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Abstract: In this era the trend of increasing software demands continues consistently, the traditional approach of faster processes 

comes to an end, forcing major processor manufactures to turn to multi-threading and multi-core architectures, in what is called the 

concurrency revolution. At the heart of many concurrent applications lie concurrent data structures. Concurrent data structures 

coordinate access to shared resources; implementing them is hard. The main goal of this paper is to provide an efficient and practical 

lock-free implementation of modified skip list data structure. That is suitable for both fully concurrent (large multi-processor) systems 

as well as pre-emptive (multi-process) systems. The algorithms for concurrent MSL based on mutual exclusion, Causes blocking 

which has several drawbacks and degrades the system’s overall performance. Non-blocking algorithms avoid blocking, and are either 

lock-free or wait-free. 
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1. INTRODUCTION 
Modern applications require concurrent data structures for 

their computations. Concurrent data structures can be 

accessed simultaneously by multiple threads running on 

several cores. Designing concurrent data structures and 

ensuring their correctness is a difficult task, significantly more 

challenging than doing so for their sequential counterparts. 

The difficult of concurrency is aggravated by the fact that 

threads are asynchronous since they are subject to page faults, 

interrupts, and so on. To manage the difficulty of concurrent 

programming, multithreaded applications need 

synchronization to ensure thread-safety by coordinating the 

concurrent accesses of the threads. At the same time, it is 

crucial to allow many operations to make progress 

concurrently and complete without interference in order to 

utilize the parallel processing capabilities of contemporary 

architectures. The traditional approach that helps maintaining 

data integrity among threads is to use lock primitives. 

Mutexes, semaphores, and critical sections are used to ensure 

that certain sections of code are executed in exclusion[1] 

To address these problems, researchers have proposed non-

blocking algorithms for shared data objects. Nonblocking 

methods do not rely on mutual exclusion, thereby avoiding 

some of these inherent problems. Most non-blocking 

implementations guarantee that in any infinite execution, 

some pending operation completes within a finite number of 

steps. Nonblocking algorithms have been shown to be of big 

practical importance in practical applications [2][3] 

In the previous work we presented the concurrent  access of 

Modified skip list with locking techniques[12] , as we have 

discussed the limitation  due to locking method ,we present 

the lock free access of modified skip list data structure. This 

one is the initial efforts in this direction. 

2. SKIP LIST AND MODIFIED SKIP 

LIST 
Skip-lists [4] are an increasingly important data structure for 

storing and retrieving ordered in-memory data. SkipLists have 

received little attention in the parallel computing world, in 

spite of their highly decentralized nature. This structure uses 

randomization and has a probabilistic time complexity of 

O(logN) where N is the maximum number of elements in the 

list.  

The data structure is basically an ordered list with randomly 

distributed short-cuts in order to improve search times, see 

Figure 1. In this paper, we propose a new lock-free concurrent 

modified skip-list pseudo code that appears to perform as well 

as the best existing concurrent skip-list implementation under 

most common usage conditions. The principal advantage of 

our implementation is that it is much simpler, and much easier 

to reason about. The original lock-based concurrent SkipList 

implementation by [13] is rather complex due to its use of 

pointer-reversal, 

 Figure:1Skiplist data structure. 

While the search, insert, and delete algorithms   for skip lists 

are simple   and have probabilistic complexity of O (log n) 

when the level 1 chain has n elements. with these observations 

in mind [5] introduced modified skip list(MSL) structure in 

which  each node has  one data field and three pointer fields 

:left, right, and down. Each level l chain worked separate 
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doubly linked list. The  down field of level l node x   points to 

the leftmost  node in the level l-1 chain that has key value 

larger than the key in x. H and T respectively , point to the 

head and tail of the level  lcurrent chain. Below Figure 2 

shows the MSL. 

 

 Figure: 2 modified skip list 

 

3. CONCURRENT OPERATIONS ON 

MSL 
This paper describes the simple concurrent algorithms for 

access and update of MSL. Our algorithm based on [11] . In 

this paper we present a lock-free algorithm of a concurrent 

modified skip list that is designed for efficient use in both pre-

emptive as well as in fully concurrent environments. The 

algorithm is implemented using common synchronization 

primitives that are available in modern systems. Double link 

list is used as a basic structure of modified skip list. 

A shared memory multiprocessor system configuration is 

given in Figure 3.Each node of the system contains a 

processor together with its local memory. All nodes are 

connected to the shared memory via an interconnection 

network. A set of co- operating tasks is running on the system 

performing their respective operations. Each task is 

sequentially executed on one of the processors, while each 

processor can run many tasks at a time. The co-operating 

tasks, possibly running on different processors, use shared 

data objects built in the shared memory to co-ordinate and 

communicate. Tasks synchronize their operations on the 

shared data objects through sub-operations on top of a cache-

coherent shared memory. The shared memory may not though 

be uniformly accessible for all nodes in the system; processors 

can have different access times on different parts of the 

memory [6]. 

 

Figure: 3 Shared Memory Access 

4. OUR ALGORITHM 
We present a modified skip list algorithm in the context of an 

implementation of n set objects supporting three methods, 

search_node, insert_node, del_node:search_node (key) search 

for a node with key k equal to key, and return true if key 

found otherwise return false. Insert_node ( d) inserts adds d to 

the set and returns true iff d was not already in the set; 

del_node (v) removes v from the set and returns true iff v was 

in the set, the below Figure 4 & 5  shows the field of a node. 

Using the strategy of [11].  To insert or delete a node from the 

modified skip list we have to change the respective set of prev 

and next pointers. These pointers have to be changed 

consistently, but it is not necessary to change them at once. 

According to Sundell & Tsigas [11] we can consider the 

doubly linked list as being a singly linked list with auxiliary 

information in the left pointers, with the right pointers being 

updated before the left pointers. Thus, the right pointers 

always form a consistent singly linked list and thus define the 

nodes positional relations in the logical abstraction of the 

doubly linked list, but the left pointers only give hints as to 

where to find the previous node. The down pointer of 

modified skip list is according its criteria. 

 
 

 

 

 

  Figure :4 local and global variables  

The concurrent traversal of nodes makes a continuously 

allocation and reclamation of nodes, in such kind of scenario 

several aspects of memory management need to be 

considered, like No node should be reclaimed and then later 

re-allocated while some other process is traversing this node. 

This can be done with the help of reference counting. We 

have selected to use the lock-free memory management 

scheme invented by Valois [7] and corrected by Michael and 

Scott [8], which makes use of the FAA,TAS and CAS atomic 

synchronization primitives. The operation done by these 

primitives given below figure 5 & 6. 

Union link::word 

<p, d> :< pointer to  node , Boolean> 

Structure Node 

Value: pointer to word 

left: union link 

right: union  link 

down :union link  

//local variables  

Node, prev,prev2,next,next2:pointer to node 

Last,link1:union link 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 4– Issue 3, 202 - 208, 2015, ISSN:- 2319–8656 

www.ijcat.com  204 

 

 

 

 Figure:5 FAA Atomic primitive 

 

 

 

 

 

 

 Figure:6 CAS Atomic primitive 

One problem, that arises with non-blocking implementations 

of MSL that are based on the linked-list structure, is when 

inserting a new node into the list. Because of the linked-list 

structure one has to make sure that the previous node is not 

about to be deleted. If we are changing the next pointer of this 

previous node atomically with CAS, to point to the new node, 

and then immediately afterwards the previous node is deleted 

then the new node will be deleted as well, as illustrated in 

Figure 7. This problem can be resolved with the latest method 

introduced by Harris [4] is to use one bit of the pointer values 

as a deletion mark. On most modern 32-bit systems, 32-bit 

values can only be located at addresses that are evenly 

dividable by 4, thereof ore bits 0 and 1 of the address are 

always set to zero. Any concurrent Insert operation will then 

be notified about the deletion, when its CAS operation will 

fail.  

 

Figure: 7 Concurrent insert and delete operation can delete 

both nodes 

One memory management issue is how to de-reference 

pointers safely. If we simply de-reference the pointer, it might 

be that the corresponding node has been reclaimed before we 

could access it. It can also be that bit 0 of the pointer was set, 

thus marking that the node is deleted, and therefore the 

pointer is not valid. The following functions are defined for 

safe handling of the memory management: shown in figure 8, 

9 & 10. 

 

 

 

 

 

Figure: 8 Memory management function 

 

 

 

 

Figure: 9 Memory management function 

 

 

 

Figure: 10 Memory management function 

4.1 search_node  
Searching in MSL is accomplished by taking a value v and 

search exactly like a searching in sequential linked list, 

starting at the highest level and proceeding to the next down 

level, each time it encounters a node whose key is greater than 

or equal to v. the search process also save the predecessor and 

successor of a searched node v for further reference. In 

concurrent environment, while searching for a node in MSL a 

processes will eventually reach nodes that are marked to be 

deleted. It might be due to forcefully preemption of deletion 

process that invoked the corresponding operation. The 

searching operation helps the delete process to finish the 

pending work before continuing the search operation. 

However, it is only necessary to help the part of the delete 

operation on the current level in order to be able to traverse to 

the next node. The search operation traverses in several steps 

through the next pointers (starting from node1) at the current 

level until it finds a node that has the same or higher key 

value than the given key. See Figure 11.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

procedure FAA (address: pointer to word, number: integer) 

atomic do 

*address := *address + number; 

 

function CAS (address: pointer to word, oldvalue: word, 

new value: word):boolean 

atomic do 

if *address = old value then 

*address: = new value; 

return true; 

else  

return  false; 

 

function READ_NODE (node  **address): 

/* De-reference the pointer and increase the reference 

counter for the corresponding node. In case the pointer is 

marked, NULL is returned */ 

procedure RELEASE_NODE(node: pointer to Node) 

/* Decrement the reference counter on the corresponding 

given node. If the reference count reaches zero, then call 

RELEASE_NODE on the nodes that this node has owned 

pointers to, then reclaim the node */ 

function COPY_NODE(node: pointer to Node):pointer 

to Node /* Increase the reference counter for the  

corresponding given node */ 
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Figure:11 

4.2 insert_node operation 
 

The implementation of insert operation is shown in figure:12  

With a search_node operation to find the node after which the 

new node should be inserted. This search phase starts from the 

head node at the highest level and traverses down to the 

lowest level until the correct node is found .if there exist 

already   a node with key same as new node with value v, then 

insertion algorithm exit otherwise it searched for node with 

key value more than the new node value v. after inserting a 

new node, it is possible that it is deleted by a concurrent 

delete_node operation before it has been inserted completely 

at the particular level. The main steps for insertion algorithm 

are (I) after setting the new node’s left and right pointers, 

atomically update the right pointer of the to-be-previous node, 

(II) atomically update the left pointer of the to-be-right node. 

Iii) atomically update the down pointer of nodes according to 

the value generated by random no. generator function. if it is 

more than current level, a   new level is created for new node 

,if it is less than current level  new node is to be inserted in 

between of existing levels ,say it inserted at level l<current 

level. the down pointer of node at (l+1) level is to be changed 

accordingly ,as well as the  down   pointer of new node is to 

be updated with address of a node at level l-1 with value  

greater than the value at new node respectively.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pointer to node function search _node ( int   v) 

{ 

node *t,*t_right, *save [maxlevel], *found_node 

int i 

t=COPY_NODE (head) 

t_right=headright 

while (t! =NULL) 

{ 

while( tvalue<v)  

{ 

If ( IS_MARKED (tright)) 

t=help_del(t) 

t_right=READ_NODE(tright) 

save[i]=t 

} 

if (tvalue==v) 

break; 

else 

{ 

t=tleftdown 

i=i-1 

} 

} 

found_node=t 

return found_node 

} 

 

function insert_node(key  int , value: pointer to word) 

node *p,*t,*save[max],*t_right,*up,*found_node 

k=randomlevel () 

temp,i =current_level 

t=COPY_NODE (head) 

while (t! =NULL) 

{ 

while( tkey<key)  

{ 

If ( IS_MARKED (trightvalue)) 

t=Help_Del(t) 

save[i]=t 

t_right=READ_NODE(tright) 

} 

if (tkey==key) 

break; 

else 

{ 

t=tleftdown 

i=i-1 

save[i]=t 

} 

} 

found_node=t 

new_node=create_node ( value) 

node1=COPY_NODE(head) 

If(k>temp) 

{ 

//create new head and tail 

h1=createnode(∞) 

COPY_NODE(h1) 

h1left=null 

h1right=x 

h1down=h 

RELEASE_NODE(H1) 

t1=CreateNode(∞) 

COPY_NODE (t1) 

t1left=x 

t1right=NULL 

t1down=t 

RELEASE_NODE (t1) 

new_nodeleft=h1 

new_noderight=t1 

if((save[k-1]rightdown)==NULL OR(save[k-

1]rightvalue>new_nodevalue)) 

new_nodedown=save[k-1]right 

RELEA SE_NODE(new_node) 

RELEASE_NODE(t1) 

RELEASE_NODE(h1) 

} 

If(k<temp)//insert the new node after save[k] 

{ 

prev=COPY_NODE(save[k]) 

next=READ_NODE(& prevright) 

While T do 

{ 

If ( prevright != next) 

RELEASE_NODE(next) 

next=READ_NODE(&prevright) 

continue 

new_nodeleft=prev 

new_nodetight=next 

If CAS(&prevright,next,new_node)//update the next 

pointer of Prev of to be inserted node 

COPY_NODE(new_node) 

break 

back-off 

} 

While  T do //update the left pointer of next of to be inserted  

node 

{ 

Link1= nextleft 

If (IS_MARKED(link1) || new_noderight!=next) 

Break 
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figure:12 

4.3 Delete_node  operation 
 

The delete operation uses search operation to locate the node 

with key k, and then uses two stage process to perform the 

deletion.  Firstly the node is logically deleted by marking the 

reference contained in it (delete_noderightvalue). , 

secondly the node is physically deleted. The main steps of the 

algorithm for deleting a node at an arbitrary position are the 

following: (I) Set the deletion mark on the right pointer of the 

to-be-deleted node, (II) Set the deletion mark on the left 

pointer of the to-be-deleted node, (III) Set the deletion mark 

on the down pointer of the to-be-deleted node, IV) Atomically 

update the right pointer of the previous node of the to-be-

deleted node,(V) Atomically update the left pointer of the 

right node of the to-be-deleted node. (VI) atomically update 

the down pointer for a node which was pointed by down 

pointer of to be deleted node.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure:13 

 

 

 

 

Figure:14 

 

 

 

 

 

 

 

if CAS(&nextleft,link1,<new_node,F>) 

COPY_NODE(new_node) 

RELEASE_NODE(link1) 

if(IS_MARKED(new_node)  

prev2=COPY_NODE(new_node) 

prev2=update_prev(prev2,next) 

RELEASE_NODE(prev2) 

break 

back-off 

} 

 

RELEASE_NODE(next) 

RELEASE_NODE(new_node) 

//update the down pointer 

if (k>1) 

{ 

if((save[k-1]rightdown)==NULL OR(save[k-

1]right value >new_node value)) then 
new_nodedown= save [k-1]right 

if ((save[k+1]rightdown)==NULL  OR  

(save[k+1]right value <new_node value )) then 
save [k+1]rightdown =new_node  

RELEASE_NODE(new_node) 

return true 

} 

 if (k==1) 

{ 
if(save[k+1]rightdown)==NULL && 
(save[k+1]rightvalue<xvalue)) then 

save[k+1]rightdown= new_node 

new_nodedown=NULL 

} 

RELEA SE_NODE(new_node) 

return true 

}   } 

 

Function delete_node (int key):boolean 

{ 

node *delete_node,*prev,*succ,*up,*s[max] 

temp, I =current_level 

t=COPY_NODE (head) 

while (t! =NULL) 

{ 

while( tkey<key)  

{ 

If ( IS_MARKED (trightvalue)) 

t=help_del(t) 

save[i]=t 

t_right=READ_NODE(tright) 

} 

if (tkey==key) 

break 

else 

{ 

t=tleftdown 

i=i-1 

save[i]=t 

} 

} 

del_node=t 

While T do 

if  (del_node==NULL) then 

RELEASE_NODE(del_node) 

return NULL 

linkk1=del_noderight 

IF  IS_MARKED(link1) then  

help_del(del_node) 

RELEASE_NODE(node) 

continue 

if CAS( &del_noderight,link1<link1.p,T>) then 

help_del(del_node) 

next=READ_NODE(&del_noderight) 

prev=update_prev(del_node,next) 

RELEASE_NODE(prev) 

release_node(next) 

break 

RELEASE_NODE(del_node) 

back-off 

return 

 

Procedure mark_prev(pointer to node node) 

while T do 

 link1=nodeleft 

 if IS_MARKED(link1) or 

CAS(&nodeleft,link1,<link1.p,T>)then break 
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figure: 15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure:16 

5. Correctness 
 

In this section we describe the correctness of presented 

algorithm .here we outline a proof of linearizability [10] and 

then we prove that algorithm is lock-free. Few definitions are 

required before giving proof of correctness.  

Definition 1    We denote with Mt the abstract internal state of 

a modified skip list  at the time t. Mt is viewed as a list of 

values ( v1 ,----, vn)  .The operations that can be performed on 

the modified skip list are Insert (I) and Delete(D). The time t1 

is defined as the time just before the atomic execution of the 

operation that we are looking at, and the time t2 is defined as 

the time just after the atomic execution of the same operation. 

The return value of true2 is returned by an Insert operation 

that has succeeded to update an existing node, the return value 

of true is returned by an Insert operation that succeeds to 

insert a new node. In the following expressions that defines 

the sequential semantics of our operations, the syntax is S1 : 

O1; S2, where S1 is the conditional state before the operation 

O1, and S2 is the resulting state after performing the 

corresponding operation: 

 
Mt 1:  I(v1),   Mt2 = Mt1 +  [v1]             (1) 

 
Mt1 =   : D () = NULL   , Mt2 =              (2) 
 
Mt1 [  v1   ] + M1 : D () = v1 ,   Mt2= M1     (3)      

 

Pointer to node  function Help_Del(node: pointer to 

Node) 

 Mark_Prev(node); 

last=NULL; 

prev= READ_NODE(&nodeleft) 

next= READ_NODE (&noderight) 

 while T do 

 if prev == next  then  

break 

 if IS_MARKED(nextright) then 

mark_prev(next) 

 next2:= READ_NODE (&nextright) 

 RELEASE_NODE(next) 

next:=next2 

 continue 

 prev2= READ_NODE (&prevright) 

 if prev2 = NULL then 

 if last != NULL then 

mark_prev(prev) 

next2= READ_NODE (&prevright) 

if CAS(&lastright,<prev,F>),<next2,F>) then 

 RELEASE_NODE(prev) 

 else 

 RELEASE_NODE(next2) 

 RELEASE_NODE(prev) 

prev=last 

 last=NULL 

 else 

prev2=READ_NODE(&prevleft) 

 RELEASE_NODE(prev) 

prev=prev2 

 continue 

 if prev2 != node then 

 if last !=NULL   then  

RELEASE_NODE(last) 

 last:=prev 

 prev=prev2 

 continue 

 RELEASE_NODE(prev2) 

 if CAS(&lprevright, <node,F>,<next,F>) then 

 COPY_NODE(next) 

 RELEASE_NODE(node) 

 break 

 Back-Off 

 if last != NULL then RELease_node(last) 

 RELEASE_NODE(left) 

RELEASE_NODE (next) 

 

prev=last 

 last=null 

 else 

 prev2=READ_NODE(&prevleft) 

 RELEASE_NODE (prev) 

prev=prev2 

 continue 

 link1=nodeleft 

 if IS_MARKED(link1) then 

RELEASE_NODE (prev2) 

 break; 

 if prev2!= node then 

 if last!= null then 

 RELEASE_NODE (last) 

 last=prev 

 prev:=prev2 

 continue 

 RELEASE_NODE (prev2) 

 if link1p = prev then  

break 

 if prevright = node and CAS( 

&nodeleft,link1,<prev,F>) then 

COPY(prev) 

 RELEASE_NODE (link1p) 

 if IS_MARKED(prevleft) then break 

back-off 

if last != NULL then 

RELEASE_NODE (last) 

 return prev 

function update_prev(prev, node: pointer to 

Node): pointer to Node 

 last=null 

 while T do 

prev2:=READ_NODE(&prevright) 

 if prev2 = null then 

 if last != null then  

mark_prev(prev) 

 next2:=READ_NODE(&prevright) 

 if CAS(&lastright,<prev,F>,<next2,F>) then  

RELEASE_NODE (prev) 

 Else 

 RELEASE_NODE (next2) 

 RELEASE_NODE (prev) 
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Definition 2 In order for an implementation of a shared 

concurrent data object to be linearizable [10], for every 

concurrent execution there should exist an equal (in the sense 

of the effect) and valid (i.e. it should respect the semantics of 

the shared data object) sequential execution that respects the 

partial order of the operations in the concurrent execution. 

 

Definition 3   The value v is present (  i.M[i]=v) in the 

abstract internal state M of implementation , when there is a 

connected chain of next pointers (i.e. prevlinkright) from 

a present node in the doubly linked list that connects to a node 

that contains the value v, and this node is not marked as 

deleted (i.e. is_marked(node)=false) ). 

 

Definition 4 The decision point of an operation is defined as 

the atomic statement where the result of the operation is  

finitely decided, i.e. independent of the result of any 

suboperations after the decision point, the operation will have 

the same result. We also define the state-change point as the 

atomic statement where the operation changes the abstract 

internal state of the priority queue after it has passed the 

corresponding decision point. 

We will now use these definitions to show the execution 

history of point where the concurrent operation occurred 

atomically. 

 
Lemma 1  :  A insert_node operation (I(v)) , takes effect 

atomically at one statement. 

Proof:  The decision, state-read and state-change point for an 

insert operation which succeeds (I(v)), is when the CAS sub-

operation CAS(&prevright,next,new_node) of insert 

operation succeeds. The state of the modified skip list  was 

(Mt1 = M1) directly before the passing of the decision point. 

The state of the modified skip list after passing the decision 

point will be MT2 = [v] + M1   as the next pointer of the 

save[k] node was changed to point to the new node which 

contains the value v. Consequently, the linearizability point 

will be the CAS sub-operation in that line. 

 

Lemma 2  : A delete_node operation which fails (D() 

=NULL),takes effect atomically at one statement 

Proof: The decision point for a delete operation which tails (D() 

=NULL) is the check in line if  (del_node==NULL) then . 

Passing of the decision point gives that the value v we are 

searching for deletion is not exist in modified skip list i.e  (Mt1 

= NULL) . 

 

Lemma 3 : A delete_node operation which succeeds (D() =v), 

takes effect atomically at one statement. 

Proof: The decision point for a delete operation which succeeds 

(D() = v) is when the CAS sub-operation inline 

[next=read_node(&del_noderight)] succeeds. Passing of 

the decision point together with the verification in line [ if  

is_marked(link1) then ]. Directly after passing the CAS sub-

operation in [if CAS( &del_noderight,link1<link1.p,T>) 

then]  (i.e. the state-change point) the to-be-deleted node will 

be marked as deleted and therefore not present in the Modified 

skip list (¬ i.Mt2 [i] = v). Unfortunately this does not match the 

semantic definition of the operation. 
 

6. Conclusion 
 

We introduced a concurrent modified Skiplist using a 

remarkably simple algorithm in a lock free environment. Our 

implementation is raw, various optimization to our algorithm 

are possible like we can extend the correctness proof. Empirical 

study of our new algorithm on two different multiprocessor 

platforms is a pending work. The presented algorithm is first 

step to lock free algorithmic implementation of modified skip 

list; it uses a fully described lock free memory management 

scheme. The atomic primitives used in our algorithm are 

available in modern computer system. 
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