
International Journal of Computer Applications Technology and Research

Volume 4– Issue 2, 142 - 148, 2015, ISSN:- 2319–8656

www.ijcat.com 142

Performance Evaluation using Blackboard Technique in

Software Architecture

Fatemeh majidi

Department of Computer Engineering, Ardabil

Science and Research branch, Islamic Azad

University,

Ardabil, Iran

Department of Computer Engineering, Ardabil

Branch, Islamic Azad University,

 Ardabil, Iran

Ali Harounabadi

Department of Computer Engineering, Central

Branch, Islamic Azad University,

Tehran, Iran

Abstract: Validation of software systems is very useful at the primary stages of their development cycle. Evaluation of functional

requirements is supported by clear and appropriate approaches, but there is no similar strategy for evaluation of non-functional

requirements (such as performance). Whereas establishing the non-functional requirements have significant effect on success of

software systems, therefore considerable necessities are needed for evaluation of non-functional requirements. Also, if the software

performance has been specified based on performance models, may be evaluated at the primary stages of software development cycle.

Therefore, modeling and evaluation of non-functional requirements in software architecture level, that are designed at the primary

stages of software systems development cycle and prior to implementation, will be very effective.

We propose an approach for evaluate the performance of software systems, based on black board technique in software architecture

level. In this approach, at first, software architecture using blackboard technique is described by UML use case, activity and

component diagrams. then UML model is transformed to an executable model based on timed colored petri nets(TCPN)

Consequently, upon execution of an executive model and analysis of its results, non-functional requirements including performance

(such as response time) may be evaluated in software architecture level.

Keywords: Software Architecture, Blackboard Technique, Performance Evaluation and time colored Petri net.

1. INTRODUCTION
Within the recent decades, the software complexities have

been increased day to day and demands for more powerful

and high quality software have been increased. Therefore,

software development based on principles and methodologies

that in addition to reduction of costs, meet all expected

features of shareholders (functional and non-functional

requirements) seems to be necessary. Establishing non-

functional requirements in software engineering was raised

recently whilst they have considerable effect on success of

software systems. Software Architecture (SA) is established at

the first stages of design and has a significant effect on access

to nonfunctional requirements of software system. Therefore,

establishment of an executive model of SA and evaluation of

nonfunctional requirements thereby is a cheap solution for

prevention of time and cost waste for achieving the qualitative

goals for development of software systems. using the patterns

and styles of software architecture is a procedure to exploit

the possibilities of a design which is based on architecture and

architectural styles promote the characteristics like having the

possibility of reusability, providing with supporting

documents, finding risks at early stages, and upgrating.

 One of important goals that are followed during analysis of

architecture quality is verifying the architecture’s access to

qualitative features such as performance [1]. In the most

software systems, special methods are used for evaluation of

qualitative features. Special methods are applicable

commonly after architectural implementation means when an

executable specimen of system is available. If after applying

the special methods, it is revealed that the architecture

selected for system may not respond the nonfunctional needs,

more time and cost is needed for system architecture

changing. In consideration of this subject, we need alternative

methods for evaluation of qualitative features which are

applicable in initial stages of production process.

Establishment of executable models of system architecture is

one of solution that may respond the raised problems. An

executable model of architecture is assumed as a formal

description of architecture through which may analyze the

behavior of final system before architecture implementation

and get aware of problems and their in performance and take

measure for architecture implementation more confidently and

so avoid extra costs and even its failure. In continue, different

parts of paper are explained: in second part, a general

description of blackboard technique, performance model in

unified modeling language (UML) and time color Petri net

(TCPN) is presented. In third part, some works related to the

subject of this paper are reviewed. In fourth part, the offered

model is described. In fifth part, a case study is analyzed for

evaluation of offered method and in sixth part, a general

conclusion of suggested method is explained.

2. BACKGROUND
In this section, a general description of performance modeling

in UML, blackboard technique and timed colored petri net

models is presented.

2.1 Blackboard technique
In the codified classification of techniques, blackboard is

placed in the centralized group. One user is executed on a

distinct control set and includes common data which is

accessible by these users.

Blackboard is a technique therein independent processing

components are referred to as knowledge resource that is

operated on the common storage in the name of blackboard.

Knowledge resources have no direct interaction with each

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 2, 142 - 148, 2015, ISSN:- 2319–8656

www.ijcat.com 143

other, when blackboard is executable, knowledge resources

run on the blackboard as an opportunity seeking [2].

This architectural style is always promoting and extending

and a structural solution for reaching to the integrity. In plenty

of systems particularly systems consisted of prefabricated

components, data integrity is provided by blackboard

mechanism. Major advantage of this method is that the users

are available separate from each other. In addition, common

data is an independent part of users. Therefore, this style is

scalable and new users may be added easily.

2.2 Performance Modeling in UML
Software architecture describes the system in high abstraction

levels through specifying the structural and behavioral

aspects. But, unified molding language diagrams may not be

used to evaluate the software architecture, because some

architectural features are not executable using them. In

consideration of this subject, a strategy was offered by OMG

including performance sub index, similar to other indices for

supporting the extension process, stereotypes and labeled

values that improves the applicability of these features [3].

2.3 Time colored Petri net
Colored petri nets are used for formal description of activities

flow in the complex systems and provide the requirements of

concurrency and parallelism exhibition. Classic petri nets are

not suitable for modeling the systems with large space or a

complex temporary behavior. In these cases, we must use a

developed petri net model having color and time. This model

is the base of a framework that is used for solving the

problems related to design and control in complex systems. In

these networks, the concept of time is introduced by global

element called global time. The values selected by this time

explains the model time. This model may be an integral

number that indicates the discrete time or maybe a true

number explaining the continuous time. This value of time

that is pertained to each token is referred to as stamp time that

indicates the first time of model therein token may be used.

As a result, these nets will be appropriate for evaluation of

qualitative requirements (response time etc.) in SA[4].

3. RELATED WORKS
Model-based methods development for evaluation of systems

and computer nets is referred to a long time ago. Correct

application of these models may provide appropriate attitudes

for evaluation of nonfunctional needs. Due to low knowledge

level of software architect, evaluation of these features is not

applicable for software architecture, because software

architecture for describing the software architecture uses

specific marks and signs which are not usable for experts

evaluating these features. Therefore, a solution must be found

to fill the gap between software designers and nonfunctional

features evaluation experts. One of solutions is using the tools

and markings of software modeling together with options

added thereto that may considerably remove this gap.

Fukuzawa and Saeki [5] presented a method therein software

architecture is described by UML Component diagram. Then,

the above algorithm has been transformed to colored petri net

by an algorithm and ultimately the performance is evaluated,

so that the own component and its connector are transformed

to a colored petri net but its interface is transformed to a place

of colored petri net.

Balsamo and Marzolla [6] presented a method therein

software architecture is described by UML Use Case, Activity

and Deployment diagrams, then operational profiles related to

performance are annotated therein. Ultimately, to evaluate the

performance, UML diagrams are transformed to an executive

model based on Queuing Networks.

Petit and Gamma [7] described the software architecture by

collaboration diagram and then converted to Petri net. This

method is used for evaluation of performance and reliability.

In this method, a collection of predetermined molds in colored

Petri nets formed based on objects’ behavioral roles are used.

These behavioral roles are formed based on available objects

structuring in COMMET method, but are not dependent to a

specific method and used within different application ranges.

Later, results obtained for colored Petri net are reflected in

unified modeling language diagrams and the designer may

improve the design quality and consequently improve the

performance and reliability of system.

Gyarmati et al [8] offered a model therein software

performance engineering (SPE) is used for evaluation of

performance specifications of software architecture and

fabrication and analysis of software executive model resulted

from ordinal diagram of unified modeling language. In this

method, class diagram and unified modeling language placing

is used for describing the software architecture completely,

but is not used in the conversion process. Architectural

descriptions are converted to the developed queue net to

evaluate the performance specifications.

In this paper, three major objectives are under consideration

as follows:

-Evaluation of information system performance based on

blackboard technique;

-An algorithm for converting blackboard technique to

component diagram;

-Converting UML diagrams to the formal models based on

features available in blackboard technique for evaluation of its

performance.

4. THE PROPOSED METHOD
The main method in this paper is performance evaluation

using blackboard technique in software architecture. For this

purpose, firstly software architecture based on blackboard

technique is described by UML, later operational profiles

related to performance feature is annotated therein. In

continue, an algorithm is offered for transformation of UML

model to TCPN model and ultimately the said nonfunctional

requirements are evaluated by suggested techniques at the SA

level.

4.1 Description of Software Architecture

by UML Diagrams
In this article, to describe the software architectural structure

and behavior, use case, component and activity diagrams are

used. In continue these diagrams and notations related to

performance are explained.

4.1.1 The Role of Use Case Diagram and Annotation of

Performance Specification Therein

Use case diagram describes the functional requirements of

system and interaction between system and environment [9].

In this paper, this diagram is used for exhibition of functional

requirements and working load applied to the system in SA

description. Annotations related to performance in this

diagram are related to actors that requesting service from

system.

The actors indicating a sequence of unlimited requests out of

system are annotated by “PAopenLoad” stereotype and actors

indicating a fixed population of requests from system are

annotated by “PAclosedLoad” stereotype. “PAclosedLoad”

stereotype has a tag called PAoccurrence that indicates the

interarrival time between two subsequent requests.

“PAclosedLoad” stereotype has two tags named PApopulation

and PAextDelay that respectively indicates “the number of

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 2, 142 - 148, 2015, ISSN:- 2319–8656

www.ijcat.com 144

requests” and “the time spent by each completed request

before the next interaction with the system”. An annotated use

case diagram is exhibited in figure 1.

4.1.2 The Role of Component Diagram and annotation of

Performance Specifications Therein
Component diagram describes the software system. In this

paper, this diagram is used for describing the architectural

structure based on blackboard technique. Moreover, a

component includes interfaces that each interface defines a

collection of component performed operation. Notations

related to performance of this diagram are related to the

interfaces and components. In this diagram, each component

is noted with <<PAhost>> stereotype that specifies the

software resource used in this project. This stereotype

includes PAschedpolicy label that specifies the system

schedule policy. Each interface is noted by <<PAstep>>

stereotype that specifies the tasks performance time by the

component together with PAdelay and PAdemand labels [10],

[11]. Figure (1) shows an annotated component diagram. In

addition, PArate label indicates the processing rate of

processing source related to respective component.

4.1.3 The Role of Activity Diagram and Annotation of

Performance Specifications Therein

Activity diagram describes the software system behavior. This

diagram is a graphic exhibition that shows the control flow

from one activity to another. Notations related to performance

in this diagram are related to transfers [9]. Each transfer is

noted with <<PAstep>> stereotype which demonstrates the

service provided in a component and according to its location

and includes PAhost and PAdemand labels that each one

denotes component location and service request, respectively.

An annotated ctivity diagram is exhibited in figure 1.

(a) Annotated UML Use Case Diagram

(b) Annotated of integrated modeling language

component diagram

(c) Annotated of integrated modeling language

activity diagram

Figure 1. Annotated of integrated modeling language

diagrams

4.2 The offered algorithm for converting

modeling language diagrams to time

colored Petri net
The offered algorithm in this paper for converting unified

modeling language to time colored Petri net is raised for

incorporating an executable model for evaluation of software

architecture that includes following stages:

First stage: Description of architectural structure based on

blackboard technique component diagram and determination

of performance specifications in this diagram, blackboard-

based architectural structure is described.

Second stage: Description of blackboard-based architectural

behavior In this paper, to describe the software architecture

behavior, case use and unified modeling language activity

diagrams are used. In the suggested course of action, case use

diagram is used to exhibit the functional needs and function

load applied on the system during software architecture

description. Activity diagram describes also the system

behavior and shows the control process from one activity to

another one.

Third stage: Evaluation of the blackboard-based architecture

Whereas various agents have varied function loads in the

system, T-CPN model contains following models which are

independent from each other and each one will has their own

functional load. Furthermore, requests related to one sub

model may have several classes that each one is shown with

different colors in T-CPN. Each color is unique and may not

be repeated in other classes.

Open Petri net contains input and output to the external

environment and shown by <<PAopenload>> stereotype that

is used in the case use diagram. Whereas several methods can

use a source in the system, we have following definitions in

T-CPN model:

If it is assumed that sources are exhibited as RES= {res1, res2

... res n} for each source, res ϵ RES is defined as a feature

called [count [res]]. [Count [res]] denotes total requests that

request service from res, index feature is a unique index for

identification of sources. Places which use res resource are

shown by}ACTION={ action1,action2,..., actionn}, it is

obvious that count[res]=a for each source labels total requests

in {action ϵ ACTION | resource(action)= res} set by a unique

number in range [1,2,...,count[res]]. This unique number is

shown by index [action] feature.

If agent x is noted by <<PAopenload>> stereotype, feature

values are determined as below:

Count [res] res ϵ RES

Index [action] actionϵ ACTION

C = MAX res ϵ {COUNT [res]} (1)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 2, 142 - 148, 2015, ISSN:- 2319–8656

www.ijcat.com 145

To show the customers service rate with class r, SR [i,r] in

transfer i is used. M is an action in activity diagram.

SR [i,r]= rate[r]/demand [action] where i = index

[resource[m]]. (2)

r = index [action]. (3)

λ]r] for is considered for showing the customer input rate with

class r that is defined as below:

λ [r] = arrival rate [x] (4)

The input rate is used based on labeled case use that resulted

in use of activity diagram.

4.3 Evaluation of response time in software

architecture Level
Performance metrics such as response time, queue length etc.

may be evaluated using the said evaluation method. To

compute the response time, time interval between request and

first received response by the other side must be analyzed. In

fact:

 TR=TS+TD (5)

TR: Response time

TS: Service time

TD: Delay time

Delay time may be defined as delay time in processing queue

To analyze the queue length, tokens number in place must be

calculated.

5. CASE STUDY
In this paper, hotel reservation system was assumed as case

study, so that this system was implemented on blackboard

technique and ultimately is evaluated using the offered

method. Blackboard technique is shown in Figure 2. Figure

3,4 and 5 show case use, component and activity diagrams of

unified modeling language of hotel reservation system. Figure

6 show activity diagram of hotel reservation system. In this

scenario, firstly the user declares its request on hotel

reservation and the system during some stages responds by its

agents in consideration of the user request. For evaluation of

nonfunctional needs (such as performance), diagrams shown

in Figure 4 and 5 are converted to time colored Petri net

model. Final model of time colored Petri net is exhibited in

Figure 6. To evaluate the performance (such as response), 4

requests are input to the system by users and upon their

execution on time colored Petri net, valuable results are

obtained for evaluation of nonfunctional needs on SA level.

Table 1 shows the response time related to users.

Figure 2. Abstract model of hotel reservation system

 user agent

Figure 3. Exhibition of hotel reservation system with CR card

<<PAopenload>>

{PAoccurrence=["exponentiol",12]

See hotels based on

customer requirments

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 2, 142 - 148, 2015, ISSN:- 2319–8656

www.ijcat.com 146

Figure 4. Annotated of performance in component diagram

Figure 5. Hotel reservation activity diagram

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 2, 142 - 148, 2015, ISSN:- 2319–8656

www.ijcat.com 147

Figure 6. Time colored Petri net

Table 1. Response time

Number of request Response time

1 0.16861

2 0.56993

3 0.52483

4 0.295

6. CONCLUSIONS
In this paper, we have presented a strategy for evaluation of

performance of nonfunctional requirements in software

architecture using blackboard technique modeled by UML

diagrams. So, the software system may be validated for

meeting or not meeting the nonfunctional requirements of

case at the primary stages of software systems development

cycle. The general analysis framework in this method is

formed based on formal models (TCPN) that accordingly is

free of ambiguity. Whereas in this method, UML diagrams are

used for description of software architecture based on

blackboard technique, therefore description of SA by means

of achievements of analysis and design stages will be very

reasonable and low-cost. on the other hand, a transformation

has been presented for establishment of a TCPN-based

executive model from UML model .There are a lot of tools for

working with UML models and UML models may be

transformed to TCPN-based executive model automatically.

In addition, other nonfunctional requirements may be

evaluated by means of other architectural specifications.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 2, 142 - 148, 2015, ISSN:- 2319–8656

www.ijcat.com 148

7. REFERENCES
[1] Technical Report IEEE P1471-2000. Recommended

Practice for Architectural Description of Software Intensive

Systems, IEEE Standards Department, The Architecture

Working Group of the Software Engineering Committee,

(September 2000).

[2] Clements, P., Bass, L., Garlan, D., Ivers, J. Little, R. Nord,

R. and Stafford, J. 2010. Documenting Software

Architectures: Views and Beyond. Second Edition,

Publication City/Country New Jersey, Addison Wesley.

[3] Object Management Group (OMG). 2002. UML Profile

for Reliability, Schedulability, Performance and Time

Specification.

[4] Jensen, K. and Kristensen, L. 2009. Coloured Petri nets:

modeling and validation of concurrent systems. Springer-

Verlag.

[5] Fukuzawa, K. and Saeki, M. 2002. Evaluating Software

Architectures by Coloured Petri Nets. in SEKE02 14th

International Conference on Software Engineering and

Knowledge Engineering, ACM, Ischia, Italy.

[6] Balsamo, S. and Marzolla, M. 2005. Performance

Evaluation of UML Software Architectures with Multiclass

Queueing Network Models. ACM Workshop on Software and

Performance (WOSP).

[7] Pettit, R. G. and Gomaa, H. 2004. Improving the

Reliability of Concurrent Object Oriented Software Designs.

proceeding of the ninth IEEE international workshop on

object oriented real time dependable systems.

[8] Gyarmati, E. and Strakendal, P. 2002. Software

Performance Prediction-Using SPE. Master Thesis Software

Engineering, Department of Software Engineering and

Computer Science Blekinge Institute of Technology, Sweden.

[9] Object Management Group (OMG). 2005. Unified

Modeling Language (UML). Version 2.0.

[10] Merseguer, S. Bernardi, S., Campos, J. and Donatelli, S.

2002. A Compositional Semantics for NML State Machines

Aimed at performance Evaluation. proce. Of the 6th

International Workshop on Discrete Event Systems, 295-302.

[11] Merseguer, J., Campos, J. and Mena, E. 2003. Analysing

Internet Software Retrieval System: Modeling and

Performance Comparison. Wireless Networks: the Journal of

Mobile Computation and Information, vol. 9, no. 3, 223-238.

http://www.ijcat.com/

