diagram to CPN
model
At the first stage, the component diagram is transformed to a cpn
model. For this purpose, each component is transformed to a sub
cpn, each interface to a place and each connector to two
transitions, so that one of these transitions is used for
transmitting the request and the other for receiving. In table 1,
transformation maps are shown.
According to table 1, cpn model related to components consists
of two places and one transition. The places are applied as
component interfaces, and transition as component implementer.

Second stage: Determination of hierarchical structure
At this stage, the activities to be performed in the components
are specified; in other word, at this stage, each component is
implemented. The activity diagram of each component is
transformed as per procedure provided at third stage.

Third stage: Transformation of activity diagram to CPN
model
At this stage, the activity diagram is transformed to a CPN
model. Procedure of transforming activity diagram to CPN
model will be in accordance with method presented in [8].
Therefore, each action and transition in activity diagram is
transformed to one transition and place respectively in cpn.
Procedure of transforming branching, joint and fork nodes has
been provided in table 2.

Ultimately, considering the stages of suggested algorithm, the
final HTCPN model established from UML model as per figure
1 will be as HTCPN model shown in figure 2. It is notable that
the different demand classes of a component are related to
different colors in HTCPN model.

(b) Annotated UML Component Diagram

(a) Annotated UML Use Case Diagram

Figure 1. Annotated UML Diagrams

(c) Annotated UML Activity Diagram

International Journal of Computer Applications Technology and Research
Volume 3– Issue 1, 73 - 78, 2014, ISSN: 2319–8656

www.ijcat.com 76

Table 1. The general notation mapping in UML componet diagram to cpn model

Association CPNs notation Component Diagram notation Item Name

Component

Connector

Table 2. The general notation mapping in UML activity diagram to cpn model

4.3 Evaluation of reliability in software
architecture Level
In this study, to evaluate the reliability, extension of method
presented in [4] is used so that therein the failure probability has
not been considered in the internal activities of each component.
Accordingly, to evaluate the reliability of SA, failure probability

in components connectors and actions performed in the
components are used. Tokens of colored petri nets carry a f
value as reliability. Figure 3 shows the manner of calculating
reliability for reaching to points that failure probability may
occur therein (e.g. components connectors and actions).

Association CPNs Notation Activity Diagram Notation Item Name

Action node / Transition

 Initial / Final node

Fork / Join node

Branching node

Provided Required

Send Receiv

Component Block

<<Implements>>

Figure 2. Generated HTCPN model from UML model

International Journal of Computer Applications Technology and Research
Volume 3– Issue 1, 73 - 78, 2014, ISSN: 2319–8656

www.ijcat.com 77

According to figure 3, variable F indicates the failure probability
and its values in UML diagrams are specified by REconnfail and
failprob tags that respectively indicates failure probability in
connectors and actions. Finally, the total reliability is equal to f
value in final place of HTCPN model.

5. CASE STUDY
In this section, we use an internet sale system for evaluation of
suggested method. In this system, that a part of which is
examined, we consider the candidate scenario of products
information display. It is notable that for drawing UML
diagrams, Enterprise Architecture (Version 9) and for
establishment of HTCPN models, CPNTools have been applied.
Figures 4, 5 and 6 respectively show UML use case, component
and activity diagrams of internet sale system.
According to figure 6 that represents the activity diagram for
products information display scenario, five components are

involved therein. In this scenario, firstly the user requests for
display of products information in Client section, from system.
Then, the products information display requests sent to
Webserver component via Client component. In continue, as per
activity diagram of figure 6, products information display
operation is continued and consequently the products
information is displayed for the user in Client section.
Here, to evaluate the nonfunctional requirements (such as
performance and reliability) for product information display
scenario in SA level, UML model shown in figures 4,5 and 6
must be transformed to HTCPN model. Therefore, considering
our suggested algorithm in this paper, the final HTCPN model
will be as per figure 7.
For evaluation of performance (such as response time) and
reliability, it is assumed that 20 requests are inserted to the
system for execution of products information display scenario.
Therefore, upon execution of HTCPN model that indicates the
system behavior in servicing for the products information
display requests by the users, we can achieve a series of valuable
results related to evaluation of nonfunctional requirements in SA
level. Table 3 represents the mean response time and reliability
of internet sale system for providing services to 20 requests of
products information display scenario.

f f × (1-F)

Figure 3. Reliability

Figure 5. Annotated Component Diagram for Internet Sale System Figure 4. Annotated Use Case Diagram for Internet Sale System

Figure 6. Annotated Activity Diagram for products information display
scenario

International Journal of Computer Applications Technology and Research
Volume 3– Issue 1, 73 - 78, 2014, ISSN: 2319–8656

www.ijcat.com 78

Table 3. he mean response time and reliability

Number of Requests Responste Time (ms) Reliability

20 21.058 0.956

6. CONCLUSION
In this paper, we have presented a strategy for evaluation of
performance and reliability of nonfunctional requirements in
software architecture modeled by UML diagrams. So, the
software system may be validated for meeting or not meeting the
nonfunctional requirements of case at the primary stages of
software systems development cycle. The general analysis
framework in this method is formed based on formal models
(HTCPN) that accordingly is free of ambiguity. Whereas in this
method, UML diagrams are used for description of SA, therefore
description of SA by means of achievements of analysis and
design stages will be very reasonable and low-cost. On the other
side, a transformation algorithm has been presented for
establishment of a HTCPN-based executive model from UML
model for description of SA, hence the gap between architect
and analyzer is removed and this process is performed easily.
In this strategy, further researches are also possible. There are a
lot of tools for working with UML models and UML models
may be transformed to HTCPN-based executive model
automatically. In addition, other nonfunctional requirements
may be evaluated by means of other architectural specifications.

7. REFERENCES
[1] Balsamo, S., Marco, A. D., Inverardi, P. and Simeoni, M.

2004. Model-Based Performance Prediction in Software
Development: A Survey. IEEE Transaction On Software
Engineering, Vol. 30, NO. 5.

[2] Balsamo, S. and Marzolla, M. 2005. Performance
Evaluation of UML Software Architectures with Multiclass
Queueing Network Models. ACM Workshop on Software
and Performance (WOSP).

[3] Balsamo, S. and Simeoni, M. 2001. Deriving Performance
Models from Software Architecture Specifications. In

Proceedings of the 15th European Simulation Multi
Conference (ESM2001) on Computer Simulation.

[4] Fukuzawa, K. and Saeki, M. 2002. Evaluating Software
Architectures by Coloured Petri Nets. in SEKE02 14th
International Conference on Software Engineering and
Knowledge Engineering, ACM, Ischia, Italy.

[5] Ghokale, S., Lyu, M. and Trivedi, K. 1998. Reliability
simulation of component based software systems. In
Proceedings of the 9th International Symposium on
Software Reliability Engineering (ISSRE’98).

[6] Gyarmati, E. and Strakendal, P. 2002. Software
Performance Prediction-Using SPE. Master Thesis
Software Engineering, Department of Software
Engineering and Computer Science Blekinge Institute of
Technology, Sweden.

[7] Jensen, K. and Kristensen, L. 2009. Coloured Petri nets:
modeling and validation of concurrent systems.
Springer-Verlag.

[8] Lai, Chien-Yuan., Shih, Dong-Her., Chiang, Hsiu-Sen. and
Chen, Ching-Chiang. 2010. Transformation of UML
activity diagrams into analyzable systems and software
blueprints construction. WSEAS Transactions on
Information Science and Applications, vol. 7, no. 3.

[9] Littlewood, B. 1979. Software reliability model for
modular program structure. IEEE Transactions on Software
Engineering, Vol. 28, NO. 3.

[10] Murata, T. 1989. Petri Nets: Properties, Analysis, and
Applications. In Proceedings of the IEEE, Vol. 77, NO. 4.

[11] Object Management Group (OMG). 2002. UML Profile for
Reliability, Schedulability, Performance and Time
Specification.

[12] Object Management Group (OMG). 2005. Unified
Modeling Language (UML). Version 2.0,

[13] Zhu, L. and Wang, W. 2012. UML Diagrams to
Hierarchical Colored Petri Nets: An Automatic Software
Performance Tool. Science Direct International Workshop
on Information and Electronics Engineering (IWIEE).

<<Implements>>

<<Implements>>

Figure 7. The full HTCPN model

