
International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 359

Object Oriented Software Testability (OOST) Metrics

Analysis

Pushpa R. Suri

Department of Computer Science and

Applications, Kurukshetra University,

Kurukshetra -136119, Haryana, India

 Harsha Singhani

Institute of Information Technology &

Management (GGSIPU), Janak Puri, New

Delhi -110058, India

Abstract: One of the core quality assurance feature which combines fault prevention and fault detection, is often known as

testability approach also. There are many assessment techniques and quantification method evolved for software testability

prediction which actually identifies testability weakness or factors to further help reduce test effort. This paper examines all

those measurement techniques that are being proposed for software testability assessment at various phases of object oriented

software development life cycle. The aim is to find the best metrics suit for software quality improvisation through software

testability support. The ultimate objective is to establish the ground work for finding ways reduce the testing effort by

improvising software testability and its assessment using well planned guidelines for object-oriented software development

with the help of suitable metrics.

Keywords: Software Testability, Testability Metrics, Object Oriented Software Analysis, OO Metrics

1. INTRODUCTION

The testing phase of the software life-cycle is extremely cost

intensive 40% or more of entire resources from designing

through implementation to maintenance are often spent on

testing[1].This is due to the enlargement of software scale and

complexity, leading to increasing testing problems. A major

means to solve these problems is making testing easier or

efficient by improving the software testability. Software

testability analysis can help developing a more test friendly

testable applications. Software testability analysis helps in

quantifying testability value. Test designers can use this value

to calculate the test cases number that is needed for a complete

testing [2]. Software designers can use these values to compare

different software components testability, find out the software

weakness and improve it and project managers can use the

value to judge the software quality, determine when to stop

testing and release a program[3].

The purpose of this paper is to examine the software testability

measurement metrics at various stages of software

development life cycle in object oriented system. The study is

done to analyze various OO metrics related to testability and

study the literature for various other techniques and metrics for

evaluation of testability at design and analysis phase as well as

at coding and implementation phase respectively. The study is

done because metrics are a good driver for the investigation of

aspects of software. The evaluation of these metrics has direct

or indirect impact on the testing effort and thus, it affects

testability. So, by this study we would be able to serve two

objectives: (1) Provide practitioners with information on the

available metrics for Object Oriented Software Testability, if

they are empirically validated (from the point of view of the

practitioners, one of the most important aspects of interest, i.e.,

if the metrics are really fruitful in practice), (2) Provide

researchers with an overview of the current state of metrics for

object oriented software testability (OOST) from Design to

Implementation phase, focusing on the strengths and

weaknesses of each existing proposal. Thus, researchers can

have a broad insight into the work already done.

Another aim of this work is to help reveal areas of research

either lacking completion or yet to undertaken. This work is

organised as follows: After giving a brief overview of software

testability in section 2, the existing proposals of OO metrics

that can be applied to OO software presented is in Section 3.

Section 4 presents an overall analysis of all the proposals.

Finally, Section 5 presents some concluding remarks and

highlights the future trends in the field of metrics for object

oriented software testability.

2. SOFTWARE TESTABILITY

Software Testability as defined by IEEE standards [4] as: “(1)

Degree to which a system or component facilitates the

establishment of test criteria and the performance of tests to

determine whether those criteria have been met. (2) The degree

to which a requirement is stated in terms that permit

establishment of test criteria and the performance of tests to

determine whether those criteria have been met.”

Thus, Testability actually acts as a software support

characteristic for making it easier to test. As stated by Binder

and Freedman a Testable Software is one that can be tested

easily, systematically and externally at the user interface level

without any ad-hoc measure [5][6]. Whereas [2] describe it as

complimentary support to software testing by easing down the

method of finding faults within the system by focussing more

on areas that most likely to deliver these faults. The insight

provided by testability at designing, coding and testing phase is

very useful as this additional information helps in product

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 360

quality and reliability improvisation [7][8]. All this has lead to

a notion amongst practitioners that testability should be

planned early in the design phase though not necessarily so. As

seen by experts like Binder it involves factors like

controllability and observability i.e. ability to control software

input and state along with possibility to observe the output and

state changes that occur in software. So, overall testable

software has to be controllable and observable[5].But over the

years more such quality factors like understandability,

traceability, complexity and test–support capability have

contributed to testability of a system[3].All these factors make

testability a core quality factor.

Hence, over the years Testability has been diagnosed as one of

the core quality indicators, which leads to improvisation of test

process. Several approaches as Program Based , Model Based

and Dependability Testability assessment for Testability

estimation have been proposed [9]. The studies mostly revolve

around the measurement methods or factors affecting

testability. We would take this study further keeping focus on

mainly object oriented system. As object oriented technology

has become most widely accepted concept by software industry

nowadays. But testability still is a taboo concept not used much

amongst industry mainly due to lack of standardization, which

may not be imposed for mandatory usage but just been looked

upon for test support[10].

3. SIGNIFICANT OBJECT

ORIENTED METRICS USED FOR

TESTABILITY ASSESSMENT

Over the years a lot of OO design and coding metrics have been

adopted or discussed by research practitioners for studying to

be relevantly adopted in quantification of software testability.

Most of these metrics are proposed by Chidamber and Kemerer

[11], which is found to be easily understandable and applicable

set of metrics suite. But along with that there are other metrics

suites also available such as MOOD metrics suite [12].These

metrics can be categorized as one of the following object

oriented characteristic metrics- Size, Encapsulation,

Polymorphism, Coupling, Cohesion, Inheritance and

Complexity. Along with that from testability perspective,

which is the main motive of study, we have discussed few

important UML diagram metric suite too. So, now we present

those OO metrics selected for consideration and that may best

demonstrate the present-day context of metrics for OOST:

I. CK Metrics Suite [11],[1]

CK Metrics suite contains six metrics, which are

indicative of object oriented design principle usage

and implementation in software.

i. Number of Children (NOC): It is a basic

size metrics which calculates the no of

immediate descendants of the class. It is an

inheritance metrics, indicative of level of

reuse in an application. High NOC

represents a class with more children and

hence more responsibilities.

ii. Weighted Method per class (WMC):

WMC is a complexity metrics used for

class complexity calculation. Any

complexity measurement method can be

used for WMC calculation most popular

amongst all is cyclomatic complexity

method[13]. WMC values are indicators of

required effort to maintain a particular

class. Lesser the WMC value better will be

the class.

iii. Depth of Inheritance Tree (DIT): DIT is

an inheritance metrics whose measurement

finds the level of inheritance of a class in

system design. It is the length of maximum

path from the node to the root of the

hierarchy tree. It is a helps in

understanding behaviour of class,

measuring complexity of design and

potential reuse also.

iv. Coupling between Objects (CBO): This is

a coupling metrics which gives count of no

of other classes coupled to a class, which

method of one class using method or

attribute of other class. The high CBO

indicates more coupling and hence less

reusability.

v. Lack of Cohesion Metrics (LCOM): It is

a cohesion metrics which measures count

of methods pairs with zero similarity minus

method pairs with non zero similarity.

Higher cohesion values lead too complex

class bringing cohesion down. So,

practitioners keep cohesion high by

keeping LCOM low. LCOM was later

reformed as LCOM* by Henderson-Sellers

[14] and used in few researches.

vi. Response for a class (RFC): RFC is the

count of methods implemented within a

class. Higher RFC value indicates more

complex design and less understandability.

Whereas, lower RFC is a sign of greater

polymorphism. Hence, it is generally

categorized as complexity metrics.

II. HS Metric Suite[14]

i. Line of Code (LOC) or Line of Code per

Class (LOCC): It is a size metrics which

gives total no of lines of code (non

comment & non blank) in a class.

i. Number of Classes (NC / NOC): The total

number of classes.

ii. Number of Attributes (NA / NOA): The

total number of attributes.

ii. Number of Methods (NM / NOM): The

total number of methods

iii. Data Abstraction Coupling (DAC): The

DAC measures the coupling complexity

caused by Abstract Data Types (ADTs)

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 361

iv. Message Passing Coupling (MPC):
number of send statements defined in a

class

v. Number of Overriden Methods (NMO):

defined as number of methods overridden

by a subclass.

III. MOOD Metrics Suite [12][1]

Metrics for object oriented design (MOOD) metrics

suite consists of encapsulation (MHF, AHF),

inheritance (MIF, AIF), polymorphism (POF) and

coupling metrics (COF). This model was based on

two major features of object oriented classes i.e.

methods and attributes. Each feature is either hidden

or visible from a given class. Each metrics thus

calculates values between lowest (0%)-highest

(100%) indicating the absence or presence of a

particular feature. The metrics are as follows:

i. Method Hiding Factor (MHF): This

metric is computed by dividing the

methods hidden to the total methods

defined in the class. By this an estimated

encapsulation value is generated. High

value indicates more private attribute and

low value indicates more public attributes.

ii. Attribute Hidden Factor (AHF): It

shows the attributes hidden to the total

attributes defined in the class. By this an

estimated encapsulation value is generated.

iii. Method Inheritance Factor (MIF): This

metrics is the sum of all inherited methods

in a class. Low value indicates no

inheritance.

iv. Attribute Inheritance Factor (AIF): This

is ratio of sum of all inherited attributes in

all classes of the system. Low value

indicates no inherited attribute in the class.

v. Polymorphism Factor (POF): This factor

represents the actual number of possible

polymorphic states. Higher value indicates

that all methods are overridden in all

derived classes.

vi. Coupling Factor (COF): The coupling

here is same as CBO. It is measured as ratio

of maximum possible couplings in the

system to actual number of coupling.

Higher value indicates rise in system

complexity as it means all classes are

coupled with each other thus increasing

hence reducing system understandability

and maintainability along with less

reusability scope.

IV. Genero’s UML Class Diagram Metrics Suite [15]

iii. Number of Associations (NAssoc): The

total number of associations

iv. Number of Aggregation (NAgg) : The

total number of aggregation relationships

within a class diagram (each whole-part

pair in an aggregation relationship)

v. Number of Dependencies (NDep): The

total number of dependency relationships

vi. Number of Generalisations (NGen): The

total number of generalisation

relationships within a class diagram (each

parent-child pair in a generalisation

relationship)

vii. Number of Aggregations Hierarchies

(NAggH): The total number of aggregation

hierarchies in a class diagram.

viii. Number of Generalisations Hierarchies

(NGenH): The total number of

generalisation hierarchies in a class

diagram

ix. Maximum DIT: It is the maximum

between the DIT value obtained for each

class of the class diagram. The DIT value

for a class within a generalisation hierarchy

is the longest path from the class to the root

of the hierarchy.

x. Maximum HAgg: It is the maximum

between the HAgg value obtained for each

class of the class diagram. The HAgg value

for a class within an aggregation hierarchy

is the longest path from the class to the

leaves.

xi. Coupling Between Classes (CBC): it is

same as CBO.

V. MTMOOD Metrics [16]:

i. Enumeration Metrics (ENM): it is the

count of all the methods defined in a class.

ii. Inheritance Metrics (REM): it is the

count of the number of class hierarchies in

the design.

iii. Coupling Metrics (CPM): it is the count

of the different number of classes that a

class is directly related to.

iv. Cohesion Metrics (COM): This metric

computes the relatedness among methods

of a class based upon the parameter list of

the methods [computed as LCOM, 1993 Li

and Henry version]

VI. Other Important OO Metrics:

Apart from above mentioned metrics there are few

other significant structural as well as object oriented

metrics which have been significantly used in

testability research:

i. No of Object(NOO) [14]: which gives the

number of operations in a class

ii. McCabe Complexity Metrics[13]

Cyclomatic Complexity (CC): It is equal

to the number of decision statements plus

one. It predicts the scope of the branch

coverage testing strategy. CC gives the

recommended number of tests needed to

test every decision point in a program.

iii. Fan-out (FOUT)[17]: FOUT of any

method A is the number of local flows

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 362

from method A plus the number of data

structures which A updates. In other words

FOUT estimates the number of methods to

be stubbed, to carry out a unit testing of

method A.

VII. Test Class Metrics:

These test class metrics used for the study actually

correlate the various testability affecting factors

identified through above metrics with testing effort

required at unit testing or integration testing level in

object oriented software’s. Few of these metrics are

TLOC/TLOCC (Test class line of code), TM(no of

test methods), TA/TAssert (no of asserts/test cases

per class), NTClass(no of test classes), TNOO (test

class operation count), TRFC(test class RFC count),

TWMC(test class complexity sum)[18], [19]. The

metrics are calculated with respect to the unit test

class generated for the specific module. These

metrics are analytically correlated with specific

metrics suite for analysing testing effort required at

various testing level by many researchers.

4. SOFTWARE TESTABILITY

MEASUREMENT SURVEY
Software testability measurement refers to the activities and

methods that study, analyze, and measure software testability

during a software product life cycle. Unlike software testing,

the major objective of software testability measurement is to

find out which software components are poor in quality, and

where faults can hide from software testing. Now these

measurements can be applied at various phases during software

development life cycle of a system. In the past, there were a

number of research efforts addressing software testability

measurement. The focus of past studies was on how to measure

software testability at the various development phase like

Design Phase[5][20]–[22][8], [23] and Coding Phase[24][25]

[26][18]. Quite recently there has been some focus on Testing

& Debugging Phase also[27][28]. These metrics are closely

related to the Software quality factors i.e. Controllability,

Observability, Built in Test Capability, Understandability and

Complexity, all these factors are independent to each other. All

these measurement methods specifically from object oriented

software systems perspectives are discussed below in brief in

coming sections. Our work is the extension of work done by

Binder[5] and Bousquet [29] along with giving a framework

model for testability implementation during object oriented

software development using testability metrics support in

upcoming papers.

4.1 Metrics Survey at Design & Analysis

Phase
Early stage software design improvisation techniques have

highly beneficial impact on the final testing cost and its

efficiency. Although software testability is most obviously

relevant during testing, but paying attention to testability early

in the development process can potentially enhance testing

along with significantly improving testing phase effectiveness.

Binder was amongst few of the early researchers who proposed

design by testability concept [5] which revolved around a basic

fishbone model for testability with six main affecting factors

though not exactly giving any clear metrics for software design

constructs, as all these factors namely Representation ,

Implementation , Built In Test, Test Suite, Test Tool & Test

process are related to higher level abstraction. But his work

highlighted some of the key features such as controllability,

observability, traceability, complexity, built in test and

understandability which were later used & identified as critical

assessment attributes of testability. He identified various

metrics from CK metric suite [11] and McCabe complexity

metrics [13] which may be relatively useful for testability

measurement. Later lot of work has been done focussed around

Binders theory and lot of other new found factors for testability

measurement. Voas and Miller [30] [31] also spoke about some

factors but mainly in context with conventional structured

programming design. Below is the brief description of major

contributions made by researchers in the direction of software

testability metrics in past few years.

Binder,1994 [5] suggested few basic popular structural metrics

for testability assessment from encapsulation, inheritance,

polymorphism, and complexity point of view to indicate

complexity, scope of testing or both under all above mentioned

features. The effect of all complexity metrics indicated the

same: a relatively high value of the metric indicates decreased

testability and relatively low value indicates increased

testability. Scope metrics indicated the quantity of tests: the

number of tests is proportional to the value of the metric.

Binder’s work which was based on Ck metric suite along with

few other object oriented metrics under review has been kept as

benchmark during many studies found at later stages. The study

and reviews did not lead to concrete testability metrics but laid

a ground work for further assessment and analysis work.

McGregor & Srinivas, 1996 [32] study elaborated a Testability

calculation technique using visibility component metrics. The

proposed method used to estimate the effort that is needed to

test a class, as early as possible in the development process by

assessing the testability of a method in a class. Testability of a

method into the class depends upon the visibility component as

elaborated below:

 Testability of method is Tm=k *(VC), Where

visibility component (VC = Possible Output /

Possible Input) and

 Testability of the class is Tc=min(Tm)

The visibility component (VC) has been designed to be

sensitive to object oriented features such as inheritance,

encapsulation, collaboration and exceptions. Due to its role in

early phases of a development process the VC calculations

require an accurate and complete specification of documents.

Khan & Mustafa,2009 [16] proposed a design level testability

metrics name Metrics Based Testability Model for Object

Oriented Design (MTMOOD), which was calculated on the

basis of key object oriented features such as encapsulation,

Inheritance, coupling and cohesion. The models ability to

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 363

estimate overall testability from design information has been

demonstrated using six functionally equivalent projects where

the overall testability estimate computed by model had

statistically significant correlation with the assessment of

overall project characteristics determined by independent

evaluators. The proposed testability metrics details are as

follows:

 Testability= -0.08 * Encapsulation + 1.12 *

Inheritance + 0.97 * Coupling

The three standard metrics used for incorporating above object

oriented features mentioned in the equation were ENM, REM

& CPM respectively as explained in section 2. The proposed

model for the assessment of testability has been validated by

author using structural and functional information from object

oriented software. Though the metrics is easy but is very

abstract, it does not cover major testability affecting features of

any object oriented software in consideration such as cohesion

, polymorphism etc.

Khalid et. al. ,2011 [33] proposed five metrics model based on

CK metrics suite[11] and MTMOOD[16] for measuring

complexity & testability in OO designs based on significant

design properties of these systems such as encapsulation,

inheritance and polymorphism along with coupling &

cohesion. These metrics are: AHF, MHF, DIT, NOC, and CBC,

as explained in section 2. With findings that High AHF and

MHF values implies less complexity and high testability value

making system easy to test. On the other hand DIT, NOC and

CBC are directly proportional to complexity as higher values

of any of these will increase system complexity making it less

testable and hence making system more non test friendly.

Nazir Khan,2013[34]–[36] did their research from object

oriented design perspective. The model proposed was on the

basis of two major quality factors affecting testability of object

oriented classes at design level named- understandability and

complexity. The measurement of these two factors was

established with basic object oriented features in other research

[34], [35] The metrics used for the assessment of these two

factors were based on Genero metrics suite [15] as well as

some basic coupling , cohesion and inheritance metrics.

 Understandability = 1.33515 + 0.12*NAssoc +

0.0463*NA + 0.3405*MaxDIT

 Complexity = 90.8488 + 10.5849*Coupling -

102.7527*Cohesion + 128.0856*Inheritance

 Testability = - 483.65 + 300.92*Understandability

- 0.86*Complexity

Where the coupling, cohesion and Inheritance was measured

using CPM, COM, INM metrics as explained in section 2. The

Testability metrics was validated with very small scale C++

project data. Thus the empirical study with industrial data needs

to be performed yet. Though the model found important from

object oriented design perspective but lacked integrity in terms

of complete elaboration of their study considering the frame

work provided [37] by them. Also, not much elaborative study

was conducted on complexity and understandability correlation

establishment with basic object oriented features.

4.2 Metrics Survey at Coding &

Implementation Phase

The metrics study at source code level has gained more

popularity in the industry for planning and resource

management. Generally the metrics used at this level is not for

code improvisation but rather to help systems identify hidden

faults. So, basically here the metrics is not for finding

alternatives to a predefined system but for establishing relation

between source code factors affecting testability in terms of test

case generation factors, test case affecting factors etc. as

noticed by Bruntink and others [38].

Voas & Miller 1992 [2], [7], [39] concentrated their study of

testability in the context of conventional structured design. The

technique is also known as PIE technique. PIE measurement

helps computing the sensitivity of individual locations in a

program, which refers to the minimum likelihood that a fault at

that location will produce incorrect output, under a specified

input distribution. The concept here is of execution, infection

and propagation of fault within the code and it outputs.

 Testability of a software statement T(s) = Re(s) ∗

Ri(s) ∗ Rp(s)

Where, Re(s) is the probability of the statement execution, Ri(s)

the probability of internal state infection and Rp(s) the

probability of error propagation. PIE analysis determines the

probability of each fault to be revealed. PIE original metric

requires sophisticated calculations. It does not cover object-

oriented features such as encapsulation, inheritance,

polymorphism, etc. These studies were further analysed by

many researchers [40] with many extensions and changes

proposed to basic PIE model [41] .

Voas & Miller,1993 [42]proposed a simplification model of

sensitivity analysis with the Domain-Range Ratio (DRR). DRR

of a specification is defined as follows:

 Domain-Range Ratio (DRR) = it is defined as the

ratio d / r, where d is the cardinality of the domain of

the specification and r is the cardinality of the range

 Testability =inversely proportional to (DRR). It

was found as the DRR of the intended function

increases, the testability of an implementation of that

function decreases. In other words, high DRR is

thought to lead to low testability and vice versa.

DRR depends only on the number of values in the domain and

the range, not on the relative probabilities that individual

elements may appear in these sets.DRR evaluates application

fault hiding capacity. It is a priori information, which can be

considered as a rough approximation of testability. This ratio

was later reformed and named dynamic range–to-domain ratio

(DRDR)[43].Which is a inverse ratio of DRR and determined

dynamically to establish a link between the testability and

DRDR, the results were though not influential.

Bainbridge 1994[Bainbridge 1994] propose testability

assessment on flow graphs. In this two flow graph metrics were

defined axiomatically:

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 364

 Number of Trails metric which represents the

number of unique simple paths through a flow graph

(path with no repeated nodes),

 Mask [k=2] metric, which stands for “Maximal Set

of K-Walks”, where a k-walk is a walk through a

flow graph that visits no node of the flow graph more

than k times. Mask reflects a sequence of

increasingly exhaustive loop-testing strategies.

These two metrics measure the structural complexity of the

code. One of the main benefits of defining these testability

metrics axiomatically is that flow graphs can be measured

easily and efficiently with tools such as QUALMS.

Yeh & Lin,1998 [44] proposed two families of metrics in their

research to evaluate the number of elements which has to be

covered with respect to the data-flow graph testing strategies

respectively :testable element in all- paths, visit-each-loop-

paths, simple paths, structured, branches, statements, and to

develop a metric on the properties of program structure that

affect software testability.

 8 testable elements: no of non comment code

lines(NCLOC), p-uses(PU), defs(DEFS), uses(U),

edges(EDGE), nodes(NODE), d-u-paths(D_UP) and

dominating paths(PATH). As per definition, all those

metrics used for normalized source code predict the

scope of the associated testing strategies.

 Testability Metrics: The testability of each of these

factors is calculated individually by taking inverse of

the factor value. Thus giving an idea of testing effort

required for individual codes.

The model focussed on how to measure software testability

under the relationships between definitions and references

(uses) of variables that are the dominant elements in program

testing. The proposed model represents a beginning of a

research to formalize the software testability. This metric can

be practiced easily because only a static analysis of the text of

a program is required.

Jungmayr 2002 [45] study was basically on metrics based on

software dependencies and certain system testability metrics.

The study was based on four metrics required to analyse

component testability from dependency perspective. Such

dependencies called test-critical dependencies were identified

and their impact was evaluated on overall testability. To

automate the identification of test-critical dependencies a

prototype tool called ImproveT. The Metrics used for the

analysis were:

 Average Component Dependency (ACD): It is the

total count of component dependency by total no of

components in the system.

 No of Feedback Dependency (NFD): It is the total

number of feedback dependency.

 Number of Stubs to Break Cycles (NSBC): It is the

total number of stubs required to break cycles.

 No of Component within Dependency Cycles

(NCDC): It is the total number of components within

all dependency cycles.

 Reduction metrics r(d) – These metrics were further

reduced in percentile form and named rACD, rNFD,

rNSBC, rNCDC. These reduction metrics which are

themselves not highly correlated were then studied

for system structure, class coupling, etc. and other

perspectives.

It was found in the research that smaller metric values mean

better testability for all metrics described above. The approach

was helpful in identifying design and test problems.

Bruntink 2003[19], [38] used various metrics based on source

code factors for testability analysis using dependency of test

case creation and execution on these factors. The number of test

cases to be created and executed is determined by source code

factors as well as the testing criterion. In many cases, the testing

criterion determines which source code factors actually

influence the number of required test cases. The testability was

not directly quantified tough, but the results were influential in

other research studies.

 The nine popular design metrics DIT, FOUT,

LCOM, LOCC, NOC, NOF, NOM, RFC, and WMC

from CK metrics suite [11] were identified and

considered for analysing their impact on test case

generation.

 dLOCC, dNOTC were the two proposed test suite

metrics for analysing the effect of above metrics in

test case construction.

The research resulted in finding the correlation between source

code metrics themselves like LOCC & NOM and DIT & NOC.

Also there is a significant correlation between class level

metrics (most notably FOUT, LOCC, and RFC) and test level

metrics (dLOCC and dNOTC). Though there was no

quantification of testability as such but based on Binders theory

of testability and factors which were studied further in this

paper. Hence the study on source code factors: factors that

influence the number of test cases required to test the system,

and factors that influence the effort required to develop each

individual test case, helped giving testability vision, which

further need refinement.

Nguyen & Robach, 2005[46] focussed on controllability and

observability issues. Testability of source code is measured in

terms of controllability and observability of source data flow

graph which was converted to ITG (Information Transfer

graph) and further to ITN(Information transfer net) using

SATAN tool. Basically the no of flows within these graphs and

diagrams highlighted the scope of testability effort calculation

by finding couple value of controllability and observability

metrics.

 TEF(M)= (COF(M),OBF (M)), the paired metrics for

testability effort estimation for a module.

 COF(M)=T(IF;IM) / C(IM) denoted controllability,

where T(IF;IM) is the maximum information quantity

that module M receives from inputs IF of flow F and

C(IM) is the total information quantity that module M

would receive if isolated

 OBF(M)= T(OF;OM) / O(IM) denoted observability

measure of module M in flow graph. Where,

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 365

T(OF;OM) is the maximum information quantity that

the outputs of flow F may receive from the outputs

OM of module M and C(OM) is the total information

quantity that module M can produce on its outputs.

The relative case study showed the testability effort of few

flows was (1, 1) which is ideal for testing and for few flows (1,

0.083) which indicates low observability. The SATAN tool

used can be used for flow analysis at design as well as code

level.

Gonzalez 2009 [47] worked for Runtime testability in

component based system with mainly two issues test

sensitivity, and test isolation. Where test sensitivity

characterises which operations, performed as part of a test,

interfere with the state of the running system or its environment

in an unacceptable way and Test isolation techniques are the

means test engineers have of preventing test operations from

interfering with the state or environment of the system. The

Runtime testability thus is defined

 RTM=Mr / M* where M* is a measurement of all

those features or requirements which are to be tested

we want to test and Mr be the same measurement but

reduced to the actual amount of features or

requirements that can be tested at runtime.

It was found in the study that amount of runtime testing that can

be performed on a system is limited by the characteristics of the

system, its components, and the test cases themselves. Though

the evaluation of accuracy of the predicted values and of the

effect of runtime testability on the system’s reliability was not

yet established, but the study was useful from built in test

capability of systems whether object oriented or component,

which surely effects testability.

Singh & Saha (2010) [48]did empirical study to establish

relation between various source code metrics from past

[11][14] and test metrics proposed by [19] and others. The

study was conducted on large Java system Eclipse. The study

showed a strong correlation amongst four test metrics and all

the source code metrics (explained briefly in section 2), which

are listed below:

 Five Size Metrics: LOC, NOA, NOM, WMC and

NSClass.

 Three Cohesion Metrics: LCOM, ICH and TCC

 Three Coupling Metrics: CBO, DAC, MPC, & RFC

 Two Inheritance Metrics: DIT & NOC.

 One Polymorphism Metrics: NMO

 Four Test Metrics : TLOC, TM, TA & NTClass

The study showed that all the observed source code metrics are

highly correlated amongst themselves. Second observation was

that, the test metrics are also correlated. The size metrics are

highly correlated to testing metrics. Increase in Software Size,

Cohesion, Coupling, Inheritance and Polymorphism metrics

values decreases testability due to increase in testing effort.

M. Badri et. al.,2011 [18] study was based on adapted model

MTMOOD proposed by [16], at source code level named as

MTMOOP. They adapted this model to the code level by using

the following source code metrics: NOO [14], DIT and CBO

[11]. Using these three source code metrics they proposed a

new testability estimation model. The model was empirically

verified against various test class metrics of commercial java

systems. The proposed testability metrics was:

 Testability = -0.08*NOO + 1.12*DIT + 0.97*CBO

 Five Test Class Metrics Used: TLOC, TAssert,

TNOO, TRFC, TWMPC

The basic purpose was to establish the relationship between the

MTMOOP model and testability of classes (measured

characteristics of corresponding test classes).The result showed

positive correlation between the two.

 Badri et. al.,2012 [49], [50] further did study, which was

basically to identify the relationship between major object

oriented metrics and unit testing. Along with that they also

studied the impact of various lack of cohesion metrics on

testability at source code level from unit testing point of view

using existing commercial java software’s with junit test class.

The cohesion metrics and other object oriented metrics used for

the study were explained in section 2 already are listed below:

 Three Cohesion metrics: LCOM, LCOM* and LCD

 Seven object oriented metrics: CBO, DIT, NOC,

RFC, WMC, LCOM, LOC

 Two Test class metrics used: TAssert , TLOC

The study performed at two stages actually showed significant

correlation between the observed object oriented metrics and

test class metrics.

 5. CONCLUSION
This paper analysed and surveyed the role of various object

oriented metrics in software testability. The purpose was to

increase the basic understanding of testability evaluation and

quantification techniques for object oriented systems using

various researched metrics based on popular OO metrics suits.

We mainly wanted to survey the existing relevant work related

to metrics for object oriented software testability at various

stages of software development, providing practitioners with an

overall view on what has been done in the field and which are

the available metrics that can help them in making decisions in

the design as well as implementation phases of OO

development. This work will also help researchers to get a more

comprehensive view of the direction that work in OO testability

measurement is taking.

During the study we found out the number of existent measures

that can be applied to object oriented software at initial design

stage is low in comparison with the large number of those

defined for coding or implementation phase. What we found is

that despite of all the efforts and new developments in research

and international standardization during the last two decades,

there is not a consensus yet on the concepts, techniques and

standard methods used in the field of software testability. This,

in turn, may serve as a basis for discussion from where the

software engineering community can start paving the way to

future agreements.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 366

6. REFERENCES

[1] R S Pressman, Software Engineering. McGraw-Hills,

1992.

[2] J. M. Voas and K. W. Miller, “Software Testability :
The New Verification,” pp. 187–196, 1993.

[3] J. Fu, B. Liu, and M. Lu, “Present and future of

software testability analysis,” ICCASM 2010 - 2010

Int. Conf. Comput. Appl. Syst. Model. Proc., vol. 15,
no. Iccasm, 2010.

[4] IEEE, “IEEE Standard Glossary of Software

Engineering Terminology (IEEE Std 610.12-1990),”
1990.

[5] R. V Binder, “Design For Testabity in Object-

Oriented Systems,” Commun. ACM, vol. 37, pp. 87–

100, 1994.

[6] R. S. Freedman, “Testability of software components

-Rewritten,” IEEE Trans. Softw. Eng., vol. 17, no. 6,
pp. 553–564, 1991.

[7] J. M. Voas and K. W. Miller, “Improving the

software development process using testability

research,” Softw. Reliab. Eng. 1992. …, 1992.

[8] D. Esposito, “Design Your Classes For Testbility.”

2008.

[9] M. Ó. Cinnéide, D. Boyle, and I. H. Moghadam,

“Automated refactoring for testability,” Proc. - 4th

IEEE Int. Conf. Softw. Testing, Verif. Valid. Work.
ICSTW 2011, pp. 437–443, 2011.

[10] J. W. Sheppard and M. Kaufman, “Formal

specification of testability metrics in IEEE P1522,”

2001 IEEE Autotestcon Proceedings. IEEE Syst.

Readiness Technol. Conf. (Cat. No.01CH37237), no.
410, pp. 71–82, 2001.

[11] S. R. Chidamber and C. F. Kemerer, “A Metrics

Suite for Object Oriented Design,” IEEE Trans.

Softw. Eng., vol. 20, no. 6, pp. 476–493, 1994.

[12] A. Fernando, “Design Metrics for OO software

system,” ECOOP’95, Quant. Methods Work., 1995.

[13] T. J. McCabe and C. W. Butler, “Design complexity

measurement and testing,” Commun. ACM, vol. 32,
no. 12, pp. 1415–1425, 1989.

[14] B. Henderson and Sellers, Object-Oriented Metric.
New Jersey: Prentice Hall, 1996.

[15] M. Genero, M. Piattini, and C. Calero, “Early

measures for UML class diagrams,” L’Objet 6.4, pp.

489–515, 2000.

[16] R. A. Khan and K. Mustafa, “Metric based testability

model for object oriented design (MTMOOD),” ACM

SIGSOFT Softw. Eng. Notes, vol. 34, no. 2, p. 1,

2009.

[17] S. Henry and D. Kafura, “Software structure metrics

based on information flow,” IEEE Trans. Softw.
Eng., vol. 7, no. 5, pp. 510–518, 1981.

[18] M. Badri, A. Kout, and F. Toure, “An empirical

analysis of a testability model for object-oriented

programs,” ACM SIGSOFT Softw. Eng. Notes, vol.
36, no. 4, p. 1, 2011.

[19] M. Bruntink, “Testability of Object-Oriented

Systems : a Metrics-based Approach,” Universiy Van
Amsterdam, 2003.

[20] S. Jungmayr, “Testability during Design,” pp. 1–2,

2002.

[21] B. Pettichord, “Design for Testability,”
Pettichord.com, pp. 1–28, 2002.

[22] E. Mulo, “Design for testability in software systems,”

2007.

[23] J. E. Payne, R. T. Alexander, and C. D. Hutchinson,

“Design-for-Testability for Object-Oriented
Software,” vol. 7, pp. 34–43, 1997.

[24] Y. Wang, G. King, I. Court, M. Ross, and G. Staples,

“On testable object-oriented programming,” ACM

SIGSOFT Softw. Eng. Notes, vol. 22, no. 4, pp. 84–

90, 1997.

[25] B. Baudry, Y. Le Traon, G. Sunye, and J. M.

Jézéquel, “Towards a ’ Safe ’ Use of Design Patterns

to Improve OO Software Testability,” Softw. Reliab.

Eng. 2001. ISSRE 2001. Proceedings. 12th Int.

Symp., pp. 324–329, 2001.

[26] M. Harman, A. Baresel, D. Binkley, and R. Hierons,

“Testability Transformation: Program

Transformation to Improve Testability,” in Formal
Method and Testing, LNCS, 2011, pp. 320–344.

[27] S. Khatri, “Improving the Testability of Object-

oriented Software during Testing and Debugging

Processes,” Int. J. Comput. Appl., vol. 35, no. 11, pp.
24–35, 2011.

[28] A. González, R. Abreu, H.-G. Gross, and A. J. C. van

Gemund, “An empirical study on the usage of

testability information to fault localization in

software,” in Proceedings of the ACM Symposium on

Applied Computing, 2011, pp. 1398–1403.

[29] M. R. Shaheen and L. Du Bousquet, “Survey of

source code metrics for evaluating testability of

object oriented systems,” ACM Trans. Comput. Log.,
vol. 20, pp. 1–18, 2014.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 5, 359 - 367, 2015, ISSN:- 2319–8656

www.ijcat.com 367

[30] J. M. Voas, “Factors that Affect Software
Testability,” 1994.

[31] B. W. N. Lo and H. Shi, “A preliminary testability

model for object-oriented software,” Proceedings.

1998 Int. Conf. Softw. Eng. Educ. Pract. (Cat.
No.98EX220), pp. 1–8, 1998.

[32] J. McGregor and S. Srinivas, “A measure of testing

effort,” in Proceedings of the Conference on Object-

Oriented Technologies, USENIX Association, 1996,

vol. 9, pp. 129–142.

[33] S. Khalid, S. Zehra, and F. Arif, “Analysis of object

oriented complexity and testability using object

oriented design metrics,” in Proceedings of the 2010

National Software Engineering Conference on -
NSEC ’10, 2010, pp. 1–8.

[34] M. Nazir, R. A. Khan, and K. Mustafa, “A Metrics

Based Model for Understandability Quantification,”
J. Comput., vol. 2, no. 4, pp. 90–94, 2010.

[35] M. Nazir, “An Empirical Validation of Complexity

Quatification Model,” Int. J. Adv. Res. Comput. Sci.
Softw. Eng., vol. 3, no. 1, pp. 444–446, 2013.

[36] M. Nazir and K. Mustafa, “An Empirical Validation

of Testability Estimation Model,” Int. J. Adv. Res.

Comput. Sci. Softw. Eng., vol. 3, no. 9, pp. 1298–
1301, 2013.

[37] M. Nazir, R. A. Khan, and K. Mustafa, “Testability

Estimation Framework,” Int. J. Comput. Appl., vol. 2,
no. 5, pp. 9–14, 2010.

[38] M. Bruntink and A. Vandeursen, “Predicting class

testability using object-oriented metrics,” in

Proceedings - Fourth IEEE International Workshop

on Source Code Analysis and Manipulation, 2004,
pp. 136–145.

[39] J. M. Voas, L. Morell, and K. W. Miller, “Predicting

where faults can hide from testing,” IEEE Softw., vol.
8, pp. 41–48, 1991.

[40] Z. a. Al-Khanjari, M. R. Woodward, and H. A.

Ramadhan, “Critical Analysis of the PIE Testability

Technique,” Softw. Qual. J., vol. 10, no. April 1998,
pp. 331–354, 2002.

[41] J.-C. Lin and S. Lin, “An analytic software testability

model,” in Proceedings of the 11th Asian Test

Symposium, 2002. (ATS ’02)., 2002, pp. 1–6.

[42] J. M. Voas, K. W. Miller, and J. E. Payne, “An

Empirical Comparison of a Dynamic Software

Testability Metric to Static Cyclomatic Complexity,”
1993.

[43] Z. a. Al-Khanjari and M. R. Woodward,

“Investigating the Relationship Between Testability

& The Dynamic Range To Domain Ratio,” AJIS, vol.
11, no. 1, pp. 55–74, 2003.

[44] P.-L. Yeh and J.-C. Lin, “Software testability

measurements derived from data flow analysis,” in

Proceedings of the Second Euromicro Conference on

Software Maintenance and Reengineering, 1998, pp.
1–7.

[45] S. Jungmayr, “Testability measurement and software
dependencies,” 2002.

[46] T. B. Nguyen, M. Delaunay, and C. Robach,

“Testability Analysis of Data-Flow Software,”

Electron. Notes Theor. Comput. Sci., vol. 116, pp.
213–225, 2005.

[47] A. González, É. Piel, and H.-G. Gross, “A model for

the measurement of the runtime testability of

component-based systems,” in IEEE International

Conference on Software Testing, Verification, and

Validation Workshops, ICSTW 2009, 2009, pp. 19–
28.

[48] Y. Singh and A. Saha, “Predicting Testability of

Eclipse: Case Study,” J. Softw. Eng., vol. 4, no. 2, pp.
122–136, 2010.

[49] L. Badri, M. Badri, and F. Toure, “An empirical

analysis of lack of cohesion metrics for predicting

testability of classes,” Int. J. Softw. Eng. its Appl.,
vol. 5, no. 2, pp. 69–86, 2011.

[50] M. Badri, “Empirical Analysis of Object-Oriented

Design Metrics for Predicting Unit Testing Effort of

Classes,” J. Softw. Eng. Appl., vol. 05, no. July, pp.

513–526, 2012.

http://www.ijcat.com/

