
International Journal of Computer Applications Technology and Research
Volume 3– Issue 11, 668 - 675, 2014, ISSN: 2319–8656

www.ijcat.com 668

The Need to Integrate Usability Engineering into Agile
Process Models for Mobile Applications and Devices

Development

Denish Omondi Otieno

School of Computer Science and
Information Technology

Jomo Kenyatta University of
Agriculture and Technology

(JKUAT)
Nairobi, Kenya

Wilson Cheruiyot
School of Computer Science and

Information Technology
Jomo Kenyatta University of
Agriculture and Technology

(JKUAT)
Nairobi, Kenya

Michael Kimwele
School of Computer Science and

Information Technology
Jomo Kenyatta University of
Agriculture and Technology

(JKUAT)
Nairobi, Kenya

Abstract: Reliability of an interactive mobile computing device or the lack of it is often reflected in user satisfaction. The rapid
proliferation and ubiquity of smart devices in the consumer market has forced the Software Engineering (SE) community to quickly
adapt development approaches conscious of the novel capabilities of mobile applications. However, the growth of this new computing
platform has outpaced the software engineering work tailored to mobile application development. Designs in Human computer
interaction (HCI) aim to create interactive products that are easy and enjoyable to use. However, owing the major gaps between HCI
and SE in theory and practice, the multidisciplinary nature of HCI and the different value systems of interface users from various
backgrounds and experiences, it is highly challenging for designers to create applications which are usable and affordable to such a
heterogeneous set of users. Nowadays, users complain about the bad interaction design of mobile platform-based devices. The
question is whether this problem is caused by the bad design of products or by the users’ ignorance of the logics of HCI design? In this
paper we focus on the need to integrate usability engineering in to agile process models for the enhancement of mobile application and
devices development.

Keywords: usability engineering, agile process models, mobile devices

1. INTRODUCTION
The operation of human-computer interface is becoming more
complicated due to the fast development in the digital
technology. The un-usability of systems, products and
services is a tremendous problem for users and consumers all
over the world, despite the efforts put in by researchers,
usability practitioners and designers. Using a mobile platform
based device is different from working with a desktop or
laptop computer. While gestures, sensors, and location data
may be used in game consoles and traditional computers, they
play a dominant role in many mobile applications. The
smaller display and different styles of user interaction also
have a major impact on usability design for mobile
applications, which in turn has a strong influence on
application development. Therefore, usability still needs to be
the main focus of our activities. In practice, usability aspects
are usually regarded very late (if at all) in software
development. Software development does not stop with
delivery, nor do usability issues. Systems and products are
modified and improved in a number of releases over a number
of years. Most efforts currently centered on usability matters
stop after the initial development process. What do we do
after delivery? Furthermore, software development models,
such as agile, waterfall, Spiral, Rational Unified Process
(RUP) and Dynamic Systems Development Method (DSDM)
are widely used in the software development industry. These
models are basically not user-centered and most of them
provide limited support for usability activities.

1.1 Human computer interaction
Human-computer interaction (HCI) is a multi-disciplinary
field with a focus on the interaction between humans and
computers it is a discipline concerned with the design,
evaluation and implementation of interactive computing
systems for human use and with the study of major
phenomena surrounding them Keith Andrews (2013). Humans
are Individual users, a group of users working together, a
sequence of users in an organization. Computers involve,
desktop computers, large-scale computer system, Pocket PC,
embedded system etc.

1.2 Mobile platform based devices
Mobile application development is a relatively new
phenomenon that is increasing rapidly due to the ubiquity and
popularity of smart phones among end-users. Mobile devices
can be defined in different ways when they are looked at from
different perspectives. They can be defined in terms of the
services they offer or based on the level of functionality
connected with the devices. According to Sharpet et al (2007)
they refer to the devices that are handheld and intended to be
used while on the move. Nowadays, mobile devices are being
used by different people for various purposes. A mobile
device refers to a pocket-sized computing device, typically
having a small display screen, a small keypad with miniature
buttons or a touch screen with stylus of input; mobile devices
have wireless capability to connect to the Internet and home
computer systems.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 11, 668 - 675, 2014, ISSN: 2319–8656

www.ijcat.com 669

1.3 Usability
Usability is defined in Part 11 of the ISO 9241 standard as
“the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and
satisfaction in a specified context of use.” Effectiveness is the
accuracy and completeness with which specified users can
achieve specified goals in particular environments. Efficiency
is defined as the resources expended in relation to the
accuracy and completeness of the goals achieved. Satisfaction
is the comfort and acceptability of the work system to its users
and other people affected by its use.

2. WHY USABILITY ENGINEERING
Human-Computer Interaction (HCI) discipline provides the
foundations to develop usable applications. “Usability
Engineering" is a science that studies how to understand and
systematically address the usability demand of a customer C
lee et al (2007). Usability engineering deals with issues such
as system learnability, efficiency, memorability, errors and
user satisfaction. Usability engineering is an approach to
product development that is based on customer data and
feedback, on direct observation and interactions with
customers to provide more reliable data than self-reporting
techniques. Usability engineering begins in the conceptual
phase with field studies and contextual inquiries to understand
the functionality and design requirements of the product. It is
an iterative design and evaluation to provide customer
feedback on the usefulness and usability of a product's
functionality and design throughout the development cycle.
This results in products that are developed to meet the
customers' needs.

3. UNIQUE DEVELOPMENT
CHALLENGES FOR MOBILE
PLATFORM BASED DEVICES
The creation of applications intended to execute on newer
mobile devices such as smart phones and tablets involves
unique requirements and challenges. Containing global
positioning sensors, wireless connectivity, photo/video
capabilities, built-in web browsers, voice recognition, among
other sensors, mobile devices have enabled the development
of mobile applications that can provide rich, highly-localized,
context-aware content to users in handheld devices equipped
with similar computational power as a standard personal
computer (PC) Oulasvirta, et al (2011). Yet, these same novel
features/sensors found in mobile devices present new
challenges and requirements to application developers that are
not found in traditional software applications Wassermann
(2010).Traditional software engineering approaches may not
directly apply in a mobile device context. First, mobile device
user interfaces (UI) provide a new paradigm for new human-
computer interaction sequences (e.g., multi-touch interfaces,
QR code scanning, image recognition, augmented reality, etc.)
that have not been previously explored in research and of
which no established UI guidelines exist Oulasvirta, et al
(2011) . Second, the divergent mobile platforms (e.g., iOS,
Android, Windows 7, etc.), differing hardware makers for
platforms (e.g., Android versions found on HTC, Google,
Samsung) and mobile phone and tablet platforms (e.g.,
Apple’s iPhone and iPad) have necessitated developers to
make a series of the same application tailored for each type of
device Wassermann (2010). Third, the novelty of a truly
mobile computing platform provides both unique
opportunities and challenges below we outline the
fundamental, unique challenges to the state-of-practice in
mobile application development.

3.1 Form factors
The first and most obvious unique aspect of mobile
applications is that the form factor for display and user
interaction is significantly different from prior forms of
software. Smart phones usually provide only a four-inch area
in which to display the application content and offer lower
screen resolution pixel density compared to personal
computer (PC) displays, which are trending toward greater
display sizes and number of screen pixels. Even tablet devices
have generally lower display sizes than PCs, especially when
compared to the large flat-screen displays in use for newer
desktop PCs. A smaller form factor means that the amount of
data displayed to the end user, and layout of that data, needs
to be different for these applications than for apps expected to
run on PC devices. Significantly less data can be displayed at
one time and therefore it must be exactly the “right” data,
most relevant to what the user needs at that point in the
application.

3.2 Usability and user interaction design
Several factors motivate the need for more attention to
usability and user interaction design for mobile applications.
One is the difference in form factors and user input methods.
It is much more difficult and time consuming to plan how to
display only the data that is precisely necessary than it is to
simply display all possible data and let the end users visually
sift through it for what they want. The mobile app designer
has to consider the screen real estate.

3.3 Creating universal user interfaces
There has been some preliminary research in creating a
universal user interface for mobile devices Oulasvirta, et al
(2011), Balagtas, et al (2009). Each mobile platform has a
unique guide to address developer user interface requirements.
The user interface guidelines have several overlapping
themes. A significant consideration for mobile UI
development relates to screen size and resolution. For
example, Apple devices are limited to two sizes based on the
size of the iPhone and the iPad whereas Windows 7, Android,
and Blackberry provide screens of varying sizes and screen
resolutions. As a result, UI design is difficult and mobile
application developers must anticipate the targeted device(s).

3.4 User input technology
Another obvious physical difference for mobile applications is
that the mechanisms for user input are different. Mobile
devices have pioneered the use of non-keyboard “gestures” as
an effective and popular method of user input. Touch, swipe,
and pinch gestures must be planned for and supported in a
satisfying mobile application user experience. These tactile
end user input mechanisms have proven to be so popular that
they are now being retrofitted into traditional desktop PC
systems such as the Apple “Lion” OS X release and Windows
8 “Metro” OS. In addition to tactile user input, mobile devices
are a natural target for voice-based user input. Besides input
directly from the end user, mobile devices have the capability
to receive input from other sources, such as geo-location input
from the GPS component of the device and image information
from the camera typically built into the device. These unique
forms of input must be considered during mobile application
design and development. They offer new and valuable
mechanisms to make mobile apps more powerful and useful
than applications with a more limited array of input
possibilities.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 11, 668 - 675, 2014, ISSN: 2319–8656

www.ijcat.com 670

3.5 Enabling software reuse across mobile
platforms
Mobile applications currently span several different operating
system platforms (e.g., iOS, Android, Windows 7, etc.),
different hardware makers (Apple, HTC, Samsung, etc.),
delivery methods (i.e., native application, mobile web
application) and computing platforms (i.e., Smartphone,
tablet). Each of these options must be considered during
mobile application development as they have a direct
influence on the software requirements. Companies currently
need to make a business decision to target a single mobile
device platform with rich features, multiple platforms through
a mobile website with less rich features or spend the resources
necessary to broadly target the gamut of mobile devices with
rich, native applications.

3.6 Choice of implementation technology
There is a spectrum of implementation choices for mobile
applications in the market. There is no one perfect answer for
the choice of implementation for a mobile application, and all
of the choices across the spectrum have their advantages and
disadvantages. Therefore, the challenge for mobile
development teams is to understand the trade-offs between the
technologies and make a choice based on the specific
application requirements. The choice of implementation
technology for a mobile project will have an impact on other
decisions related to the application’s development. It may
limit the choices for development tools. The implementation
choice will likely have an impact on the team roles and
structure. It may have an impact on how the application is
tested and verified, and how it is distributed and delivered to
the end user. So, the choice of implementation approach for a
mobile application is a crucial, early-stage decision to be
made very carefully.

3.7 Designing context-aware mobile
applications
Mobile devices represent a dramatic departure from
traditional computing platforms as they no longer represent a
“static notion of context, where changes are absent, small or
predictable” Roman, et al (2000).Rather, mobile devices are
highly personalized and must continuously monitor its
environment, thereby making mobile applications inherently
context aware (collectively time-aware, location-aware,
device-aware, etc.) Hofer, et al (2003), Dey, et al (2008).
Mobile applications are now contextualizing proximity,
location, weather, time, etc. To deliver hyper-specialized,
dynamic, rich content to users through context-aware
applications. Previously, web applications would often
provide contextualized content based on time, detected
location and language. However, the extent of context-
awareness currently possible in mobile applications is beyond
what software engineering approaches have encountered
outside of agent-oriented software engineering. The
consideration of context-awareness as a first-class feature in
mobile application development is needed so that the requisite
attention is paid by developers when analyzing these
requirements resulting in better designed context-aware
applications.

3.8 Behavioral consistency versus specific
HCI guidelines
Ideally, a given mobile app should provide the same
functionality and behavior regardless of the target platform it
is running on. However, due to the internal differences in
various mobile devices and operating systems, “a generic

design for all platforms does not exist”. “An Android design
cannot work all the way for the iPhone.” This is mainly due to
the fact that HCI guidelines are quite different across
platforms, since no standards exist for the mobile world, as
they do for the Web for instance. On the other hand,
developers would like their application to behave similarly
across platforms, e.g., user interaction with a certain feature
on Blackberry should be the same as on iPhone and Android
thus, creating a reusable basic design that will translate easily
to all platforms while preserving the behavioral consistency is
challenging.

3.9 Balancing agility and uncertainty in
requirements
While most mobile application developers utilize an agile
approach or a nearly ad hoc approach, the growing demand
for context-aware applications, competition amongst mobile
applications and low tolerance by users for unstable and/or
unresponsive mobile applications (even if free) necessitates a
more semi-formal approach. This should be integrated into
agile engineering to specify and analyze mobile application
requirements.

3.10 Mobile application build and delivery
The strong business motivation to deliver mobile applications
into the market quickly has made mobile development
projects typically to have extremely aggressive time lines.
Inception-to-delivery periods of a few months are common.
The pressure to deliver mobile apps quickly results in the
adoption of agile development methods for most mobile
projects. An important element in agile development practices
is continuous integration and builds. Application changes
delivered by developers need to be processed immediately for
all of the mobile operating systems on which the application is
required to execute. If the mobile application is a hybrid or
native implementation, several different builds of the
application need to be triggered each time a change set for the
application is delivered by a developer. The build setup and
configuration for each supported mobile environment will be
different from the others, and it is most likely that a small
“farm” of build servers will need to be provisioned and
available to handle these builds of the mobile application for
multiple operating systems.

3.11 Testing of applications
Another area where mobile application development poses a
huge challenge is testing. Testing for mobile applications
represents a quantum leap in complexity and cost over more
traditional applications. Unlike traditional PC and web
applications, the range of potentially supported mobile
devices and release levels is staggering. It is quite common to
see test matrices for mobile projects that contain hundreds,
and even thousands, of permutations of device, mobile OS
level, network carrier, locale, and device orientation
combinations.

4. HARDWARE CHALLENGES
Due to the limitations of size and weight for portability
purpose, the interface design for mobile devices comes with
more hardware challenges when compared to other
regularized devices such as desktop phones or printers; these
challenges include limited input facilities, limited output
facilities, and designing for mobility.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 11, 668 - 675, 2014, ISSN: 2319–8656

www.ijcat.com 671

4.1 Limited input facilities
According to Muhanna (2007), there are three main input
facilities for mobile devices that are on the market:

 The keyboard,
 The stylus with the touch screen, and
 The scroll wheel.

The keyboard allows a user to hit a key to perform a task or
navigate through the mobile menu functionalities; the stylus
with the touch screen allows a user to hit the screen to do the
task; the scroll wheel can be scrolled and pushed by a user to
do a task and also navigate through the menus and submenus.
The design of keyboards for mobile devices has been a
challenge because the space for key installation on a mobile
device is limited.
Mobile interfaces can be quite tricky and cumbersome to use
when compared to the fully-blown GUI, especially for those
with poor manual dexterity or fat fingers and those who have
difficulty in selecting tiny buttons on mobile devices, Siek et
al (2005). Research directions on this limitation have come up
with different alternatives and solutions. Green et al (2004)
described a specialized keyboard ‘Stick’ that maps row to
decrease the physical space. However, a drastic key reduction
in order to achieve sufficient portability decreases text entry
performance, and requires additional effort to learn a new
typing method. The stylus and touch screen which are widely
used in personal digital assistants and smart phones can be a
good alternative for the keyboard in some cases. However,
touch input would be problematic if the screen of a mobile
device is small and that would lead a user’s fingers to occlude
the graphical elements he wishes to work with.

4.2 Limited output facilities
There are various output facilities that are used on mobile
devices. The small-sized screen is one of the mainly and most
commonly used output facilities for mobile devices.
Designing the screen for outputting is a trade-off challenge
that needs to be experimentally studied to find out which is
the efficient and most effective size of the screen that can be
used for the different types of mobile devices Muhanna
(2007). For example, having a larger screen can solve a
limited output facilities challenge; however, it will bring up
another challenge of designing for mobility.
The audio output is another output facility that is commonly
used on mobile devices. It can be a good output facility for
feedback messages to the user, and can be used in conjunction
with the graphics and text messages to have an effective
interaction between the human and the device Muhanna
(2007).

4.3 Designing for mobility
A mobile device should be portable and easy to be held by the
user, and this brings up the big challenge of designing for
mobility, Myers (2004).The power facility in a mobile device
is the main challenge of designing for mobility that is
characterized by limited and dynamically varying available
resources and stringent application requirements. Ashwini et
al (2006) indicated that the power consumed by an application
depends on the performance level requested by the user or
application, and that the mobile device can be viewed as the
collection of devices. Therefore, it is very crucial to design a
power management unit which collects information in
hardware so that the performance of the system is not
degraded Hwang (2008).

5. THE GAPS IN INDUSTRY
PRACTICES
Jerome and Kazman analyze the gaps between SE and
usability in HCI in practice Jerome, et al (2005) from a survey
of 63 HCI practitioners and 33 software engineers; they found
that the state of practice is not very encouraging. They report
that there is substantial lack of mutual understanding among
software engineers and HCI practitioners and the two
disciplines hardly follow each other. They also do not
collaborate much in projects. 68% software engineers report
that they made key software design decisions that affect the
user interface without consulting HCI practitioners. Even
greater proportion of HCI practitioners (91%) believe that
software engineers were making key design decisions without
consulting any HCI practitioners. When collaboration does
occur, it usually happens too late. Only 1 out of 21 software
engineers and 2 out of 60 HCI practitioners reported that they
collaborated during the specifications phase below we explore
the challenges.

5.1 Usability engineering inputs are not
taken during requirements specifications
Usability engineering inputs are needed early in the process
before requirements are finalized. Use cases in requirements
documents routinely over-specified the usability design,
including details such as the sequence, the contents of dialog
boxes in the application, navigating and browsing for mobile
devices that generally have small screens etc. This over-
specification happened possibly because there is a physical
and cultural distance between the developers and users, the
development teams are less familiar with the context of users,
and the requirements specifiers want to have a control on the
user interface.

5.2 Porting projects get minimal HCI
inputs
Every software project represents an opportunity to improve
the user experience. Conversely, every project also represents
a risk of degrading the user experience. This applies even to
porting and migration projects. Less importance is normally
given to requirements gathering in general and usability
requirements. It is assumed that most requirements are well-
understood and had to be “copied over” from earlier version.
However, projects often involve a change of delivery
platform, a change of context, or a change of users and coping
over can have a big impact on usability design and the
corresponding requirements.

5.3 Client representatives take design
decisions
Client representative routinely drives many HCI design and
usability considerations. Such a person may have never been a
user himself or may have moved out of that role a long time
ago. His / her sign-off may not imply that the product is
usable. This can be revealed only by usability evaluations
with real users.

5.4 Usability engineering skills do not have
process support
Software Engineering projects have some involvement of
Usability engineering practitioners, though they still ended
with unresolved usability issues that they knew could be
solved Jerome, et al (2005). A multi-disciplinary team needs
to work together. The team needs to be armed with
appropriate user inputs and needs a common set of work

International Journal of Computer Applications Technology and Research
Volume 3– Issue 11, 668 - 675, 2014, ISSN: 2319–8656

www.ijcat.com 672

products and a common process to approach the product
development holistically and add value. Role of each
discipline needs to be mutually understood and respected, first
within the team and then across the organizations.

5.5 Too little and too late is not good
enough
In projects, Usability engineering practitioners are pulled in
towards the end when too many obvious usability problems
surfaced Jerome, et al (2005). In these situations, Usability
engineering practitioners work under severe constraints. They
have no time to understand the scope of the project and no
budget to do usability activities they would have done earlier.
Even if some Usability engineering activities were done, most
of the recommendations they come up with to improve the
User Interface seemed too impractical to implement in the
given situation. Few cosmetic changes would be made, mainly
to satisfy the client representative, and the project would be
pushed through.

6. AGILE PROCESS MODELS
Agile process models have come to represent the iterative
nature of software development as shown in figure 1 below.
Several process models have emerged. Pressman summarizes
seven agile process models: Extreme Programming, Adaptive
Software Development, Dynamic Systems Development
Method, Scrum, Crystal, Feature Driven Development, and
Agile Modeling Pressman (2005 pp. 103-124). These process
models may vary in their details, but they have several
common elements best captured by the agile manifesto Agile
Manifesto (2001).

 Individuals and interactions over processes and
tools

 Working software over comprehensive
documentation

 Customer collaboration over contract negotiation
 Responding to change over following a plan.

Figure. 1 Agile process

The last point is particularly important. In agile processes, it is
typical to solve a small part of the problem to begin with and
to grow the solution in iterations. Agile processes believe that
changes in software requirements will necessarily happen.
Agile processes are designed to accommodate changes even
late in the process to harness change for the customer's

competitive advantage Agile Manifesto (2001). Fowler lists
many reasons why requirements change, and in fact why they
ought to be changeable Fowler (2005). Firstly, customers
cannot recognize what options they have while specifying
requirements. Even if they could, they cannot make an
informed decision at this stage primarily because the cost to
each new requirement cannot be predicted right up front.
Software development is a design activity and thus hard to
plan and cost. Further, the basic ingredients of software keep
changing rapidly. In addition, costs are dependent on the
individuals involved and their experience. Finally, software is
intangible and yet malleable. Only when they use an early
version of some software do the customers really begin to
understand which features are valuable and which are not
Fowler (2005). Even if we could get an accurate and stable set
of requirements early, Fowler believes that you are still
doomed. The fundamental business forces in today’s economy
are so dynamic that every six months, new requirements are
likely to emerge.
In agile processes, the main measure of progress is working
software agile methods deliver working software in small
pieces frequently and sometimes as frequently as once a week.
This length of time forms a heartbeat for the project and helps
maintain pace. Agile methods also insist that development
needs to happen smoothly, without the developers working
overtime. Each iteration of an agile process follows a mini-
waterfall within itself. Sufficient requirements are expressed,
analyzed, the software architecture is re-factored if necessary,
the code is written or re-written, tested and released. If some
requirements could not be completed in the current iteration,
they are carried over to the next iteration.
Agile methods do not plan a timeline for the whole project.
Because new versions of the software are constantly being
released, it makes it easier for everyone (including the
customer) to see momentum in the project. This makes it
easier to estimate the time needed to achieve the overall vision
of the project and to make course corrections. While testing is
important in all software process models, agile methods
emphasize on testing. Agile methods suggest not only testing
the current version of the product, but setting up of automated
testing procedures so that testing is frequent and when
changes happen during iterations, the automated regression
testing detects the breaks soon. Automated regression testing
is particularly important because it saves on time compared to
manual testing. Agile methods depend a lot on teamwork and
internal communication. It is believed that best architectures,
requirements, and designs emerge from self organizing teams.
Developers work alongside customers during the
development. There is usually little documentation, but there
is a lot of emphasis on face-to-face communication between
team members.
Pair-programming (programming done by two developers
together) and daily stand-up meetings (that last no more than
15 minutes) help in maintaining communication going among
team members. Usability engineering processes share several
qualities with agile processes. Usability engineering design is
intrinsically an iterative process consisting of analysis, design,
and usability evaluation. The problems found during the
evaluation are fixed in the next iteration. Such iterations
continue until no problems are found and user experience
goals are met. Given this preference for iterations, agile
methods seem a good fit for integrating usability engineering
activities within the agile processes. The emphasis on people
and deliverable products rather than documentation and
planning are also common qualities just like agile
programmers, usability engineering designers are more of
doers. The informality of the agile methods gels well with the

International Journal of Computer Applications Technology and Research
Volume 3– Issue 11, 668 - 675, 2014, ISSN: 2319–8656

www.ijcat.com 673

informal culture of design. Designers are more at ease in face-
to-face communication and visual presentation of ideas than
with wading through long documents. Most critiques agree
that there is potential to integrate user-centred activities with
agile development. Nielsen acknowledges that agile methods
hold promise for addressing the many ways in which
traditional development methodologies erected systematic
barriers to good usability practice Nielsen (2008). However,
despite the similarities, several Usability engineering issues
still emerge with agile process models. Design in the Usability
Engineering world involves working with the user to
understand the problem and come up with a user interface –
typically on paper - of the entire system before turning it over,
in Big Design Upfront (BDUF) manner, to the rest of the
development team to build. Following our surveys the
following were found to be a challenge in the current agile
development paradigm.

6.1 Software engineers are asked to design
The most important issue with agile process models is that
they pay little attention to users and Usability Engineering.
Agile methods do not acknowledge that Usability Engineering
activities require a different set of specialized and important
skills. This is reflected in the team composition. Agile teams
primarily consist of software engineers, and working code is
considered the primary deliverable. Anyone who does not
deliver code (e.g. a designer) does not easily fit in culturally.
Several critiques have reflected this view. Blomkvist
comments that though agile processes value people, skills, and
teamwork in other areas, they do not regard that usability and
interaction design skills as important Blomkvist (2005).
Nielsen identifies threats of agile methods Nielsen (2008).
The biggest threat, according to Nielsen, is that agile
methodologies are developed by programmers to address the
implementation side of software development, overlooking
Usability Engineering design. While Nielsen is not against
Usability Engineering design being performed by the same
people who do the coding, he feels it must be recognized as a
separate activity rather than leaving it to happen as a “side
effect of coding”. Constantine concludes that agile methods
seem to be at their best in applications that are not GUI
intensive Constantine (2002).

6.2 Users are asked to design
To help design a new system, agile methods put representative
customers or users in the team. This may give a feeling to the
development team that the voice of users is being heard, this
may not be true critics. Bayer et al. argue that there is no such
thing as representative users. At best, they are a sub-set of
users and often, they only represent themselves Beyer, et al
(2004). Further, even real users are unable to articulate what
they do and how, particularly when they are not in the context
of that work, and certainly if they have not been doing the
work for a while. Finally, users are not able to make design
decisions for a new system. Users may not have the
appropriate skills required to create visions of future systems.
Design of interactive systems requires a complex set of skills
and it is inappropriate to assume that all representative users
would have it. User should be involved, but not for making
the design decisions. Skilled Usability Engineering
practitioners can design good systems by observing users in
their contexts, by involving them in participatory design
activities, or by asking them to try out prototypes during
usability tests.

6.3 Change is managed well but
anticipated poorly
Agile methods plan very little up front because it is assumed
that the business needs and requirements will change any way.
However, as Allen Cooper puts it, this is a self fulfilling
prophecy. Requirements change because planning is avoided
Cooper (2008). Managing change is one of the strengths of
agile methods. As a result, agile methods shun Big-Design-
Up-Front. Agile methods do not seem to be differentiating
between elaborate planning and deeply understanding user
needs, between software design and design for human beings,
and between intra- and extra-lifecycle changes. They tend to
club these in to one basket and shun them equally. We
categorize changes to Usability Engineering into five types:

 Changes that arise because a new user need or user
problem is discovered after requirements are frozen.

 Changes that arise because someone thinks of a new
idea after the requirements were frozen.

 Changes that arise because something that was
thought to be technically feasible turns out not to be
so and a workaround is required.

 Changes that arise because late usability evaluations
of early releases throw up unanticipated usability
problems that were not captured on early prototypes
and

 Finally, changes that could not have been
anticipated.

Agile methods seem to give a license to do a poor job at
anticipating and containing change. Proponents of agile
methods seem to do little introspection about the reasons for
intra-lifecycle changes, which are the most common type of
changes in projects. Usability Engineering activities can help
in anticipating many of the intra-lifecycle changes that arise
out of human needs and business processes.

6.4 Agile user stories are not interaction
design scenarios
Agile teams use user stories to define, manage, and test
features of a product. It is tempting to think of these as
parallel to scenarios in interaction design and to think of
stories as a direct link between Usability Engineering and
agile methods. However, a closer look at tells a different
story. Agile user stories are written by customers, focus on the
user interface of one feature, and are supposed to be about
three sentences long, Wells (2009). The length of the story is
determined by the time it takes to implement it in code.
Scenarios in interaction design are lot richer than three-
sentence-long user stories. They are created by designers to
envision new products. A scenario may involve more than one
feature and may involve one or more personas. Scenarios
narratives are never only three sentences long, are often
accompanied by storyboards or videos, and only sometimes
describe details of the user interface. The main purpose of a
scenario is to explain the high-level impact of the future
product on the life of the user in a particular situation Cooper,
et al (2003 pp. 77-82). It is difficult to imagine how a scenario
can be chopped or merged just so that it can be developed in
three weeks.

6.5 Short Iterations
An important Usability Engineering issue is that breaking
down product development into small parts and constant
change can potentially undermine the totality of the user
experience. While some Usability Engineering researchers
have no issues with this, a few have critiqued this of agile

International Journal of Computer Applications Technology and Research
Volume 3– Issue 11, 668 - 675, 2014, ISSN: 2319–8656

www.ijcat.com 674

methods Constantine (2002), (Nielsen, 2008). Piecemeal
design could lead to lack of cohesiveness and allow
inconsistencies to creep in. Maintaining a comprehensible and
consistent user interface as new features are added becomes
increasingly difficult. Short iterations cause further problems
as the usability team tries to maintain the project.

7. DISCUSSION
The relevance of usability as a quality factor is continually
increasing for software engineering organizations: usability
and user acceptance are about to become the ultimate
measurement for the quality of today’s, telematics
applications, e-commerce web sites, mobile services and
tomorrow’s proactive assistance technology. Taking these
circumstances into account, Usability Engineering methods
for developing interactive systems are changing from a last
minute add-on to a crucial part of the software engineering
lifecycle.

It is well accepted both among software practitioners and in
the Usability Engineering research community that structured
approaches are required to build interactive systems with high
usability. On the other hand specific knowledge about exactly
how to most efficiently and smoothly integrate Usability
engineering methods into established software development
processes is still missing Eduard et al (2004), while
approaches such as the usability maturity model (UMM)
provide means to assess an organization’s capability to
perform usability development processes they lack guidance
on how to actually implement process improvement in
usability Engineering. It often remains unclear to users of
Usability engineering methods why certain tools and methods
are better suited in a certain development context than others
Metzker and Reiterer, (2002). We need strategies and tools
that support engineering organizations. Little research has
been done on integrating methods and tools of usability in to
software engineering development process for the
enhancement of interactive mobile platform based devices and
on gathering knowledge about Usability Engineering activities
in a form that can capture relationships between mobile
platform development contexts, applicable methods, tools and
their impact on the engineering process.

8. CONCLUSION
Early computer systems were expensive and were developed
mainly for particular tasks, like advanced number-crunching;
as such, these systems were employed only by specialist
computer users. Often the systems had command-line
interfaces, with obscure commands known only by these
specialist users. Thus, the user had to adapt to the system, and
learning how to use the system required much effort.
Computing systems, however, are no longer the province of
the specialist user. As the price of PCs and computer-based
technologies has fallen, the ownership of these types of goods
by non-specialists has widened. The need for the design and
development of user interfaces that support the tasks people
want to do and that can be used easily by a variety of people
with varying abilities has become an important issue. Users
are more comfortable with mobile platform based devices that
are easy to use, easy to understand, and enable them to attain
their goals with minimum frustration. Poor or bad user
interfaces design leads to user frustration and dissatisfaction
and that’s why we highlight different issue to be addressed in
regards to achieving better mobile applications and devices.

9. REFERENCES
[1] A. I. Wasserman, “Software engineering issues for

mobile application development,” in Proceedings of the
FSE/SDP workshop on Future of software engineering
research - FoSER ’10, 2010, pp. 397-400.

[2] A. Muhanna, “Exploration of human-computer
interaction challenges in designing software for mobile
devices,” master’s thesis, University of Nevada, Reno,
USA, 2007.

[3] A. Oulasvirta, M. Wahlström, and K. Anders Ericsson,
“What does it mean to be good at using a mobile device?
An investigation of three levels of experience and skill,”
International Journal of Human-Computer Studies, vol.
69, no. 3, pp. 155-169, Mar. 2011.

[4] Agile Manifesto 2001, Accessed June 1, 2009,
http://agilemanifesto.org/.

[5] B. A. Myers, J. Nichols, J. O. Wobbrock, and R. C.
Miller, “Taking handheld devices to the next level,”
IEEE Computer Journal, vol. 37,no. 12, 36−43, 2004.

[6] Bevan N Classifying and Selecting UX and Usability
Measures, International Workshop on Meaningful
Measures: Valid Useful User Experience Measurement,
2008.

[7] Beyer H, Holtzblatt K, and Baker L, An Agile Customer-
Centered Method: Rapid Contextual Design, XP / Agile
Universe, 2004.

[8] Blomkvist S Towards a Model for Bridging Agile
Development and User-Centred Design, in Human
Centred Software Engineering, Seffah A, Gulliksen J,
and Desmarais M (eds.), Springer, 2005.

[9] C. Lee and D, S, McCrickard, "Towards extreme(ly)
usable software: exploring tensions between usability
and agile software development," Proc, AGILE 2007
conference, (Agile '07), IEEE Press,2 007, pp, 59-71.

[10] Carroll J Human Computer Interaction, Interaction-
Design.org, 2009

[11] Christer Nordberg (2010), Exploring the text free
interface for illiterate users Designing an icon-based
prototype for mobile phones

[12] Constantine L Process Agility and Software Usability:
Toward Lightweight Usage Centered Design,
Information Age, 2002

[13] Cooper A and Reimann R About Face 2.0, Wiley, 2003.

[14] Cooper A Allen's Keynote at Agile 2008.

[15] Da silva, t. S. Et al. "User-Centered Design and Agile
Methods: A Systematic Review". In: Agile COnference.
2011, pp. 77-86.

[16] F. Balagtas-Fernandez, J. Forrai, and H. Hussmann,
“Evaluation of user interface design and input methods
for applications on mobile touch screen devices,”
Human-Computer Interaction, pp. 243–246, 2009.

[17] F. Bomarius et al. (Eds.): PROFES 2009, LNBIP 32, pp.
386–400, 2009.The Waterfall Model in Large-Scale
Development, Springer-Verlag Berlin Heidelberg 2009.

[18] Fowler M The New Methodology, December 13, 2005.

[19] Ferreira, j.; sharp, h.; robinson, h. "User experience
design and agile development: managing cooperation

International Journal of Computer Applications Technology and Research
Volume 3– Issue 11, 668 - 675, 2014, ISSN: 2319–8656

www.ijcat.com 675

through articulation work". Softw. Pract. Exper.,New
York, NY, USA, vol. 41, August 2011, pp. 963-974.

[20] G. C. Roman, G. P. Picco, and A. L. Murphy, “Software
engineering for mobility: a roadmap,” in Proc. of the
Conf. on the Future of Software Engineering, 2000, pp.
241–258.

[21] Gulliksen J, Cajander A, and Eriksson E Only Figures
Matter? – If Measuring Usability and User Experience in
Practice is Insanity or a Necessity, International
Workshop on Meaningful Measures: Valid Useful User
Experience Measurement, 2008.

[22] H. S. Ashwini, A. Thawani, and Y. N. Srikant,
“Middleware for efficient power management in mobile
devices,” in Proceedings of the 3rd International
Conference on Mobile Technology, Applications and
Systems, 2006.

[23] IXDA About Interaction Design, Interaction Design
Association, 2009.

[24] J. Dey, Anind K., Hakkila, “Context-Awareness and
Mobile Devices,” 2008.

[25] Jerome B and Kazman R Surveying the Solitudes: An
Invetigation into the Relationships between HCI and SE
in Practice, in Human Centred Software Engineering,
Springer, 2005.

[26] Kai Petersen, Claes Wohlin, and Dejan Baca1 The
Waterfall Model in Large-Scale Development, LNBIP
32, pp. 386–400, 2009.

[27] Kay H. Connelly, Katie A. Siek, Valerie Lafond
Favieres, and Gisele Bennett. Planes, pains, and
phosphorane: Usability studies in non-traditional
environments. In Adjunct Proc. From Interact 2005,
2005.

[28] Katie A. Siek, Yvonne Rogers, and Kay H. Connelly. Fat
finger worries: How older and younger users physically
interact with PDAs. In Proc. of Interact 2005, pages 267–
280. LNCS 3585, 2005.

[29] Keith Andrews, Human-Computer Interaction Course
Notes Version of 28 May 2013

[30] Metzker, E. and Reiterer, H. (2002), Evidence-based
Usability Engineering. in Computer-aided Design of
User Interfaces (CADUI2002). 2002. Valenciennes,
France.

[31] Nielsen J Agile Development Projects and Usability,
November 17, 2008

[32] N. Green, J. Kruger, C. Faldu, and R. Amant, “A reduced
QWERTY keyboard for mobile text entry,” in
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 2004, pp.1429−1432.

[33] p, McBreen, "Quality assurance and testing in agile
projects," McBreen Consulting, [online] Available:
http://www.mcbreen.ab.caltalksiCAMUG.pdf [Accessed:
December 2009]

[34] Pressman R Software Engineering – a Practitioner’s
Approach (6th Edition), McGraw Hill, 2005.

[35] Software Engineering Institute CMMI for Development
Version 1.2, August 2006.

[36] Sohaib, o.; khan, k. "integrating Usability Engineering
and Agile Software Development: A Literature Review".
Computer Design and Applications ICCDA 2010
International Conference on, vol. 2, 2010,

[37] Sharples, M., Taylor, J., & Vavoula, G. (2007) A Theory
of Learning for the Mobile Age. In R. Andrews and C.
Haythornthwaite (eds.) The Sage Handbook of
Elearning Research. London.

[38] T. Hofer, W. Schwinger, M. Pichler, G. Leonhartsberger,
J. Altmann, and W. Retschitzegger, “Context-awareness
on mobile devices - the hydrogen approach,” in 36th
Annual Hawaii International Conference on System
Sciences, 2003. Proceedings of the, 2003.

[39] Usability Professionals Association, Usability Body of
Knowledge, 2004, 2010.

[40] Wells D User Stories, Extreme Programming, 2009.
http://www.extremeprogramming.org/rules/userstories.ht
ml

[41] Welle-Strand, A., & Thune, T. (2009, April 24). Store
Norske Leksikon. Retrieved May 30, 2010, from
Analfabetisme: http://www.snl.no/analfabetisme

[42] Y. S. Hwang, S. K. Ku, C. M. Jung, and K. S. Chung,
“Predictive power aware management for embedded
mobile devices,” in Proceedings of the 2008 Conference
on Asia and South Pacific Design Automation,2008, pp.
36−41.

