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Abstract: Software reliability is considered as a quantifiable metric, which is defined as the probability of a software to operate 
without failure for a specified period of time in a specific environment. Various software reliability growth models have been proposed 
to predict the reliability of a software. These models help vendors to predict the behaviour of the software before shipment. The 
reliability is predicted by estimating the parameters of the software reliability growth models. But the model parameters are generally 
in nonlinear relationships which creates many problems in finding the optimal parameters using traditional techniques like Maximum 
Likelihood and least Square Estimation. Various stochastic search algorithms have been introduced which have made the task of 
parameter estimation, more reliable and computationally easier. Parameter estimation of NHPP based reliability models, using MLE 
and using an evolutionary search algorithm called Particle Swarm Optimization, has been explored in the paper.  
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1. INTRODUCTION 
Software can be defined as an instrument comprising a set of 
coded statements which takes a discrete set of inputs and 
transform them into a discrete set of outputs. Software may 
contain discrepancies or faults which may result into software 
failures. Any kind of deviation from the desired behaviour of 
the software is apparently unwanted for the user and to check 
the correctness of the program two approaches were used 
which can be named as : program proving and   program 
testing. Program proving is a formal and mathematical 
approach in which a finite sequence of logical statements 
ending in the statement, usually the output specification 
statement, to be proved is constructed. Each of the logical 
statements is either an axiom or is a statement derived from 
earlier statements by the application of an inference rule. 
However Gerhart and Yelowitz [1] presented various 
programs which were proved to be correct by this approach 
but in actually, were containing faults. On the other hand 
program testing is more practical approach and is heuristic in 
nature. Program testing basically involves  symbolic or 
physical execution of a set of test cases with the objective of 
exposing embedded faults in the program.  Program testing, 
like that of program proving is an imperfect tool for ensuring 
program correctness. As these approaches cannot completely 
assure about the correctness of the program, a metric is 
required which can help in assessing the degree of program 
correctness and software reliability fulfils this requirement. 
Reliability of a software can be defined as: “The probability of 
failure-free software operation for a specific period of time in 
a specified environment” [2]. Reliability of a software needs 
to be assessed before it is delivered to the customer. Various 
software reliability growth models (SRGM) has been 
introduced for predicting the reliability of a software. 
Although according to an observation made by M. R. Lyu in 
[3], “There is no universally acceptable model that can be 
trusted to give accurate results in all circumstances; users 
should not trust claims to the contrary.” Every model has 
some advantages and some disadvantages. The choice 
regarding which model to follow for the prediction depends 
upon the requirements of the software.  

We ask that authors follow some simple guidelines. This 
document is a template.  An electronic copy can be 
downloaded from the journal website.  For questions on paper 
guidelines, please contact the conference publications 
committee as indicated on the conference website.  
Information about final paper submission is available from the 
conference website 

2. SOFTWARE RELIABILITY 
GROWTH MODELS 

A Software Reliability Growth Model can be considered as 
one of the fundamental techniques to assess the reliability of a 
software quantitatively. Any software reliability model 
presents a mathematical function which illustrates defect 
detection  rates. These models are classified in two categories: 
Concave and S-shaped models , which can be illustrated with 
the help of  fig-1[4].  

 
Figure-1: Concave and S-Shaped Models 

Concave rnodels are so-called because they bend downward. 
S-shaped models, on the other hand, are first convex and then 
concave. This reflects their underlying assumption that early 
testing is not as efficient as later testing, so there is a "ramp-
up" period during which the defect-detection rate increases. 
This period terminates at the inflection point in the S-shaped 
curve. The most important thing about both models is that 
they have the same asymptotic behavior: The defect-detection 
rate decreases as the number of defects detected increases, and 
the total number of defects detected asymptotically 
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approaches a finite value. Several models had been proposed 
for assessing the reliability of the softwares, basic 
assumptions of some of the models are discussed below : 

Goel-Okumoto Model : 

This model was first introduced by Goel and Okumoto [5] and 
is based on the following 

assumptions: 

 All faults in the software are mutually independent 
from the failure detection point of 

              view. 

 The number of failures detected at any time is 
proportional to the current number of  faults in the 
software. This means that the probability of the 
failures or faults actually occurring, i.e., being 
detected, is constant. 

 The isolated faults are removed prior to future test 
occasions. 

 Each time a software failure occurs, the software 
error which caused it is immediately removed and 
no new errors are introduced. 

These assumptions lead to the following differential 
equations: 

డ
డ௧
                                                                                    (1)                                                       ((ݐ)ߤ	-a)b=|(ݐ)ߤ	

In this equation, a represents the expected total number of 
faults in the software before testing. Parameter b stands for 
the failure detection rate or the failure intensity of a fault and 
 .for the expected number of failures detected at time t (t) ߤ
Solving above equation for ߤ (t), we obtain the following 
mean value function 

(ݐ)ߤ = 	ܽ(1− ݁ି௕௧)                                                       (2)                                                                                             

Yamada S-Shaped Model : 

The Yamada S-Shaped model was first introduced in Yamada 
et al. [6]. The model is based on the following assumptions: 

 All faults in the software are mutually independent 
from the failure detection point of view.  

 The probability of failure detection at any time is 
proportional to the current number of faults in the 
software.  

 The proportionality of failure detection is constant.  
 The initial error content of the software is a random 

variable. 
 A software system is subject to failures at random 

times caused by errors present in the system. 
 The time between the (i-1)th and the ith failure, 

depends on the time of the (i-1)th failure. 

Musa’s basic execution time model [7] 

It assumes that there are N software faults at the start of 
testing, each is independent of others and is equally likely to 
cause a failure during testing. A detected fault is removed 
with certainty in a negligible time and no new faults are 
introduced during the debugging process. The hazard function 
for this model is given by 

(߬)ݖ = 	߶݂(ܰ − ݊௖)                                                     (3)                                                                                     

where ߬ is the execution time utilized in executing the 
program up to the present, f is the linear execution frequency 
(average instruction execution rate divided by the number of 
instructions in the program), ߶ is a proportionality constant, 
which is a fault exposure ratio that relates fault exposure 
frequency to the linear execution frequency, and n, is the 
number of faults corrected during (0,߬ ). One of the main 
features of this model is that it explicitly emphasizes the 
dependence of the hazard function on execution time. Musa 
also provides a systematic approach for converting the model 
so that it can be applicable for calendar time as well. 

3. PARAMETER ESTIMATION 
TECHNIQUES 
A software reliability model is simply a function and fitting 
this function to the data means estimating its parameters from 
the data. One approach to estimating parameters is to input the 
data directly into equations for the parameters. The most 
common method for this direct parameter estimation is the 
maximum likelihood technique. Maximum Likelihood 
Estimation is a method which is used for the estimation of the 
parameters of a statistical models. If maximum likelihood 
estimation is applied to a data set for a given statistical model 
then it provides the estimates of that model’s parameters. A 
second approach is fitting the curve described by the function 
to the data and estimating the parameters from the best fit to 
the curve. The most common method for this indirect 
parameter estimation is the least squares technique. Although 
methods like MLE and LSE provide a way to estimate the 
parameters of reliability models, but the model parameters are 
normally in nonlinear relationships and this makes traditional 
parameter estimation techniques suffer many problems in 
finding the optimal parameters to tune the model for a better 
prediction. Parameter estimation problem for nonlinear 
systems can be stated and formulated as a function 
optimization problem in which the objective is to obtain a set 
of parameters that provide the best fit to a measured data 
based on a specific type of function to be optimized. Such 
parameters are obtained using a search technique in the space 
of values specified in advance. Searching techniques are 
bound to the complexity of the search space, and the use of 
Gradient search might find local minimum solution but not 
optimal ones. Stochastic search algorithms, on the other hand, 
such as Evolutionary Algorithms e.g Genetic Algorithm (GA) 
and Particle Swarm Optimization (PSO)   present a more 
reliable functionality in estimating models’ parameters.  

4. LITERATURE REVIEW 
4.1 Parameter Estimation Using Maximum 
Likelihood Estimation 
Barnard and Bayes [8] depicted that for most mathematical 
models, if the number of parameters is large and the observed 
data is erroneous, calibration can be performed in maximum 
likelihood (ML) framework, where the state estimate is the 
parameter which maximizes the likelihood function.  

Knafl [9] proposed existence conditions for maximum 
likelihood parameter estimates for several commonly 
employed two-parameter software reliability models. For 
these models, the maximum likelihood equations were 
expressed in terms of a single equation in one unknown. 
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Bounds were given on solutions to these single equations 
problems to serve as initial intervals for search algorithms like 
bisection. Uniqueness of the solutions is established in some 
cases. Results were given for the case of grouped failure data. 

Okumoto [10]  reviewed four analytical software reliability 
models which are used for estimating and monitoring software 
reliability. These models include Times Between failure 
Models, Failure Count Models, Fault Studying models and 
Input Domain Models. Goel and Okumoto proposed Non 
homogeneous Poisson Process model which lie in the 
category of  Failure Count models of software reliability 
estimation. In this model it is assumed that failures occur 
during execution of the software, at random times because of   
faults present in the software. If we represent cumulative 
number of failures occurred in system till time t by N(t) then 
the non homogeneous poisson model can be represented as 
follows: 

ݐ)ܰ}ܲ) = ({(ݕ = 		 (௠(௧))
௬!

௬
݁ି௠(௧)                          (4)                                                                                                                   

Where  m(t) =  a(1-e-bt)                                     (5)                                                                                                                                

λ(t) = m’(t)=abe-bt                                                 (6)                                                                                                                                    

m(t) in above equations is the expected no. of failures 
observed by time t and λ(t) is the failure intensity function. 
Here ‘a’ is the expected number of failures to be observed 
eventually and ‘b’ is the fault detection rate per fault.  

                Knafl and Morgan [11] proposed that the reliability of the 
software can be estimated using software reliability growth 
models, or a non-homogeneous poisson process model with 
mean value function µ(t). As in Goel-Gkumoto model µ(t) 
consists of two parameters a and b and in order to predict the 
reliability of any software the values of these parameters need 
to be estimated. These parameters can be estimated by using 
the Maximum Likelihood Estimation method. An observation 
interval of (0,ݐ௞] was considered and divided into various 
subintervals given by (0,	ݐଵ], (ݐଵ  ௞],theݐ	,௞ିଵݐ) ,……[ଶݐ	,
number of failures per subinterval is denoted by ݊௜  where 
(i=1,2,3….k) with respect to the number of failures in 
,௜ିଵݐ)  ௜]. Thus the likelihood function for mean valueݐ
function µ(t) of G-D model can be given by—   

,ଵ݊)ܮ															 … … . , ݊௞) = ∏ {ஜ(௧೔)ିఓ௧೔షభ}೙೔

௡೔!
௞
௜ୀଵ  exp{-	μ(ݐ௜) −

 ௜ିଵ}                                                                                   (7)ݐߤ

                By taking natural logarithm on both sides of equation (7)- 

               ln ܮ(݊ଵ, … … . ,݊௞) = ln ∏ {ஜ(௧೔)ିఓ௧೔షభ}೙೔

௡೔!
௞
௜ୀଵ  exp{-	μ(ݐ௜) −

                                         ௜ିଵ}                                                                 (8)ݐߤ

               = ݈݊	 ∑ {ஜ(௧೔)ିఓ௧೔షభ}೙೔

௡೔!
௞
௜ୀଵ  exp{-	μ(ݐ௜) −                           ௜ିଵ}               (9)ݐߤ

              = ∑ {	 ௜݊ ln[μ(ݐ௜) − 	௞	[(௜ିଵݐ)ߤ
௜ଵ – [μ(ݐ௜)  !ln݊௜ - [(௜ିଵݐ)ߤ−

                                                                                                        (10)                                                                                                                                              

                Maximum likelihood estimates of the parameters a and b can 
be computed by taking the partial derivative of equation (8) 
with respect to each model parameter and then equating the 
derivatives to zero one by one. Thus the estimates of the 
model parameters will be computed as follows: 

= 	∑ {௡೔
௔

+ 	 ݁ି௕௧೔ − ݁ି௕௧೔షభ 	}௞
௜ୀଵ  = 0                                (11)                                                                     

             డ௟௡	௅
డ௕

 =∑ ( ௡೔
௘ష್೟೔ି௘ష್೟೔షభ

− ܽ)௞
௜ୀଵ ௜݁ି௕௧೔ݐ) −  ௜ିଵ݁ି௕௧೔షభ)=0ݐ

                                                                                                           (12)                                                                                         

                Expression for a and b can be obtained by solving the 
following equations: 

               a = 
∑ ௡೔
ೖ
೔సభ

ଵି௘ష್೟ೖ
                                                                          (13)                                           

              ∑ ൬ ௡೔
௘ష್೟೔ି௘ష್೟೔షభ

−
∑ ௡೔
ೖ
೔సభ

ଵି௘ష್೟ೖ
൰ ௜݁ି௕௧೔ݐ) − ௜ିଵ݁ି௕௧೔షభ)௞ݐ

௜ୀଵ  =0  

                                                                                                       (14)                                                                                        

            Equation (12) is a nonlinear equation and its not 
possible to solve it analytically hence it must be solved 
numerically. It can be solved using newton’s method. A 
modification of G-O model was presented by Hossain and 
Dahiya [12] in which Maximum likelihood (ML) equations 
were investigated and a sufficient condition for the ML 
estimators to be finite was given. In the G-O model the 
probability distribution function (p.d.f) of the time to first 
failure is given by: 

          g(t)=௔	௕	௘
ష್೟௘ೌ೐

ష್೟

௘ೌ
                                                  (15)                                                                                     

this is an improper p.d.f which is a big drawback of this 
model. The modified model uses the proper p.d.f which is 
given as: 

           f(t) =	ܽ	ܾ 	݁
ݐܾ−݁ܽ݁ݐܾ−

݁ܽ		−	1                                                     (16)                                                                                    

using this equation the modified model was given by: 

             f(t) =	ܽ	ܾ 	݁
ݐܾ−݁ܽ݁ݐܾ−

݁ܽ		−	ܿ                                                 (16)                                                                                     

with the hope that it will do better than the G-O model.The 
model (5), when c=0, is G-O model and when c= 1, the 
corresponding pdf{time to failure} is proper. In this kind of 
model we might anticipate that m(∞) is finite. But when c = 1, 
then m(∞) = ∞ , giving rise to a new problem in determining 
the mean total number of failures in the system.  So to avoid 
this situation the modified model needs to choose a {c: 
0≤c<1 } that gives a better (in some sense) estimated mean 
number of failures in the system than the G-O estimate. H-D 
model is superior to the G-O model because: 1) it is more 
flexible; 2) it assigns less weight at infinity in the pdf of the 
time to failure; and 3) the sufficient condition for the 
existence of finite solution of ML equations is the same as the 
necessary & sufficient condition for the GO model. 

4.2 Parameter Estimation Using particle 
Swarm Optimization 
Kennedy and Eberhart [13] depicted that PSO  is a simple 
model of social learning whose emergent behaviour has found 
popularity in solving difficult optimization problems. The 
initial metaphor had two cognitive aspects, individual learning 
and learning from a social group. Where an individual finds 
itself in a problem space by using its own experience and that 
of its peers to move itself toward the solution 

௧ାଵݒ = ௜ݒ + ߮ଵߚଵ(݌௜ − (௜ݔ + ߮ଶߚଶ(݌௚ −                                                                                                            ௜)     (18)ݔ

௧ାଵݔ				 = ௧ݔ +                                                                  ௧ାଵ                                                         (19)ݒ

where constants ߮ଵ  and ߮ଶ  determine the balance between 
the influence of the individual’s knowledge (߮ଵ) and that of 
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the group (߮ଶ) (both set initially to 2), ߚଵ and ߚଶ	are 
uniformly distributed random numbers defined by some upper 
limit,	ߚ௠௔௫, that is a parameter of the algorithm, ݌௜ and ݌௚are 
the individual’s previous best position and the group’s 
previous best position, and ݔ௜ is the current position in the 
dimension considered.  

This was found to suffer from instability caused by particles 
accelerating out of the solution space. Eberhart et al [14] 
proposed clamping  scheme that limited the speed of each 
particle to a range [-ݒ௠௔௫ ,  ௠௔௫  usually beingݒ ௠௔௫] withݒ
somewhere between 0.1 and 1.0 times the maximum position 
of the particle. This reduced the possibility of particles flying 
out of the problem space. 

The most problematic characteristic of PSO is its propensity 
to converge, prematurely, on early best solutions. Many 
strategies have been developed in attempts to overcome this 
but by far the most popular are inertia and constriction. 
Therefore Shi and Eberhart [15] introduced the term inertia, 
w, as follows: 

௧ାଵݒ = ௜ݒ	߱ +߮ଵߚଵ(݌௜ − (௜ݔ + ߮ଶߚଶ(݌௚ −                                                                                                      ௜)        (20)ݔ

Eberhart and Shi [16] introduced an optimal strategy of 
initially setting ߱	to 0.9 and reducing it linearly to 0.4, 
allowing initial exploration followed by acceleration toward 
an improved global optimum. They also showed that 
combining them by setting the inertia weight, ߱, to the 
constriction factor,	߯ , improved performance across a wide 
range of problems.  

Clerc and Kennedy [17] proposed an idea of introducing 
constriction,	߯	, which alleviated the requirement to clamp the 
velocity and is applied as follows:                                     

   ߯ = 	 ଶ
ଶିఝିඥఝమିସఝ

                                                        (21)                                                                           

                        Where ߮ = ߮ଵ + ߮ଶ   ,        ߮ > 4 

Kennedy [18] revisited the constricted PSO and examined 
whether the added components were necessary, and whether 
any further components could be removed. Various 
experiments were performed with a view to paring the process 
for further efficiency gains. To achieve this, a Gaussian PSO 
was developed. In this implementation the entire velocity 
vector is replaced by a random number generated around the 
mean (pid + pgd)/2 with a Gaussian distribution of |pid_pgd| in 
each dimension (d). This effectively means that the particles 
no longer ‘fly’ but are ‘teleported’. Kennedy justified this 
departure on the grounds that it is the social aspect of the 
swarm that is more important to its effectiveness. This was 
empirically backed up with the Gaussian influenced swarms 
performing competitively. 

Merwe et al [19] investigated the application of the PSO to 
cluster data vectors. Two algorithms were tested, namely a 
standard gbest PSO and a Hybrid approach where the 
individuals of the swarm were seeded by the result of the K-
means algorithm. The two PSO approaches were compared 
against K-means clustering, which showed that the PSO 
approaches have better convergence to lower quantization 
errors, and in general, larger inter-cluster distances and 
smaller intracluster distances. It was shown that how PSO 
should be used to find the centroids of a user specified 
number of clusters. The algorithm was then extended to use 
K-means clustering to seed the initial swarm. The second 
algorithm basically used PSO to refine the clusters formed by 

K-means. The new PSO algorithms was evaluated on six data 
sets, and compared to the performance of K-means clustering. 
Results showed that both PSO clustering techniques have 
much potential.  

Monson and Seppi [20], showed that particle motion could be 
further improved through changing the mechanism to a 
system influenced by Kalman filtering in which the motion 
was entirely described by predictions produced by the filter. 
Once again, the justification for such a radical change to 
particle movement was the maintenance of the social aspect of 
PSO, which was achieved through the Kalman filter’s sensor 
model. The approach, whilst providing very accurate 
optimization, was found to be computationally expensive 
compared with the canonical PSO. 

Parsopoulos and Vrahatis [21] modified the constricted 
algorithm to harness the explorative behaviour of global 
search and exploitative nature of a local neighbourhood 
scheme. To combine the two, two velocity updates were 
initially calculated: 

௧ାଵܩ		 = ߯൛ݒ௜ + ଵ߮ߚଵ(݌௜ − (௜ݔ +߮ଶߚଶ൫݌௚ −                           ௜൯ൟ    (22)ݔ
௧ାଵܮ = ௜ݒ}߯ + ߮ଵߚଵʹ ௜݌) − (௜ݔ +߮ଶߚଶʹ ௚௟݌) −                                                                       ௜)}     (23)ݔ

where G and L are the global and local velocity updates 
respectively, pg is the global best particle position and ݌௚௟  is 
the particle’s local neighborhood best particle position. These 
two updates were then combined to form a unified velocity 
update (U), which is then applied to the current position:  

		 ௧ܷାଵ = 	 (1 − ௧ାଵܮ(ݑ + 	ݑ				௧ାଵܩݑ	 ∈ [0, 1]			           (24)                                                                                                                               
௧ାଵݔ				 = ௧ݔ + ௧ܷାଵ                                                          (25) 

where u is a unification factor that balances the global and 
local aspects of the search and suggestions were given to add 
mutation style influences to each in turn. 

Kaewkamnerdpong and Bentley [22] introduced more realistic 
model of particle perception to PSO, with the aim of making it 
a viable option for applications that might otherwise suffer 
from imperfect communication, such as robotics. In the 
natural world, a social animal would often suffer imperfect 
perception of the other animals in its sociometric 
neighbourhood and must rely on information it receives via 
limited perceptive acuity. To model this, the particles were 
not allowed to communicate directly but only to observe 
particles within their pre-set perceptive range (replicating the 
stigmergic behaviour of some species, such as dancing 
honeybees); this was also realistic in that the information was 
regarded as more reliable where its source was closer. Each 
particle was also allowed to observe the local area (i.e. sample 
the local solution space). If there was a better solution nearby 
it used that as its individual best position. The position update 
algorithm for this method is dependent on the current state of 
the particle and can be summarised as follows:  

• If there is an observed position ݌௢௕௦௘௥௩௘ௗ > 	  ௜݌ ௜ then set݌
to ݌௢௕௦௘௥௩௘ௗ .  

• If no neighbouring particles are perceived then do not use a 
social component. 

• If multiple particles are perceived use their average current 
position as the group   

   best(݌௚).                        

• If a single particle is perceived then use its position as the 
group best (݌௚). 
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Habibi et al. [23] developed a hybrid PSO, with Ant Colony 
(AC) and Simulated Annealing (SA). The AC algorithm 
replaced the individual best element of PSO, whilst the 
cooling process of SA was used to control the exploration of 
the group best element, both of which were then applied 
within the PSO framework (all random numbers being 
generated using a Gaussian distribution function). 
Experimentation with known TSP instances indicated that the 
hybrid approach was capable of finding good approximations 
efficiently. 

 Sheta  [24] In this paper proposed the preliminary idea of 
using particle swarm optimization (PSO) technique to help in 
solving the reliability growth modeling problem had been 
explored. The proposed approach was used to estimate the 
parameters of the well known reliability growth models such 
as the exponential model, power model and S-shaped models. 
The results were promising. 

According to Zhu [25] et.al Particle swarm optimization 
(PSO),  a swarm intelligence algorithm, had been successfully 
applied to many engineering optimization problems and 
shown its high search speed in these applications. However, 
as the dimension and the number of local optima of 
optimization problems increase, PSO and most existing 
improved PSO algorithms such as, the standard particle 
swarm optimization (SPSO) and the Gaussian particle swarm 
optimization (GPSO), were easily trapped in local optima. In 
this paper a novel algorithm was proposed which was based 
on SPSO called Euclidean particle swarm optimization 
(EPSO) which had greatly improved the ability of escaping 
from local optima. To confirm the effectiveness of EPSO, five 
benchmark functions had been employed to examine it, and 
compared it with SPSO and GPSO. The experiments results 
showed that EPSO is significantly better than SPSO and 
GPSO, especially obvious in higher-dimension problems. 

Engelbrecht [26] proposed a heterogeneous PSO (HPSO)  in 
this paper, where particles were allowed to follow different 
search behaviors selected from a behaviour pool, thereby 
efficiently addressing the exploration–exploitation trade-off 
problem. A preliminary empirical analysis showed that using 
heterogeneous swarms would give better results. 

According to Quin [27]  software reliability prediction 
classifies software modules as fault-prone modules and less 
fault-prone modules at the early age of software development. 
As to a difficult problem of choosing parameters for Support 
Vector Machine (SVM), this paper introduced Particle Swarm 
Optimization (PSO) to automatically optimize the parameters 
of SVM, and constructed a software reliability prediction  

model based on PSO and SVM. Finally, the paper introduced 
Principal Component Analysis (PCA) method to reduce the 
dimension of experimental data, and inputs these reduced data 
into software reliability prediction model to implement a 
simulation. The results showed that the proposed prediction 
model surpassed the traditional SVM in prediction 
performance.  

 According to Malhotra et.al [28] software quality includes 
many attributes including reliability of a software. Prediction 
of reliability of a software in early phases of software 
development would enable software practitioners in 
developing robust and fault tolerant systems. The purpose of 
the paper was to predict software reliability, by estimating the 
parameters of Software Reliability Growth Models (SRGMs). 

SRGMs are the mathematical models which generally reflect 
the properties of the process of fault detection during testing. 
Particle Swarm Optimization (PSO) has been applied to 
several optimization problems and has showed good 
performance. PSO is a popular machine learning algorithm 
under the category of Swarm Intelligence. PSO is an 
evolutionary algorithm like Genetic Algorithm (GA). In this 
paper the use of PSO algorithm was proposed to  estimate 
parameters of delayed S-shaped model using machine 
learning method PSO and then compare the results with those 
of GA. The results are validated using data obtained from 16 
projects. The results obtained from PSO had high predictive 
ability which was reflected by low error predictions. The 
results obtained using PSO are better than those obtained from 
GA.  

Jadon et.al [29] proposed improved version of PSO called Self 
Adaptive Acceleration Factors in PSO (SAAFPSO) to balance 
between exploration and exploitation. The constant 
acceleration factors used in standard PSO had been converted 
into function of particle’s fitness. If a particle was more fit 
then it gave more importance to global best particle and less 
to itself to avoid local convergence. In later stages, particles 
would be more fitter so all would move towards global best 
particle, thus achieved the convergence speed. Experiment 
was performed and compared with standard PSO and 
Artificial bee colony (ABC) on 14 unbiased benchmark 
optimization functions and one real world engineering 
optimization problem (known as pressure vessel design) and 
results showed that proposed algorithm SAAFPSO dominated 
others. 

According to Al gargoor et al [30], due to the growth in 
demand for software with high reliability and safety, software 
reliability prediction becomes more and more essential. 
Software reliability is a key part of software quality. However 
so many models had been proposed for the software reliability 
prediction but none of them can give accurate prediction for 
all cases. So in order to improve the accuracy of software 
reliability prediction the proposed model combine the 
software reliability models with the neural networks (NN). 
Particle swarm optimization (PSO) algorithm had been chosen 
and applied for learning process to select the best architecture 
of the neural network. The applicability of the proposed 
model was demonstrated through three software failure data 
sets. The results showed that the proposed model has good 
prediction capability and more applicable for software 
reliability prediction.     

5. CONCLUSION 
It has been explored that solving optimization problems 

using evolutionary algorithms like particle swarm 
optimization is found to be more reliable and computationally 
easier as compared to traditional techniques. Parameter 
estimation of the software reliability models is also an 
optimization problem. Traditionally MlE and LSE were used 
for the parameter estimation but evolutionary techniques like 
that of Genetic Algorithms, Swarm Intelligence etc have 
shown better results than that of the traditional methods. The 
model parameters  usually follow nonlinear relationships 
which  makes traditional parameter estimation techniques 
suffer many problems in finding the optimal parameters to 
tune the model for a better prediction these problems can be 
overcome by stochastic search methods.  
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