
International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 202 - 208, 2015, ISSN:- 2319–8656

www.ijcat.com 202

Efficient & Lock-Free Modified Skip List in Concurrent

Environment

Ranjeet Kaur

Department of Computer Science and Application

Kurukshetra University, Kurukshetra

Kurukshetra, Haryana

Pushpa Rani Suri

Department of Computer Science and Application

Kurukshetra University, Kurukshetra

Kurukshetra, Haryana

Abstract: In this era the trend of increasing software demands continues consistently, the traditional approach of faster processes

comes to an end, forcing major processor manufactures to turn to multi-threading and multi-core architectures, in what is called the

concurrency revolution. At the heart of many concurrent applications lie concurrent data structures. Concurrent data structures

coordinate access to shared resources; implementing them is hard. The main goal of this paper is to provide an efficient and practical

lock-free implementation of modified skip list data structure. That is suitable for both fully concurrent (large multi-processor) systems

as well as pre-emptive (multi-process) systems. The algorithms for concurrent MSL based on mutual exclusion, Causes blocking

which has several drawbacks and degrades the system’s overall performance. Non-blocking algorithms avoid blocking, and are either

lock-free or wait-free.

Keywords: skip-list, CAS, Modified Skip List, concurrency, lock-free

1. INTRODUCTION
Modern applications require concurrent data structures for

their computations. Concurrent data structures can be

accessed simultaneously by multiple threads running on

several cores. Designing concurrent data structures and

ensuring their correctness is a difficult task, significantly more

challenging than doing so for their sequential counterparts.

The difficult of concurrency is aggravated by the fact that

threads are asynchronous since they are subject to page faults,

interrupts, and so on. To manage the difficulty of concurrent

programming, multithreaded applications need

synchronization to ensure thread-safety by coordinating the

concurrent accesses of the threads. At the same time, it is

crucial to allow many operations to make progress

concurrently and complete without interference in order to

utilize the parallel processing capabilities of contemporary

architectures. The traditional approach that helps maintaining

data integrity among threads is to use lock primitives.

Mutexes, semaphores, and critical sections are used to ensure

that certain sections of code are executed in exclusion[1]

To address these problems, researchers have proposed non-

blocking algorithms for shared data objects. Nonblocking

methods do not rely on mutual exclusion, thereby avoiding

some of these inherent problems. Most non-blocking

implementations guarantee that in any infinite execution,

some pending operation completes within a finite number of

steps. Nonblocking algorithms have been shown to be of big

practical importance in practical applications [2][3]

In the previous work we presented the concurrent access of

Modified skip list with locking techniques[12] , as we have

discussed the limitation due to locking method ,we present

the lock free access of modified skip list data structure. This

one is the initial efforts in this direction.

2. SKIP LIST AND MODIFIED SKIP

LIST
Skip-lists [4] are an increasingly important data structure for

storing and retrieving ordered in-memory data. SkipLists have

received little attention in the parallel computing world, in

spite of their highly decentralized nature. This structure uses

randomization and has a probabilistic time complexity of

O(logN) where N is the maximum number of elements in the

list.

The data structure is basically an ordered list with randomly

distributed short-cuts in order to improve search times, see

Figure 1. In this paper, we propose a new lock-free concurrent

modified skip-list pseudo code that appears to perform as well

as the best existing concurrent skip-list implementation under

most common usage conditions. The principal advantage of

our implementation is that it is much simpler, and much easier

to reason about. The original lock-based concurrent SkipList

implementation by [13] is rather complex due to its use of

pointer-reversal,

 Figure:1Skiplist data structure.

While the search, insert, and delete algorithms for skip lists

are simple and have probabilistic complexity of O (log n)

when the level 1 chain has n elements. with these observations

in mind [5] introduced modified skip list(MSL) structure in

which each node has one data field and three pointer fields

:left, right, and down. Each level l chain worked separate

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 202 - 208, 2015, ISSN:- 2319–8656

www.ijcat.com 203

doubly linked list. The down field of level l node x points to

the leftmost node in the level l-1 chain that has key value

larger than the key in x. H and T respectively , point to the

head and tail of the level lcurrent chain. Below Figure 2

shows the MSL.

 Figure: 2 modified skip list

3. CONCURRENT OPERATIONS ON

MSL
This paper describes the simple concurrent algorithms for

access and update of MSL. Our algorithm based on [11] . In

this paper we present a lock-free algorithm of a concurrent

modified skip list that is designed for efficient use in both pre-

emptive as well as in fully concurrent environments. The

algorithm is implemented using common synchronization

primitives that are available in modern systems. Double link

list is used as a basic structure of modified skip list.

A shared memory multiprocessor system configuration is

given in Figure 3.Each node of the system contains a

processor together with its local memory. All nodes are

connected to the shared memory via an interconnection

network. A set of co- operating tasks is running on the system

performing their respective operations. Each task is

sequentially executed on one of the processors, while each

processor can run many tasks at a time. The co-operating

tasks, possibly running on different processors, use shared

data objects built in the shared memory to co-ordinate and

communicate. Tasks synchronize their operations on the

shared data objects through sub-operations on top of a cache-

coherent shared memory. The shared memory may not though

be uniformly accessible for all nodes in the system; processors

can have different access times on different parts of the

memory [6].

Figure: 3 Shared Memory Access

4. OUR ALGORITHM
We present a modified skip list algorithm in the context of an

implementation of n set objects supporting three methods,

search_node, insert_node, del_node:search_node (key) search

for a node with key k equal to key, and return true if key

found otherwise return false. Insert_node (d) inserts adds d to

the set and returns true iff d was not already in the set;

del_node (v) removes v from the set and returns true iff v was

in the set, the below Figure 4 & 5 shows the field of a node.

Using the strategy of [11]. To insert or delete a node from the

modified skip list we have to change the respective set of prev

and next pointers. These pointers have to be changed

consistently, but it is not necessary to change them at once.

According to Sundell & Tsigas [11] we can consider the

doubly linked list as being a singly linked list with auxiliary

information in the left pointers, with the right pointers being

updated before the left pointers. Thus, the right pointers

always form a consistent singly linked list and thus define the

nodes positional relations in the logical abstraction of the

doubly linked list, but the left pointers only give hints as to

where to find the previous node. The down pointer of

modified skip list is according its criteria.

 Figure :4 local and global variables

The concurrent traversal of nodes makes a continuously

allocation and reclamation of nodes, in such kind of scenario

several aspects of memory management need to be

considered, like No node should be reclaimed and then later

re-allocated while some other process is traversing this node.

This can be done with the help of reference counting. We

have selected to use the lock-free memory management

scheme invented by Valois [7] and corrected by Michael and

Scott [8], which makes use of the FAA,TAS and CAS atomic

synchronization primitives. The operation done by these

primitives given below figure 5 & 6.

Union link::word

<p, d> :< pointer to node , Boolean>

Structure Node

Value: pointer to word

left: union link

right: union link

down :union link

//local variables

Node, prev,prev2,next,next2:pointer to node

Last,link1:union link

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 202 - 208, 2015, ISSN:- 2319–8656

www.ijcat.com 204

 Figure:5 FAA Atomic primitive

 Figure:6 CAS Atomic primitive

One problem, that arises with non-blocking implementations

of MSL that are based on the linked-list structure, is when

inserting a new node into the list. Because of the linked-list

structure one has to make sure that the previous node is not

about to be deleted. If we are changing the next pointer of this

previous node atomically with CAS, to point to the new node,

and then immediately afterwards the previous node is deleted

then the new node will be deleted as well, as illustrated in

Figure 7. This problem can be resolved with the latest method

introduced by Harris [4] is to use one bit of the pointer values

as a deletion mark. On most modern 32-bit systems, 32-bit

values can only be located at addresses that are evenly

dividable by 4, thereof ore bits 0 and 1 of the address are

always set to zero. Any concurrent Insert operation will then

be notified about the deletion, when its CAS operation will

fail.

Figure: 7 Concurrent insert and delete operation can delete

both nodes

One memory management issue is how to de-reference

pointers safely. If we simply de-reference the pointer, it might

be that the corresponding node has been reclaimed before we

could access it. It can also be that bit 0 of the pointer was set,

thus marking that the node is deleted, and therefore the

pointer is not valid. The following functions are defined for

safe handling of the memory management: shown in figure 8,

9 & 10.

Figure: 8 Memory management function

Figure: 9 Memory management function

Figure: 10 Memory management function

4.1 search_node
Searching in MSL is accomplished by taking a value v and

search exactly like a searching in sequential linked list,

starting at the highest level and proceeding to the next down

level, each time it encounters a node whose key is greater than

or equal to v. the search process also save the predecessor and

successor of a searched node v for further reference. In

concurrent environment, while searching for a node in MSL a

processes will eventually reach nodes that are marked to be

deleted. It might be due to forcefully preemption of deletion

process that invoked the corresponding operation. The

searching operation helps the delete process to finish the

pending work before continuing the search operation.

However, it is only necessary to help the part of the delete

operation on the current level in order to be able to traverse to

the next node. The search operation traverses in several steps

through the next pointers (starting from node1) at the current

level until it finds a node that has the same or higher key

value than the given key. See Figure 11.

procedure FAA (address: pointer to word, number: integer)

atomic do

*address := *address + number;

function CAS (address: pointer to word, oldvalue: word,

new value: word):boolean

atomic do

if *address = old value then

*address: = new value;

return true;

else

return false;

function READ_NODE (node **address):

/* De-reference the pointer and increase the reference

counter for the corresponding node. In case the pointer is

marked, NULL is returned */

procedure RELEASE_NODE(node: pointer to Node)

/* Decrement the reference counter on the corresponding

given node. If the reference count reaches zero, then call

RELEASE_NODE on the nodes that this node has owned

pointers to, then reclaim the node */

function COPY_NODE(node: pointer to Node):pointer

to Node /* Increase the reference counter for the

corresponding given node */

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 202 - 208, 2015, ISSN:- 2319–8656

www.ijcat.com 205

Figure:11

4.2 insert_node operation

The implementation of insert operation is shown in figure:12

With a search_node operation to find the node after which the

new node should be inserted. This search phase starts from the

head node at the highest level and traverses down to the

lowest level until the correct node is found .if there exist

already a node with key same as new node with value v, then

insertion algorithm exit otherwise it searched for node with

key value more than the new node value v. after inserting a

new node, it is possible that it is deleted by a concurrent

delete_node operation before it has been inserted completely

at the particular level. The main steps for insertion algorithm

are (I) after setting the new node’s left and right pointers,

atomically update the right pointer of the to-be-previous node,

(II) atomically update the left pointer of the to-be-right node.

Iii) atomically update the down pointer of nodes according to

the value generated by random no. generator function. if it is

more than current level, a new level is created for new node

,if it is less than current level new node is to be inserted in

between of existing levels ,say it inserted at level l<current

level. the down pointer of node at (l+1) level is to be changed

accordingly ,as well as the down pointer of new node is to

be updated with address of a node at level l-1 with value

greater than the value at new node respectively.

pointer to node function search _node (int v)

{

node *t,*t_right, *save [maxlevel], *found_node

int i

t=COPY_NODE (head)

t_right=headright

while (t! =NULL)

{

while(tvalue<v)

{

If (IS_MARKED (tright))

t=help_del(t)

t_right=READ_NODE(tright)

save[i]=t

}

if (tvalue==v)

break;

else

{

t=tleftdown

i=i-1

}

}

found_node=t

return found_node

}

function insert_node(key int , value: pointer to word)

node *p,*t,*save[max],*t_right,*up,*found_node

k=randomlevel ()

temp,i =current_level

t=COPY_NODE (head)

while (t! =NULL)

{

while(tkey<key)

{

If (IS_MARKED (trightvalue))

t=Help_Del(t)

save[i]=t

t_right=READ_NODE(tright)

}

if (tkey==key)

break;

else

{

t=tleftdown

i=i-1

save[i]=t

}

}

found_node=t

new_node=create_node (value)

node1=COPY_NODE(head)

If(k>temp)

{

//create new head and tail

h1=createnode(∞)

COPY_NODE(h1)

h1left=null

h1right=x

h1down=h

RELEASE_NODE(H1)

t1=CreateNode(∞)

COPY_NODE (t1)

t1left=x

t1right=NULL

t1down=t

RELEASE_NODE (t1)

new_nodeleft=h1

new_noderight=t1

if((save[k-1]rightdown)==NULL OR(save[k-

1]rightvalue>new_nodevalue))

new_nodedown=save[k-1]right

RELEA SE_NODE(new_node)

RELEASE_NODE(t1)

RELEASE_NODE(h1)

}

If(k<temp)//insert the new node after save[k]

{

prev=COPY_NODE(save[k])

next=READ_NODE(& prevright)

While T do

{

If (prevright != next)

RELEASE_NODE(next)

next=READ_NODE(&prevright)

continue

new_nodeleft=prev

new_nodetight=next

If CAS(&prevright,next,new_node)//update the next

pointer of Prev of to be inserted node

COPY_NODE(new_node)

break

back-off

}

While T do //update the left pointer of next of to be inserted

node

{

Link1= nextleft

If (IS_MARKED(link1) || new_noderight!=next)

Break

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 202 - 208, 2015, ISSN:- 2319–8656

www.ijcat.com 206

figure:12

4.3 Delete_node operation

The delete operation uses search operation to locate the node

with key k, and then uses two stage process to perform the

deletion. Firstly the node is logically deleted by marking the

reference contained in it (delete_noderightvalue). ,

secondly the node is physically deleted. The main steps of the

algorithm for deleting a node at an arbitrary position are the

following: (I) Set the deletion mark on the right pointer of the

to-be-deleted node, (II) Set the deletion mark on the left

pointer of the to-be-deleted node, (III) Set the deletion mark

on the down pointer of the to-be-deleted node, IV) Atomically

update the right pointer of the previous node of the to-be-

deleted node,(V) Atomically update the left pointer of the

right node of the to-be-deleted node. (VI) atomically update

the down pointer for a node which was pointed by down

pointer of to be deleted node.

Figure:13

Figure:14

if CAS(&nextleft,link1,<new_node,F>)

COPY_NODE(new_node)

RELEASE_NODE(link1)

if(IS_MARKED(new_node)

prev2=COPY_NODE(new_node)

prev2=update_prev(prev2,next)

RELEASE_NODE(prev2)

break

back-off

}

RELEASE_NODE(next)

RELEASE_NODE(new_node)

//update the down pointer

if (k>1)

{

if((save[k-1]rightdown)==NULL OR(save[k-

1]right value >new_node value)) then
new_nodedown= save [k-1]right

if ((save[k+1]rightdown)==NULL OR

(save[k+1]right value <new_node value)) then
save [k+1]rightdown =new_node

RELEASE_NODE(new_node)

return true

}

 if (k==1)

{
if(save[k+1]rightdown)==NULL &&
(save[k+1]rightvalue<xvalue)) then

save[k+1]rightdown= new_node

new_nodedown=NULL

}

RELEA SE_NODE(new_node)

return true

} }

Function delete_node (int key):boolean

{

node *delete_node,*prev,*succ,*up,*s[max]

temp, I =current_level

t=COPY_NODE (head)

while (t! =NULL)

{

while(tkey<key)

{

If (IS_MARKED (trightvalue))

t=help_del(t)

save[i]=t

t_right=READ_NODE(tright)

}

if (tkey==key)

break

else

{

t=tleftdown

i=i-1

save[i]=t

}

}

del_node=t

While T do

if (del_node==NULL) then

RELEASE_NODE(del_node)

return NULL

linkk1=del_noderight

IF IS_MARKED(link1) then

help_del(del_node)

RELEASE_NODE(node)

continue

if CAS(&del_noderight,link1<link1.p,T>) then

help_del(del_node)

next=READ_NODE(&del_noderight)

prev=update_prev(del_node,next)

RELEASE_NODE(prev)

release_node(next)

break

RELEASE_NODE(del_node)

back-off

return

Procedure mark_prev(pointer to node node)

while T do

 link1=nodeleft

 if IS_MARKED(link1) or

CAS(&nodeleft,link1,<link1.p,T>)then break

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 202 - 208, 2015, ISSN:- 2319–8656

www.ijcat.com 207

figure: 15

Figure:16

5. Correctness

In this section we describe the correctness of presented

algorithm .here we outline a proof of linearizability [10] and

then we prove that algorithm is lock-free. Few definitions are

required before giving proof of correctness.

Definition 1 We denote with Mt the abstract internal state of

a modified skip list at the time t. Mt is viewed as a list of

values (v1 ,----, vn) .The operations that can be performed on

the modified skip list are Insert (I) and Delete(D). The time t1

is defined as the time just before the atomic execution of the

operation that we are looking at, and the time t2 is defined as

the time just after the atomic execution of the same operation.

The return value of true2 is returned by an Insert operation

that has succeeded to update an existing node, the return value

of true is returned by an Insert operation that succeeds to

insert a new node. In the following expressions that defines

the sequential semantics of our operations, the syntax is S1 :

O1; S2, where S1 is the conditional state before the operation

O1, and S2 is the resulting state after performing the

corresponding operation:

Mt 1: I(v1), Mt2 = Mt1 + [v1] (1)

Mt1 = : D () = NULL , Mt2 = (2)

Mt1 [v1] + M1 : D () = v1 , Mt2= M1 (3)

Pointer to node function Help_Del(node: pointer to

Node)

 Mark_Prev(node);

last=NULL;

prev= READ_NODE(&nodeleft)

next= READ_NODE (&noderight)

 while T do

 if prev == next then

break

 if IS_MARKED(nextright) then

mark_prev(next)

 next2:= READ_NODE (&nextright)

 RELEASE_NODE(next)

next:=next2

 continue

 prev2= READ_NODE (&prevright)

 if prev2 = NULL then

 if last != NULL then

mark_prev(prev)

next2= READ_NODE (&prevright)

if CAS(&lastright,<prev,F>),<next2,F>) then

 RELEASE_NODE(prev)

 else

 RELEASE_NODE(next2)

 RELEASE_NODE(prev)

prev=last

 last=NULL

 else

prev2=READ_NODE(&prevleft)

 RELEASE_NODE(prev)

prev=prev2

 continue

 if prev2 != node then

 if last !=NULL then

RELEASE_NODE(last)

 last:=prev

 prev=prev2

 continue

 RELEASE_NODE(prev2)

 if CAS(&lprevright, <node,F>,<next,F>) then

 COPY_NODE(next)

 RELEASE_NODE(node)

 break

 Back-Off

 if last != NULL then RELease_node(last)

 RELEASE_NODE(left)

RELEASE_NODE (next)

prev=last

 last=null

 else

 prev2=READ_NODE(&prevleft)

 RELEASE_NODE (prev)

prev=prev2

 continue

 link1=nodeleft

 if IS_MARKED(link1) then

RELEASE_NODE (prev2)

 break;

 if prev2!= node then

 if last!= null then

 RELEASE_NODE (last)

 last=prev

 prev:=prev2

 continue

 RELEASE_NODE (prev2)

 if link1p = prev then

break

 if prevright = node and CAS(

&nodeleft,link1,<prev,F>) then

COPY(prev)

 RELEASE_NODE (link1p)

 if IS_MARKED(prevleft) then break

back-off

if last != NULL then

RELEASE_NODE (last)

 return prev

function update_prev(prev, node: pointer to

Node): pointer to Node

 last=null

 while T do

prev2:=READ_NODE(&prevright)

 if prev2 = null then

 if last != null then

mark_prev(prev)

 next2:=READ_NODE(&prevright)

 if CAS(&lastright,<prev,F>,<next2,F>) then

RELEASE_NODE (prev)

 Else

 RELEASE_NODE (next2)

 RELEASE_NODE (prev)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 3, 202 - 208, 2015, ISSN:- 2319–8656

www.ijcat.com 208

Definition 2 In order for an implementation of a shared

concurrent data object to be linearizable [10], for every

concurrent execution there should exist an equal (in the sense

of the effect) and valid (i.e. it should respect the semantics of

the shared data object) sequential execution that respects the

partial order of the operations in the concurrent execution.

Definition 3 The value v is present (i.M[i]=v) in the

abstract internal state M of implementation , when there is a

connected chain of next pointers (i.e. prevlinkright) from

a present node in the doubly linked list that connects to a node

that contains the value v, and this node is not marked as

deleted (i.e. is_marked(node)=false)).

Definition 4 The decision point of an operation is defined as

the atomic statement where the result of the operation is

finitely decided, i.e. independent of the result of any

suboperations after the decision point, the operation will have

the same result. We also define the state-change point as the

atomic statement where the operation changes the abstract

internal state of the priority queue after it has passed the

corresponding decision point.

We will now use these definitions to show the execution

history of point where the concurrent operation occurred

atomically.

Lemma 1 : A insert_node operation (I(v)) , takes effect

atomically at one statement.

Proof: The decision, state-read and state-change point for an

insert operation which succeeds (I(v)), is when the CAS sub-

operation CAS(&prevright,next,new_node) of insert

operation succeeds. The state of the modified skip list was

(Mt1 = M1) directly before the passing of the decision point.

The state of the modified skip list after passing the decision

point will be MT2 = [v] + M1 as the next pointer of the

save[k] node was changed to point to the new node which

contains the value v. Consequently, the linearizability point

will be the CAS sub-operation in that line.

Lemma 2 : A delete_node operation which fails (D()

=NULL),takes effect atomically at one statement

Proof: The decision point for a delete operation which tails (D()

=NULL) is the check in line if (del_node==NULL) then .

Passing of the decision point gives that the value v we are

searching for deletion is not exist in modified skip list i.e (Mt1

= NULL) .

Lemma 3 : A delete_node operation which succeeds (D() =v),

takes effect atomically at one statement.

Proof: The decision point for a delete operation which succeeds

(D() = v) is when the CAS sub-operation inline

[next=read_node(&del_noderight)] succeeds. Passing of

the decision point together with the verification in line [if

is_marked(link1) then]. Directly after passing the CAS sub-

operation in [if CAS(&del_noderight,link1<link1.p,T>)

then] (i.e. the state-change point) the to-be-deleted node will

be marked as deleted and therefore not present in the Modified

skip list (¬ i.Mt2 [i] = v). Unfortunately this does not match the

semantic definition of the operation.

6. Conclusion

We introduced a concurrent modified Skiplist using a

remarkably simple algorithm in a lock free environment. Our

implementation is raw, various optimization to our algorithm

are possible like we can extend the correctness proof. Empirical

study of our new algorithm on two different multiprocessor

platforms is a pending work. The presented algorithm is first

step to lock free algorithmic implementation of modified skip

list; it uses a fully described lock free memory management

scheme. The atomic primitives used in our algorithm are

available in modern computer system.

7. REFERENCES

[1] Eshcar Hillel. Concurrent Data Structures:

Methodologies and Inherent, Limitations, PhD thesis,

Israel Institute of Technology, 2011]

[2] P. TSIGAS, Y. ZHANG. Evaluating the performance of

non-blocking synchronization on shared-memory

multiprocessors. Proceedings of the international

conference on Measurement and modeling of computer

systems (SIGMETRICS 2001), pp. 320-321, ACM Press,

2001.

[3] P. TSIGAS, Y. ZHANG. Integrating Non-blocking

Synchronisation in Parallel Applications: Performance

Advantages and Methodologies. Proceedings of the 3rd

ACM Workshop on Software and Performance (WOSP

’02), ACM Press, 2002.

[4] Pugh, W. Skip lists: A probabilistic alternative to

balanced trees. Communications of the ACM 33, 6 (June

1990),

[5] S. Cho and S. Sahni. Weight-biased leftist trees and

modified skip lists. ACM J. Exp. Algorithmics, 1998.

[6] H. Sundell and P. Tsigas. Fast and Lock-Free Concurrent

Priority Queues for Multi-Thread Systems. In

Proceedings of the 17th International Parallel and

Distributed Processing Symposium, page 11. IEEE press,

2003.

[7] J. D. VALOIS. Lock-Free Data Structures. PhD. Thesis,

Rensselaer Polytechnic Institute, Troy, New York, 1995.

[8] M. MICHAEL, M. SCOTT. Correction of a Memory

Management Method for Lock-Free Data Structures.

Computer Science Dept., University of Rochester, 1995.

[9] T. L. HARRIS. A Pragmatic Implementation of Non-

Blocking Linked Lists. Proceedings of the 15th

International Symposium of Distributed Computing, Oct.

2001.

[10] M. Herlihy and J. Wing, “Linearizability: a correctness

condition for concurrent objects,” ACM Transactions on

Programming Languages and Systems,vol. 12, no. 3, pp.

463–492, 1990.

[11] H. Sundell, P. Tsigas, Lock-free and practical doubly

linked list-based deques using single-word compare-and-

swap, in: Proceedings of the 8th International Conference

on Principles of Distributed Systems, in: LNCS, vol.

3544, Springer Verlag, 2004, pp. 240–255.

[12] Ranjeet Kaur, Dr. Pushpa Rani Suri, Modified Skip List

in Concurrent Environment, in : Proceedings of the

IJSER, Aug 2014

[13] I. LOTAN, N. SHAVIT. Skiplist-Based Concurrent

Priority Queues. International Parallel and Distributed

Processing Symposium, 2000.

http://www.ijcat.com/

