
International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 267 - 272, 2014, ISSN: 2319–8656

www.ijcat.com 267

A Review on Parameter Estimation Techniques of
Software Reliability Growth Models

Karambir Bidhan
University Institute of Engineering and Technology

Kurukshetra University Haryana,
India

Adima Awasthi
University Institute of Engineering and Technology

Kurukshetra University Haryana,
India

Abstract: Software reliability is considered as a quantifiable metric, which is defined as the probability of a software to operate
without failure for a specified period of time in a specific environment. Various software reliability growth models have been proposed
to predict the reliability of a software. These models help vendors to predict the behaviour of the software before shipment. The
reliability is predicted by estimating the parameters of the software reliability growth models. But the model parameters are generally
in nonlinear relationships which creates many problems in finding the optimal parameters using traditional techniques like Maximum
Likelihood and least Square Estimation. Various stochastic search algorithms have been introduced which have made the task of
parameter estimation, more reliable and computationally easier. Parameter estimation of NHPP based reliability models, using MLE
and using an evolutionary search algorithm called Particle Swarm Optimization, has been explored in the paper.

Keywords: Software Reliability, Software Reliability Growth Models, Parameter Estimation, Maximum Likelihood Estimation,
Partical Swarm Optimization

1. INTRODUCTION
Software can be defined as an instrument comprising a set of
coded statements which takes a discrete set of inputs and
transform them into a discrete set of outputs. Software may
contain discrepancies or faults which may result into software
failures. Any kind of deviation from the desired behaviour of
the software is apparently unwanted for the user and to check
the correctness of the program two approaches were used
which can be named as : program proving and program
testing. Program proving is a formal and mathematical
approach in which a finite sequence of logical statements
ending in the statement, usually the output specification
statement, to be proved is constructed. Each of the logical
statements is either an axiom or is a statement derived from
earlier statements by the application of an inference rule.
However Gerhart and Yelowitz [1] presented various
programs which were proved to be correct by this approach
but in actually, were containing faults. On the other hand
program testing is more practical approach and is heuristic in
nature. Program testing basically involves symbolic or
physical execution of a set of test cases with the objective of
exposing embedded faults in the program. Program testing,
like that of program proving is an imperfect tool for ensuring
program correctness. As these approaches cannot completely
assure about the correctness of the program, a metric is
required which can help in assessing the degree of program
correctness and software reliability fulfils this requirement.
Reliability of a software can be defined as: “The probability of
failure-free software operation for a specific period of time in
a specified environment” [2]. Reliability of a software needs
to be assessed before it is delivered to the customer. Various
software reliability growth models (SRGM) has been
introduced for predicting the reliability of a software.
Although according to an observation made by M. R. Lyu in
[3], “There is no universally acceptable model that can be
trusted to give accurate results in all circumstances; users
should not trust claims to the contrary.” Every model has
some advantages and some disadvantages. The choice
regarding which model to follow for the prediction depends
upon the requirements of the software.

We ask that authors follow some simple guidelines. This
document is a template. An electronic copy can be
downloaded from the journal website. For questions on paper
guidelines, please contact the conference publications
committee as indicated on the conference website.
Information about final paper submission is available from the
conference website

2. SOFTWARE RELIABILITY
GROWTH MODELS

A Software Reliability Growth Model can be considered as
one of the fundamental techniques to assess the reliability of a
software quantitatively. Any software reliability model
presents a mathematical function which illustrates defect
detection rates. These models are classified in two categories:
Concave and S-shaped models , which can be illustrated with
the help of fig-1[4].

Figure-1: Concave and S-Shaped Models

Concave rnodels are so-called because they bend downward.
S-shaped models, on the other hand, are first convex and then
concave. This reflects their underlying assumption that early
testing is not as efficient as later testing, so there is a "ramp-
up" period during which the defect-detection rate increases.
This period terminates at the inflection point in the S-shaped
curve. The most important thing about both models is that
they have the same asymptotic behavior: The defect-detection
rate decreases as the number of defects detected increases, and
the total number of defects detected asymptotically

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 267 - 272, 2014, ISSN: 2319–8656

www.ijcat.com 268

approaches a finite value. Several models had been proposed
for assessing the reliability of the softwares, basic
assumptions of some of the models are discussed below :

Goel-Okumoto Model :

This model was first introduced by Goel and Okumoto [5] and
is based on the following

assumptions:

 All faults in the software are mutually independent
from the failure detection point of

 view.

 The number of failures detected at any time is
proportional to the current number of faults in the
software. This means that the probability of the
failures or faults actually occurring, i.e., being
detected, is constant.

 The isolated faults are removed prior to future test
occasions.

 Each time a software failure occurs, the software
error which caused it is immediately removed and
no new errors are introduced.

These assumptions lead to the following differential
equations:

డ
డ௧
 (1) ((ݐ)ߤ	-a)b=|(ݐ)ߤ	

In this equation, a represents the expected total number of
faults in the software before testing. Parameter b stands for
the failure detection rate or the failure intensity of a fault and
 .for the expected number of failures detected at time t (t) ߤ
Solving above equation for ߤ (t), we obtain the following
mean value function

(ݐ)ߤ = 	ܽ(1− ݁ି௕௧) (2)

Yamada S-Shaped Model :

The Yamada S-Shaped model was first introduced in Yamada
et al. [6]. The model is based on the following assumptions:

 All faults in the software are mutually independent
from the failure detection point of view.

 The probability of failure detection at any time is
proportional to the current number of faults in the
software.

 The proportionality of failure detection is constant.
 The initial error content of the software is a random

variable.
 A software system is subject to failures at random

times caused by errors present in the system.
 The time between the (i-1)th and the ith failure,

depends on the time of the (i-1)th failure.

Musa’s basic execution time model [7]

It assumes that there are N software faults at the start of
testing, each is independent of others and is equally likely to
cause a failure during testing. A detected fault is removed
with certainty in a negligible time and no new faults are
introduced during the debugging process. The hazard function
for this model is given by

(߬)ݖ = 	߶݂(ܰ − ݊௖) (3)

where ߬ is the execution time utilized in executing the
program up to the present, f is the linear execution frequency
(average instruction execution rate divided by the number of
instructions in the program), ߶ is a proportionality constant,
which is a fault exposure ratio that relates fault exposure
frequency to the linear execution frequency, and n, is the
number of faults corrected during (0,߬). One of the main
features of this model is that it explicitly emphasizes the
dependence of the hazard function on execution time. Musa
also provides a systematic approach for converting the model
so that it can be applicable for calendar time as well.

3. PARAMETER ESTIMATION
TECHNIQUES
A software reliability model is simply a function and fitting
this function to the data means estimating its parameters from
the data. One approach to estimating parameters is to input the
data directly into equations for the parameters. The most
common method for this direct parameter estimation is the
maximum likelihood technique. Maximum Likelihood
Estimation is a method which is used for the estimation of the
parameters of a statistical models. If maximum likelihood
estimation is applied to a data set for a given statistical model
then it provides the estimates of that model’s parameters. A
second approach is fitting the curve described by the function
to the data and estimating the parameters from the best fit to
the curve. The most common method for this indirect
parameter estimation is the least squares technique. Although
methods like MLE and LSE provide a way to estimate the
parameters of reliability models, but the model parameters are
normally in nonlinear relationships and this makes traditional
parameter estimation techniques suffer many problems in
finding the optimal parameters to tune the model for a better
prediction. Parameter estimation problem for nonlinear
systems can be stated and formulated as a function
optimization problem in which the objective is to obtain a set
of parameters that provide the best fit to a measured data
based on a specific type of function to be optimized. Such
parameters are obtained using a search technique in the space
of values specified in advance. Searching techniques are
bound to the complexity of the search space, and the use of
Gradient search might find local minimum solution but not
optimal ones. Stochastic search algorithms, on the other hand,
such as Evolutionary Algorithms e.g Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) present a more
reliable functionality in estimating models’ parameters.

4. LITERATURE REVIEW
4.1 Parameter Estimation Using Maximum
Likelihood Estimation
Barnard and Bayes [8] depicted that for most mathematical
models, if the number of parameters is large and the observed
data is erroneous, calibration can be performed in maximum
likelihood (ML) framework, where the state estimate is the
parameter which maximizes the likelihood function.

Knafl [9] proposed existence conditions for maximum
likelihood parameter estimates for several commonly
employed two-parameter software reliability models. For
these models, the maximum likelihood equations were
expressed in terms of a single equation in one unknown.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 267 - 272, 2014, ISSN: 2319–8656

www.ijcat.com 269

Bounds were given on solutions to these single equations
problems to serve as initial intervals for search algorithms like
bisection. Uniqueness of the solutions is established in some
cases. Results were given for the case of grouped failure data.

Okumoto [10] reviewed four analytical software reliability
models which are used for estimating and monitoring software
reliability. These models include Times Between failure
Models, Failure Count Models, Fault Studying models and
Input Domain Models. Goel and Okumoto proposed Non
homogeneous Poisson Process model which lie in the
category of Failure Count models of software reliability
estimation. In this model it is assumed that failures occur
during execution of the software, at random times because of
faults present in the software. If we represent cumulative
number of failures occurred in system till time t by N(t) then
the non homogeneous poisson model can be represented as
follows:

ݐ)ܰ}ܲ) = ({(ݕ = 		 (௠(௧))
௬!

௬
݁ି௠(௧) (4)

Where m(t) = a(1-e-bt) (5)

λ(t) = m’(t)=abe-bt (6)

m(t) in above equations is the expected no. of failures
observed by time t and λ(t) is the failure intensity function.
Here ‘a’ is the expected number of failures to be observed
eventually and ‘b’ is the fault detection rate per fault.

 Knafl and Morgan [11] proposed that the reliability of the
software can be estimated using software reliability growth
models, or a non-homogeneous poisson process model with
mean value function µ(t). As in Goel-Gkumoto model µ(t)
consists of two parameters a and b and in order to predict the
reliability of any software the values of these parameters need
to be estimated. These parameters can be estimated by using
the Maximum Likelihood Estimation method. An observation
interval of (0,ݐ௞] was considered and divided into various
subintervals given by (0,	ݐଵ], (ݐଵ ௞],theݐ	,௞ିଵݐ) ,……[ଶݐ	,
number of failures per subinterval is denoted by ݊௜ where
(i=1,2,3….k) with respect to the number of failures in
,௜ିଵݐ) ௜]. Thus the likelihood function for mean valueݐ
function µ(t) of G-D model can be given by—

,ଵ݊)ܮ															 … … . , ݊௞) = ∏ {ஜ(௧೔)ିఓ௧೔షభ}೙೔

௡೔!
௞
௜ୀଵ exp{-	μ(ݐ௜) −

 ௜ିଵ} (7)ݐߤ

 By taking natural logarithm on both sides of equation (7)-

 ln ܮ(݊ଵ, … … . ,݊௞) = ln ∏ {ஜ(௧೔)ିఓ௧೔షభ}೙೔

௡೔!
௞
௜ୀଵ exp{-	μ(ݐ௜) −

 ௜ିଵ} (8)ݐߤ

 = ݈݊	 ∑ {ஜ(௧೔)ିఓ௧೔షభ}೙೔

௡೔!
௞
௜ୀଵ exp{-	μ(ݐ௜) − ௜ିଵ} (9)ݐߤ

 = ∑ {	 ௜݊ ln[μ(ݐ௜) − 	௞	[(௜ିଵݐ)ߤ
௜ଵ – [μ(ݐ௜) !ln݊௜ - [(௜ିଵݐ)ߤ−

 (10)

 Maximum likelihood estimates of the parameters a and b can
be computed by taking the partial derivative of equation (8)
with respect to each model parameter and then equating the
derivatives to zero one by one. Thus the estimates of the
model parameters will be computed as follows:

= 	∑ {௡೔
௔

+ 	 ݁ି௕௧೔ − ݁ି௕௧೔షభ 	}௞
௜ୀଵ = 0 (11)

 డ௟௡	௅
డ௕

 =∑ (௡೔
௘ష್೟೔ି௘ష್೟೔షభ

− ܽ)௞
௜ୀଵ ௜݁ି௕௧೔ݐ) − ௜ିଵ݁ି௕௧೔షభ)=0ݐ

 (12)

 Expression for a and b can be obtained by solving the
following equations:

 a =
∑ ௡೔
ೖ
೔సభ

ଵି௘ష್೟ೖ
 (13)

 ∑ ൬ ௡೔
௘ష್೟೔ି௘ష್೟೔షభ

−
∑ ௡೔
ೖ
೔సభ

ଵି௘ష್೟ೖ
൰ ௜݁ି௕௧೔ݐ) − ௜ିଵ݁ି௕௧೔షభ)௞ݐ

௜ୀଵ =0

 (14)

 Equation (12) is a nonlinear equation and its not
possible to solve it analytically hence it must be solved
numerically. It can be solved using newton’s method. A
modification of G-O model was presented by Hossain and
Dahiya [12] in which Maximum likelihood (ML) equations
were investigated and a sufficient condition for the ML
estimators to be finite was given. In the G-O model the
probability distribution function (p.d.f) of the time to first
failure is given by:

 g(t)=௔	௕	௘
ష್೟௘ೌ೐

ష್೟

௘ೌ
 (15)

this is an improper p.d.f which is a big drawback of this
model. The modified model uses the proper p.d.f which is
given as:

 f(t) =	ܽ	ܾ 	݁
ݐܾ−݁ܽ݁ݐܾ−

݁ܽ		−	1 (16)

using this equation the modified model was given by:

 f(t) =	ܽ	ܾ 	݁
ݐܾ−݁ܽ݁ݐܾ−

݁ܽ		−	ܿ (16)

with the hope that it will do better than the G-O model.The
model (5), when c=0, is G-O model and when c= 1, the
corresponding pdf{time to failure} is proper. In this kind of
model we might anticipate that m(∞) is finite. But when c = 1,
then m(∞) = ∞ , giving rise to a new problem in determining
the mean total number of failures in the system. So to avoid
this situation the modified model needs to choose a {c:
0≤c<1 } that gives a better (in some sense) estimated mean
number of failures in the system than the G-O estimate. H-D
model is superior to the G-O model because: 1) it is more
flexible; 2) it assigns less weight at infinity in the pdf of the
time to failure; and 3) the sufficient condition for the
existence of finite solution of ML equations is the same as the
necessary & sufficient condition for the GO model.

4.2 Parameter Estimation Using particle
Swarm Optimization
Kennedy and Eberhart [13] depicted that PSO is a simple
model of social learning whose emergent behaviour has found
popularity in solving difficult optimization problems. The
initial metaphor had two cognitive aspects, individual learning
and learning from a social group. Where an individual finds
itself in a problem space by using its own experience and that
of its peers to move itself toward the solution

௧ାଵݒ = ௜ݒ + ߮ଵߚଵ(݌௜ − (௜ݔ + ߮ଶߚଶ(݌௚ − ௜) (18)ݔ

௧ାଵݔ				 = ௧ݔ + ௧ାଵ (19)ݒ

where constants ߮ଵ and ߮ଶ determine the balance between
the influence of the individual’s knowledge (߮ଵ) and that of

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 267 - 272, 2014, ISSN: 2319–8656

www.ijcat.com 270

the group (߮ଶ) (both set initially to 2), ߚଵ and ߚଶ	are
uniformly distributed random numbers defined by some upper
limit,	ߚ௠௔௫, that is a parameter of the algorithm, ݌௜ and ݌௚are
the individual’s previous best position and the group’s
previous best position, and ݔ௜ is the current position in the
dimension considered.

This was found to suffer from instability caused by particles
accelerating out of the solution space. Eberhart et al [14]
proposed clamping scheme that limited the speed of each
particle to a range [-ݒ௠௔௫ , ௠௔௫ usually beingݒ ௠௔௫] withݒ
somewhere between 0.1 and 1.0 times the maximum position
of the particle. This reduced the possibility of particles flying
out of the problem space.

The most problematic characteristic of PSO is its propensity
to converge, prematurely, on early best solutions. Many
strategies have been developed in attempts to overcome this
but by far the most popular are inertia and constriction.
Therefore Shi and Eberhart [15] introduced the term inertia,
w, as follows:

௧ାଵݒ = ௜ݒ	߱ +߮ଵߚଵ(݌௜ − (௜ݔ + ߮ଶߚଶ(݌௚ − ௜) (20)ݔ

Eberhart and Shi [16] introduced an optimal strategy of
initially setting ߱	to 0.9 and reducing it linearly to 0.4,
allowing initial exploration followed by acceleration toward
an improved global optimum. They also showed that
combining them by setting the inertia weight, ߱, to the
constriction factor,	߯ , improved performance across a wide
range of problems.

Clerc and Kennedy [17] proposed an idea of introducing
constriction,	߯	, which alleviated the requirement to clamp the
velocity and is applied as follows:

 ߯ = 	 ଶ
ଶିఝିඥఝమିସఝ

 (21)

 Where ߮ = ߮ଵ + ߮ଶ , ߮ > 4

Kennedy [18] revisited the constricted PSO and examined
whether the added components were necessary, and whether
any further components could be removed. Various
experiments were performed with a view to paring the process
for further efficiency gains. To achieve this, a Gaussian PSO
was developed. In this implementation the entire velocity
vector is replaced by a random number generated around the
mean (pid + pgd)/2 with a Gaussian distribution of |pid_pgd| in
each dimension (d). This effectively means that the particles
no longer ‘fly’ but are ‘teleported’. Kennedy justified this
departure on the grounds that it is the social aspect of the
swarm that is more important to its effectiveness. This was
empirically backed up with the Gaussian influenced swarms
performing competitively.

Merwe et al [19] investigated the application of the PSO to
cluster data vectors. Two algorithms were tested, namely a
standard gbest PSO and a Hybrid approach where the
individuals of the swarm were seeded by the result of the K-
means algorithm. The two PSO approaches were compared
against K-means clustering, which showed that the PSO
approaches have better convergence to lower quantization
errors, and in general, larger inter-cluster distances and
smaller intracluster distances. It was shown that how PSO
should be used to find the centroids of a user specified
number of clusters. The algorithm was then extended to use
K-means clustering to seed the initial swarm. The second
algorithm basically used PSO to refine the clusters formed by

K-means. The new PSO algorithms was evaluated on six data
sets, and compared to the performance of K-means clustering.
Results showed that both PSO clustering techniques have
much potential.

Monson and Seppi [20], showed that particle motion could be
further improved through changing the mechanism to a
system influenced by Kalman filtering in which the motion
was entirely described by predictions produced by the filter.
Once again, the justification for such a radical change to
particle movement was the maintenance of the social aspect of
PSO, which was achieved through the Kalman filter’s sensor
model. The approach, whilst providing very accurate
optimization, was found to be computationally expensive
compared with the canonical PSO.

Parsopoulos and Vrahatis [21] modified the constricted
algorithm to harness the explorative behaviour of global
search and exploitative nature of a local neighbourhood
scheme. To combine the two, two velocity updates were
initially calculated:

௧ାଵܩ		 = ߯൛ݒ௜ + ଵ߮ߚଵ(݌௜ − (௜ݔ +߮ଶߚଶ൫݌௚ − ௜൯ൟ (22)ݔ
௧ାଵܮ = ௜ݒ}߯ + ߮ଵߚଵʹ ௜݌) − (௜ݔ +߮ଶߚଶʹ ௚௟݌) − ௜)} (23)ݔ

where G and L are the global and local velocity updates
respectively, pg is the global best particle position and ݌௚௟ is
the particle’s local neighborhood best particle position. These
two updates were then combined to form a unified velocity
update (U), which is then applied to the current position:

		 ௧ܷାଵ = 	 (1 − ௧ାଵܮ(ݑ + 	ݑ				௧ାଵܩݑ	 ∈ [0, 1]			 (24)
௧ାଵݔ				 = ௧ݔ + ௧ܷାଵ (25)

where u is a unification factor that balances the global and
local aspects of the search and suggestions were given to add
mutation style influences to each in turn.

Kaewkamnerdpong and Bentley [22] introduced more realistic
model of particle perception to PSO, with the aim of making it
a viable option for applications that might otherwise suffer
from imperfect communication, such as robotics. In the
natural world, a social animal would often suffer imperfect
perception of the other animals in its sociometric
neighbourhood and must rely on information it receives via
limited perceptive acuity. To model this, the particles were
not allowed to communicate directly but only to observe
particles within their pre-set perceptive range (replicating the
stigmergic behaviour of some species, such as dancing
honeybees); this was also realistic in that the information was
regarded as more reliable where its source was closer. Each
particle was also allowed to observe the local area (i.e. sample
the local solution space). If there was a better solution nearby
it used that as its individual best position. The position update
algorithm for this method is dependent on the current state of
the particle and can be summarised as follows:

• If there is an observed position ݌௢௕௦௘௥௩௘ௗ > 	 ௜݌ ௜ then set݌
to ݌௢௕௦௘௥௩௘ௗ .

• If no neighbouring particles are perceived then do not use a
social component.

• If multiple particles are perceived use their average current
position as the group

 best(݌௚).

• If a single particle is perceived then use its position as the
group best (݌௚).

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 267 - 272, 2014, ISSN: 2319–8656

www.ijcat.com 271

Habibi et al. [23] developed a hybrid PSO, with Ant Colony
(AC) and Simulated Annealing (SA). The AC algorithm
replaced the individual best element of PSO, whilst the
cooling process of SA was used to control the exploration of
the group best element, both of which were then applied
within the PSO framework (all random numbers being
generated using a Gaussian distribution function).
Experimentation with known TSP instances indicated that the
hybrid approach was capable of finding good approximations
efficiently.

 Sheta [24] In this paper proposed the preliminary idea of
using particle swarm optimization (PSO) technique to help in
solving the reliability growth modeling problem had been
explored. The proposed approach was used to estimate the
parameters of the well known reliability growth models such
as the exponential model, power model and S-shaped models.
The results were promising.

According to Zhu [25] et.al Particle swarm optimization
(PSO), a swarm intelligence algorithm, had been successfully
applied to many engineering optimization problems and
shown its high search speed in these applications. However,
as the dimension and the number of local optima of
optimization problems increase, PSO and most existing
improved PSO algorithms such as, the standard particle
swarm optimization (SPSO) and the Gaussian particle swarm
optimization (GPSO), were easily trapped in local optima. In
this paper a novel algorithm was proposed which was based
on SPSO called Euclidean particle swarm optimization
(EPSO) which had greatly improved the ability of escaping
from local optima. To confirm the effectiveness of EPSO, five
benchmark functions had been employed to examine it, and
compared it with SPSO and GPSO. The experiments results
showed that EPSO is significantly better than SPSO and
GPSO, especially obvious in higher-dimension problems.

Engelbrecht [26] proposed a heterogeneous PSO (HPSO) in
this paper, where particles were allowed to follow different
search behaviors selected from a behaviour pool, thereby
efficiently addressing the exploration–exploitation trade-off
problem. A preliminary empirical analysis showed that using
heterogeneous swarms would give better results.

According to Quin [27] software reliability prediction
classifies software modules as fault-prone modules and less
fault-prone modules at the early age of software development.
As to a difficult problem of choosing parameters for Support
Vector Machine (SVM), this paper introduced Particle Swarm
Optimization (PSO) to automatically optimize the parameters
of SVM, and constructed a software reliability prediction

model based on PSO and SVM. Finally, the paper introduced
Principal Component Analysis (PCA) method to reduce the
dimension of experimental data, and inputs these reduced data
into software reliability prediction model to implement a
simulation. The results showed that the proposed prediction
model surpassed the traditional SVM in prediction
performance.

 According to Malhotra et.al [28] software quality includes
many attributes including reliability of a software. Prediction
of reliability of a software in early phases of software
development would enable software practitioners in
developing robust and fault tolerant systems. The purpose of
the paper was to predict software reliability, by estimating the
parameters of Software Reliability Growth Models (SRGMs).

SRGMs are the mathematical models which generally reflect
the properties of the process of fault detection during testing.
Particle Swarm Optimization (PSO) has been applied to
several optimization problems and has showed good
performance. PSO is a popular machine learning algorithm
under the category of Swarm Intelligence. PSO is an
evolutionary algorithm like Genetic Algorithm (GA). In this
paper the use of PSO algorithm was proposed to estimate
parameters of delayed S-shaped model using machine
learning method PSO and then compare the results with those
of GA. The results are validated using data obtained from 16
projects. The results obtained from PSO had high predictive
ability which was reflected by low error predictions. The
results obtained using PSO are better than those obtained from
GA.

Jadon et.al [29] proposed improved version of PSO called Self
Adaptive Acceleration Factors in PSO (SAAFPSO) to balance
between exploration and exploitation. The constant
acceleration factors used in standard PSO had been converted
into function of particle’s fitness. If a particle was more fit
then it gave more importance to global best particle and less
to itself to avoid local convergence. In later stages, particles
would be more fitter so all would move towards global best
particle, thus achieved the convergence speed. Experiment
was performed and compared with standard PSO and
Artificial bee colony (ABC) on 14 unbiased benchmark
optimization functions and one real world engineering
optimization problem (known as pressure vessel design) and
results showed that proposed algorithm SAAFPSO dominated
others.

According to Al gargoor et al [30], due to the growth in
demand for software with high reliability and safety, software
reliability prediction becomes more and more essential.
Software reliability is a key part of software quality. However
so many models had been proposed for the software reliability
prediction but none of them can give accurate prediction for
all cases. So in order to improve the accuracy of software
reliability prediction the proposed model combine the
software reliability models with the neural networks (NN).
Particle swarm optimization (PSO) algorithm had been chosen
and applied for learning process to select the best architecture
of the neural network. The applicability of the proposed
model was demonstrated through three software failure data
sets. The results showed that the proposed model has good
prediction capability and more applicable for software
reliability prediction.

5. CONCLUSION
It has been explored that solving optimization problems

using evolutionary algorithms like particle swarm
optimization is found to be more reliable and computationally
easier as compared to traditional techniques. Parameter
estimation of the software reliability models is also an
optimization problem. Traditionally MlE and LSE were used
for the parameter estimation but evolutionary techniques like
that of Genetic Algorithms, Swarm Intelligence etc have
shown better results than that of the traditional methods. The
model parameters usually follow nonlinear relationships
which makes traditional parameter estimation techniques
suffer many problems in finding the optimal parameters to
tune the model for a better prediction these problems can be
overcome by stochastic search methods.

International Journal of Computer Applications Technology and Research
Volume 3– Issue 4, 267 - 272, 2014, ISSN: 2319–8656

www.ijcat.com 272

6. ACKNOWLEDGMENTS
I would like to give my sincere gratitude to my guide
Mr. Ajay Bidhan who encouraged and guided me
throughout this paper.

7. REFERENCES
[1] S. Gerhart and L. Yelowitz, “Observations of availability

in applications of modern programming
methodologies”, IEEE transaction on Software
Engineering ,pp 195-207, 1976.

[2] ANSI/IEEE, “Standard glossary of Software Engineering
Terminology,” ANSI/IEEE, 1991.

[3] M. R. Lyu (Ed.), Handbook of Software Reliability
Engineering, IEEE Computer Society Press, 1996.

[4] Wood, A., "Predicting software reliability," IEEE, vol.29,
no.11, pp.69-77, 1996.

[5] A.L. Goel and K. Okumoto. Time-dependent error
detection rate model for software reliability and other
performance measures. IEEE Transactions on
Reliability, pp 206-211, 1979.

[6] S. Yamada, M. Ohba, and S. Osaki. S-shaped reliability
growth modeling for software error detection. IEEE
Transactions on Reliability, pp 475-484, 1983.

[7] J. D. Musa, "A theory of software reliability and its
application," IEEE Trans. Software vol. SE-1, 312-327,
1971.

[8] G. Barnard and T. Bayes, “Studies in the history of
probability and statistics: IX. Thomas Bayes’s essay
towards solving a problem in the doctrine of chances,”
Biometrika, vol. 45, pp 293–315, 1985.

[9] Knafl, G.J., "Solving maximum likelihood equations
for two-parameter software reliability models using
grouped data," Third International Symposium
on Software Reliability Engineering, pp 205-213, 1992.

[10] Goel, Amrit L. "Software reliability models:
Assumptions, limitations, and applicability." IEEE
Transactions on Software Engineering, pp 1411-1423,
1985.

[11] G.J. Knafl and J. Morgan, "Solving ML equations for 2-
parameter Poisson-process models for ungrouped
software- failure data", IEEE Transactions on eliability,
pp 42-53, 1996

[12] Hossain, Syed A., and Ram C. Dahiya, "Estimating the
parameters of a non-homogeneous Poisson-process
model for software reliability.", IEEE Transactions on
Reliability pp 604-612, 1993.

[13] Kennedy J, Eberhart RC,” Particle swarm optimization”,
Proceedings of the IEEE international conference on
neural networks, pp 1942–1948, 1995.

[14] Eberhart RC, Simpson P, Dobbins R ,“Computational
intelligence PC tools” AP Professional, San Diego, CA,
pp 212-226, 1996.

[15] Shi Y, Eberhart RC ,” A modified particle swarm
optimizer” , Proceedings of the IEEE international
conference on evolutionary computation. IEEE, pp 69–
73, 1998.

[16] Eberhart RC, Shi Y , “Comparing inertia weights and
constriction factors in particle swarm optimization” In:
Proceedings of the IEEE congress evolutionary
computation, San Diego, pp 84–88, 2000.

[17] Clerc M, Kennedy J ,”The particle swarm: explosion,
stability and convergence in a multi-dimensional
complex space”. IEEE pp 58–73, 2002.

[18] Kennedy J Bare bones ,”particle swarms “ In Proceedings
of the IEEE swarm intelligence symposium
Indianapolis, Indiana, USA, pp 80–87,2003

[19] Van der Merwe, D. W., and Andries Petrus
Engelbrecht."Data clustering using particle swarm
optimization.", Congress on Evolutionary Computation.
Vol. 1. IEEE, 2003.

 [20] Monson CK, Seppi KD,” The Kalman swarm”
Proceedings of the genetic and evolutionary
computation conference , Seattle, Washington,2004.

[21] Parsopoulos KE, Vrahatis MN “ a unified particle
swarm optimization scheme”, Proceedings of
international conference on computational methods in
sciences and engineering, pp 868–873, 2004.

[22] Kaewkamnerdpong B, Bentley P,” Perceptive particle
swarm optimization”, Proceedings of the seventh
international conference on adaptive and natural
computing algorithms , 2005.

[23] Habibi J, Zonouz SA, Saneei M,” A hybrid PS-based
optimization algorithm for solving traveling salesman
problem”, IEEE symposium on frontiers in networking
with applications, pp 18–20 2006.

[24] Sheta, Alaa. "Reliability growth modeling for software
fault detection using particle swarm optimization.",
IEEE Congress on Evolutionary Computation, IEEE,
2006.

[25] Hongbing Zhu,Chengdong Pu, Eguchi, K. andJinguang
Gu, "Euclidean Particle Swarm
Optimization," Intelligent Networks and Intelligent
Systems, IEEE, Second International Conference 1-3,
2009.

[26] Engelbrecht, Andries P. "Heterogeneous particle swarm
optimization.", Springer Berlin Heidelberg, 191-202,
2010.

[27] Li-Na Qin, "Software reliability prediction model based
on PSO and SVM," International Conference on
Consumer Electronics, Communications and Networks
(CECNet), 16-18, 2011.

[28] Malhotra, Ruchika, and Arun Negi. "Reliability modeling
using Particle Swarm Optimization.", International
Journal of System Assurance Engineering and
Management, 2013.

[29] Jadon, Shimpi Singh, et al. "Self Adaptive Acceleration
Factor in Particle Swarm Optimization.", Proceedings of
Seventh International Conference on Bio-Inspired
Computing: Theories and Applications Springer India,
2013.

[30] Rita G. Al gargoor , Nada N. Saleem ,” Software
Reliability Prediction Using Artificial Techniques”,
IJCSI Vol. 10, Issue 4, No 2, 2013.

