
International Journal of Computer Applications Technology and Research
Volume 4– Issue 7, 529 - 534, 2015, ISSN:- 2319–8656

www.ijcat.com 529

A Review of Data Access Optimization Techniques
in a Distributed Database Management System

Sadiq Mobolaji Abubakar
Department of Computer

Science
University of Port Harcourt

Nigeria

Anyama Oscar Uzoma
Department of Computer
Science University of Port

Harcourt
Nigeria

Adamade Peter Simon
Department of Computer

Science
University of Port Harcourt

Nigeria

Abstract: In today's computing world, accessing and managing data has become one of the most significant elements. Applications as
varied as weather satellite feedback to military operation details employ huge databases that store graphics images, texts and other
forms of data. The main concern in maintaining this information is to access them in an efficient manner. Database optimization
techniques have been derived to address this issue that may otherwise limit the performance of a database to an extent of vulnerability.
We therefore discuss the aspects of performance optimization related to data access in distributed databases. We further looked at the
effect of these optimization techniques.

Keywords: Data; Distributed database; Performance; TSQLANN

1. INTRODUCTION
It’s a known fact that the amount of data that enterprises are

storing and managing is growing rapidly. Industry estimates
indicate that data volume is doubling every 2-3 years. The
rapid growth of data presents frightening challenges for IT,
both in cost and for our study, performance. Although the cost
of storage keeps declining, fast-growing data volumes make
storage one of the costliest elements of most IT budgets. In
addition, the accelerating growth of data makes it difficult to
meet performance requirements while staying within budget.

When a database based application performs slowly, there is a
90% probability that, the data access routines of that
application are not written in the best possible way or
optimized, In this paper we will discuss Data access
performance optimization in transactional SQL Server
databases and will also consider the performance of a very
large database with and without our suggested optimization.
Though the optimization techniques are suggested for
transactional SQL Server databases but most of the techniques
are roughly the same for other database platforms. In oracle
12c, Automatic Data Optimization (ADO) automatically
moves and compresses data according to user-defined policies
based on the information collected by Heat Map, [1].

1.1 Performance Optimization Techniques
It is worth mentioning here that all forms of optimization
actually enhances the performance of the database and below
are some of the techniques employed.

Indexing in the table column:

We need to create primary key in every table of the database.
When we create a primary key in a table, a clustered index
tree is created and all data pages containing the table rows are
physically sorted in the file system according to their primary
key values. Each data page contains rows which are also
sorted within the data page according to their primary key
values. [2], pointed that each time any row from the table is
asked for; the database server finds the corresponding data
page first using the clustered index tree and then finds the
desired row within the data page that contains the primary key
value.

The intermediate nodes contain range of values and direct the
SQL engine where to go while searching for a specific index
value in the tree starting from the root node. The leaf nodes
are the nodes which contain the actual index values. If this is a
clustered index tree, the leaf nodes are the physical data
pages. If this is a non-clustered index tree, the leaf nodes
contain index values along with clustered index keys (Which
the database engine uses to find the corresponding row in the
clustered index tree). Usually, finding a desired value in the
index tree and jumping to the actual row from there takes an
extremely small amount of time for the database engine. So,
indexing generally improves the data retrieval operations
which a performance enhancement strategy, [3].

Movement from application into the database server of SQL
Codes:

Moving the SQLs from application and implementing these
using stored procedures/ Views/ Functions/ Triggers will
enable us to eliminate any duplicate SQLs in our application.
This will also ensure reusability of our TSQL codes.
Implementing all TSQLs using the database objects will
enable us to analyze the TSQLs more easily to find possible
inefficient codes that are responsible for slow performance.
Also, this will let us manage our TSQL codes from a central
point, [4].

Doing this will also enable us to re-factor our TSQL codes to
take advantage of some advanced indexing techniques. Also,
this will help us to write more “Set based” SQLs along with
eliminating any “Procedural” SQLs that we might have
already written in our application. Despite the fact that
indexing will let us troubleshoot the performance problems in
our application in a quick time, following this step might not
give us a real performance boost instantly. But, this will
mainly enable us to perform other subsequent optimization
steps and apply different other techniques easily to further
optimize our data access routines.

1.2 Covering Index:
If we know that our application will be performing the same
query over and over on the same table, we should consider
creating a covering index on the table. A covering index,

International Journal of Computer Applications Technology and Research
Volume 4– Issue 7, 529 - 534, 2015, ISSN:- 2319–8656

www.ijcat.com 530

which is a form of a composite index, includes all of the
columns referenced in SELECT, JOIN, and WHERE clauses
of a query. Because of this, the index contains the data we are
looking for and SQL Server doesn't have to look up the actual
data in the table, reducing logical and/or physical I/O, and
boosting performance.

1.3 File Organization in groups and files in
the database:
When an SQL Server database is created, the database server
internally creates a number of files in the file system. Every
database related object that gets created later in the database
are actually being stored inside these files. An SQL Server
database has the following three kinds of files, [5];

mdf file: This is the primary data file. There could be only one
primary data file for each database. All system objects resides
in the primary data file and if a secondary data file is not
created, all user objects (User created database objects) also
takes place in the primary data file.

ndf file: These are the secondary data files, which are
optional. These files also contain user created objects.

ldf file: These are the Transaction log files. These files could
be one or many in number. It contains transaction logs.
Database files are logically grouped for better performance
and improvement of administration on large databases. When
a new SQL Server database is created, the primary file group
is created and the primary data file is included in the primary
file group. Also, the primary group is marked as the default
group. As a result, every newly created user objects are
automatically placed inside the primary file group (More
specifically, inside the files in the primary file group). If our
database has a tendency to grow larger (Say, over 1000 MB)
in size, we can (and should) do a little tweaking in the file/file
group organizations in the database to enhance the database
performance. Here are some of the best practices we can
follow:

The primary file group must be totally separate and should be
left to have only system objects and no user defined object
should be created on this primary file group. Also, the primary
file group should not be set as the default file group.
Separating the system objects from other user objects will
increase performance and enhance ability to access tables in
the case of serious data failures, [8].

If there are N physical disk drives available in the system,
then we should try to create N files per file group and put each
one in a separate disk. This will allow Distributing disk I/O
loads over multiple disks and will increase performance.

For frequently accessed tables containing indexes we should
put the tables and the indexes in separate file groups. This
would enable to read the index and table data faster.

We should put the transaction log file on a different physical
disk that is not used by the data files. The logging operation
(Transaction log writing operation) is more write-intensive,
and hence, it is important to have the log on the disk that has
good I/O performance.

Inefficient TSQLs identification and re-factoring best
practices application:

Knowing the best practices is not enough at all. The most
important part is we have to make sure that we follow the best
practices while writing TSQLs. Some TSQL Best practices
are described here, [6]:

We should not use “SELECT *” in SQL Query because then
unnecessary columns may get fetched that adds expense to the
data retrieval time and the Database engine cannot utilize the
benefit of “Covered Index” hence, query performs slowly.

We should not use COUNT() aggregate in a sub query to do
an existence check because when we use COUNT(), SQL
Server does not know that we are doing an existence check. It
counts all matching values, either by doing a table scan or by
scanning the smallest nonclustered index. But if we use
EXISTS, SQL Server knows you are doing an existence
check. When it finds the first matching value, it returns TRUE
and stops looking.

We should try to avoid joining between two types of columns
because when joining between two columns of different data
types, one of the columns must be converted to the type of the
other. The column whose type is lower is the one that is
converted. If we are joining tables with incompatible types,
one of them can use an index, but the query optimizer cannot
choose an index on the column that it converts.

We should try to avoid the use of Temporary Tables unless
really required. Rather, try to use Table variables. Almost in
99% case, Table variables reside in memory; hence, it is a lot
faster. But, Temporary tables reside in “TempDb” database.
So, operating on Temporary table requires inter db
communication and hence, slower.

We should try to avoid deadlock. We should always access
tables in the same order in all our stored procedures and
triggers consistently and keep our transactions as short as
possible. Also should touch as few data as possible during a
transaction and should never, ever wait for user input in the
middle of a transaction.

We should write TSQLs using “Set based approach” rather
than using “Procedural approach”. The database engine is
optimized for set based SQLs. Hence, procedural approach
(Use of Cursor, or, UDF to process rows in a result set) should
be avoided when large result set has to be processed. By using
inline sub queries to replace User Defined Functions and by
using correlated sub queries to replace Cursor based codes we
can get rid of “Procedural SQLs”

We should use Full Text Search for searching textual data
instead of LIKE search as Full text search always outperforms
the LIKE search. Full text search will enable us to implement
complex search criteria that can’t be implemented using the
LIKE search such as searching on a single word or phrase,
searching on a word or phrase close to another word or
phrase, or searching on synonymous forms of a specific word.

We should try to use “UNION” instead of “OR” in the query.
If distinguished result is not required we better use “UNION
ALL” because “UNION ALL” is faster than “UNION” as it
does not have to sort the result set to find out the distinguished
values. Here we worked on millions of data with some
complex query and got the results in seconds.

1.4 Partitioning the big fat tables
Table partitioning means nothing but splitting a large table
into multiple smaller tables so that, queries has to scan less
amount data while retrieving. That is “Divide and conquer”.
When we have a large (In fact, very large, possibly having
more than millions of rows) table in our database we should
consider portioning this table to improve performance, [7].

Suppose we have a table containing 10 millions of rows, let’s
assume that, the table has an auto-increment primary key field

International Journal of Computer Applications Technology and Research
Volume 4– Issue 7, 529 - 534, 2015, ISSN:- 2319–8656

www.ijcat.com 531

(Say, ID). So, we can divide the table’s data into 10 separate
portioning tables where each partition will contain 1 million
rows and the partition will be based upon the value of the ID
field. That is, First partition will contain those rows which
have a primary key value in the range 1-1000000, and, Second
partition will contain those rows which have a primary key
value in the range 1000001-2000000 and so on.

2. RELATED WORK
Review of most literature on database optimization pointed to
the fact that optimization is always considered in relation to
databases but performance is always relegated to the
background or not mentioned at all.

[9], emphasized more on optimization techniques without
mention of performance.

[7], in Optimization Techniques of Queries with Expensive
Methods, studied queries that contain time consuming
methods.

He carefully defined a query cost framework that incorporates
selectivity and cost estimates for selection. A lot of other
details on queries were dealt with but without mention of how
performance is further enhanced by optimizing the queries.

In The Principles of Query Optimization in Relational
Database Management Systems, Johann Christopher Freytag
describe a wide variety of different optimization algorithms
for query languages.

3. INFORMATION LIFECYCLE (ILM)
Information Lifecycle Management (ILM) is intended to
address challenges of accessing data by storing it in different
storage and compression tiers, according to the enterprise’s
current business and performance needs. This approach offers
the possibility of optimizing storage for both cost savings and
maximum performance.

In Oracle Database 12c, two new ILM-related features have
been added to the Advanced Compression Option. Heat Map
automatically tracks modification and query timestamps at the
row and segment levels, providing detailed insights into how
data is being accessed. Automatic Data Optimization (ADO)
automatically moves and compresses data according to user-
defined policies based on the information collected by Heat
Map.

Heat Map and ADO make it easy to use existing innovations
in Oracle Database Compression and Partitioning
technologies, which help reduce the cost of managing large
amounts of data, while also improving application and
database performance. Together these capabilities help to
implement first-class Information Lifecycle Management
(ILM) in Oracle Database.

3.1 Storage Tiering and Compression
Tiering
An enterprise (or even a single application) does not access all
its data equally: the most critical or frequently accessed data
will need the best available performance and availability. To
provide this best access quality to all the data would be costly,
inefficient, and is often architecturally impossible. Instead, IT
organizations implement storage tiering, by deploying their
data on different tiers of storage so that less-accessed
(“colder”) data are migrated away from the costliest and
fastest storage – still available, but at slower speeds, whose
effect on the overall application performance is minimal, due
to the rarity of accessing those “colder” data. Colder data may

also be compressed in storage. We use the term Information
Lifecycle Management (ILM)1 to name the managing of data
from creation/acquisition to archival or deletion.

Fig1: Partitioning, Advanced Compression and Hybrid
Columnar Compression

Figure 2 shows the most active data located on a high
performance tier and the less active data/historical data on
lower-cost tiers. In this scenario, the business is meeting all of
its performance, reliability, and security requirements, but at a
significantly lower cost than in a configuration where all data
is located on high performance (tier 1) storage. The
illustration shows that compression can be applied to the less
active and historical storage tiers, further improving the cost
savings while also improving performance for queries that
scan the less active data.

In addition to storage tiering, it is also possible to use different
types of compression to suit different access patterns. For
example, colder data may be compressed more at the cost of
slower access.

Oracle, even with the right storage and compression
capabilities, deciding which data should reside where and
when to migrate data from one tier to another remains a
serious challenge. Oracle Database 12c addresses this
challenge with functionality that automatically discovers data
access patterns – Heat Map – and uses Heat Map information
to automatically optimize data organization – Automatic Data
Optimization. The rest of this document explains the Oracle
Database technologies that enable storage and compression
tiering, and how to use them to support Information Lifecycle
Management.

3.2 Heat Map: Fine-grained Data Usage
Tracking
Heat Map is a new feature in Oracle Database 12c that
automatically tracks usage information at the row and
segment levels.2 Data modification times are tracked at the
row level and aggregated to the block level, and modification
times, full table scan times, and index lookup times are
tracked at the segment level. Heat Map gives you a detailed
view of how your data is being accessed, and how access
patterns are changing over time. Programmatic access to Heat
Map data is available through a set of PL/SQL table functions,
as well as through data dictionary views as in figure 3 below

International Journal of Computer Applications Technology and Research
Volume 4– Issue 7, 529 - 534, 2015, ISSN:- 2319–8656

www.ijcat.com 532

Fig 2. Heat Map data for access patterns to a partitioned table

Database rows are stored in database blocks, which are
grouped in extents. A segment is a set of extents that contains
all the data for a logical storage structure within a table space,
i.e. a table or partition. The colour code is as detailed below
for clarity;

GREY WHITE SKY BLUE

Part017 Part018 Part016

Part015 Part020 Part010

Part019 Part013 Part012

Part006 Part014 Part011

Part008 Part002

Part009 Part005

Part003 Part004

Part007 Part001

3.3 Automatic Data Optimization
Automatic Data Optimization (ADO) allows you to create
policies for data compression (Smart Compression) and data
movement, to implement storage and compression tiering.
Smart Compression refers to the ability to utilize Heat Map
information to associate compression policies, and
compression levels, with actual data usage. Oracle Database
periodically evaluates ADO policies, and uses the information
collected by Heat Map to determine when to move and / or
compress data. All ADO operations are executed
automatically and in the background, without user
intervention.

ADO policies can be specified at the segment or row level for
tables and table partitions. Policies will be evaluated and
executed automatically in the background during the
maintenance window. ADO policies can also be evaluated and
executed anytime by a DBA, manually or via a script.

ADO policies specify what conditions (of data access) will
initiate an ADO operation – such as no access, or no
modification, or creation time – and when the policy will take
effect – for example, after n days or months or years.
Conditions in ADO policies are not limited to Heat Map data:

you can also create custom conditions using PL/SQL
functions, extending the flexibility of ADO to use your own
data and logic to determine when to move or compress data.

3.4 Automatic Data Optimization
Examples
The following examples assume there is an orders table
containing sales orders, and the table is range partitioned by
order date.

In the first example, a segment-level ADO policy is created to
automatically compress partitions using Advanced Row
Compression after there have been no modifications for 30
days. This will automatically reduce storage used by older
sales data, as well as improve performance of queries that
scan through large numbers of rows in the older partitions of
the table.

ALTER TABLE orders ILM ADD POLICY ROW STORE
COMPRESS ADVANCED SEGMENT AFTER 30 DAYS
OF NO MODIFICATION;

Sometimes it is necessary to load data at the highest possible
speed, which requires creating a table without any
compression enabled. It would be useful to later compress the
data in the table, on a more granular basis than entire
partitions. With ADO, you can create a row-level ADO policy
to automatically compress blocks in the table (using
Advanced Row Compression) after no row in a given block
has been modified for at least 3 days. This is an example of
OLTP background compression, in which rows are inserted
uncompressed, and then later moved to Advanced Row
Compression on a per-block basis. Note that this policy uses
the ROW keyword instead of the SEGMENT keyword.

ALTER TABLE orders ILM ADD POLICY ROW STORE
COMPRESS ADVANCED ROW AFTER 3 DAYS OF NO
MODIFICATION;

With the above policy in place, Oracle Database will evaluate
blocks in the orders table during the maintenance window,
and any blocks that qualify will be compressed in place,
freeing up space for new rows as they are inserted. This
allows you to achieve the highest possible performance for
data loads, but also get the storage savings and performance
benefits of compression without having to wait for an entire
partition to be ready for compression.

In addition to Smart Compression, ADO policy actions
include data movement to other storage tiers, including lower
cost storage tiers or storage tiers with other compression
capabilities such as Oracle’ s Hybrid Columnar Compression
(HCC).

In the following example, a tablespace-level ADO policy
automatically moves partitions to a different tablespace when
the current tablespace runs low on space. The “tier to”
keywords indicate that data will be moved to a new tablespace
when the current tablespace becomes too full. The user has
control over the threshold that triggers storage tiering actions
with PL/SQL-based ILM admin functions. The
“low_cost_store” tablespace was created on a lower cost
storage tier. Note that it is possible to add a custom condition
to tiering policies, allowing you to trigger movement of data
based on conditions other than how full the tablespace is.

Part018

Part017

Part019

Part016

Part015

Part020

Part01
3

Part01
4

Part01
0

Part0
12

Part0
11

Part0
08

Part
002

Part
009

Part
004

Part
005

Pa
rt
00
3Pa
rt
00
7Pa
rt
00
1Pa
rt
00
6

International Journal of Computer Applications Technology and Research
Volume 4– Issue 7, 529 - 534, 2015, ISSN:- 2319–8656

www.ijcat.com 533

ALTER TABLE orders ILM ADD POLICY tier to
low_cost_store;

In the following example, a segment-level ADO policy is
created to automatically compress partitions using Hybrid
Columnar Compression after there have been no
modifications for 30 days. This makes sense when HCC is
available, and when the data will no longer be updated, but
will continue to be queried; moving to HCC will save a lot of
storage AND give a big boost to query performance.

ALTER TABLE orders ILM ADD POLICY COLUMN
STORE COMPRESS FOR QUERY HIGH SEGMENT
AFTER 30 DAYS OF NO MODIFICATION;

Another option when moving a segment to another tablespace
is to set the target tablespace to READ ONLY after the object
is moved. This is beneficial for historical data and during
backups, since subsequent RMAN full database backups will
skip READ ONLY tablespaces.

3.5 Automatic Data Optimization for
OLTP.
The previous examples show individual ADO policies that
implement one action –compression tiering (Smart
Compression) or storage tiering. The following example
shows how to combing multiple ADO policies for an OLTP
application.

In OLTP applications, you should use Advanced Compression
for the most active tables/partitions, to ensure that newly
added or updated data will be compressed as DML operations
are performed against the active tables/partitions.

For cold or historic data within the OLTP tables, use either
Warehouse or Archive Hybrid Columnar Compression. This
ensures that data which is infrequently or never changed is
compressed to the highest levels – compression ratios of 6x to
15x are typical with Hybrid Columnar Compression, whereas
2x to 4x compression ratios are typical with Advanced Row
Compression.

To implement this approach with ADO, use the following
policies:

Figure 4. Advanced Row Compression, Hybrid Columnar
Compression, and tiering.

ALTER TABLE orders ILM ADD POLICY COLUMN
STORE COMPRESS FOR QUERY HIGH SEGMENT
AFTER 30 DAYS OF NO MODIFICATION;

ALTER TABLE orders ILM ADD POLICY COLUMN
STORE COMPRESS FOR ARCHIVE HIGH SEGMENT
AFTER 90 DAYS OF NO MODIFICATION;

ALTER TABLE orders ILM ADD POLICY tier to
low_cost_store;

In this example of Smart Compression and storage tiering, we
assume that the orders table is defined with Advanced Row
Compression enabled, so that rows are compressed at that
level when they are first inserted. Oracle Database will
automatically evaluate the ADO policies to determine when
each partition is eligible to be moved to a higher compression
level, and when each partition is eligible to be moved to a
lower cost storage tier. As discussed earlier, storage tiering is
primarily triggered when the current tablespace becomes too

full, but can be customized to occur based on user-defined
conditions.

The capabilities of Heat Map and ADO in Oracle Database
12c make it easy for DBAs to implement ILM for OLTP
applications, and enable the use of HCC with OLTP data.
With HCC, DBAs can significantly reduce the amount of
storage space used by OLTP data, while increasing the
performance of reports and analytics.

3.5.1 Automatic Data Optimization and Data
Warehousing
In data warehousing applications on Exadata or on Oracle
Storage that supports HCC, Warehouse Compression should
be used for heavily queried tables/partitions. For cold or
historic data within the data warehousing application, using
Archive Compression ensures that data which is infrequently
accessed is compressed to the highest level – compression
ratios of 15x to 50x are typical with Archive Compression.

Fig5. Partitioning and Hybrid Columnar
Compression.

To implement this approach with ADO, use the following
statements:

ALTER TABLE orders ILM ADD POLICY COLUMN
STORE COMPRESS FOR ARCHIVE HIGH SEGMENT
AFTER 90 DAYS OF NO MODIFICATION;

ALTER TABLE orders ILM ADD POLICY tier to
lessactivetbs;

In this example, we assume that the orders table is defined
with Warehouse Compression enabled, so that rows are
compressed at that level when they are first inserted. Oracle
Database will automatically evaluate the ADO policies to
determine when each partition is eligible to be moved to a
higher compression level, and when each partition is eligible
to be moved to a different tablespace. As with the previous
Smart Compression example for OLTP, the automatic
capabilities of ADO in Oracle Database 12c make it simple
and easy for DBAs to implement ILM for Data Warehousing,
and significantly reduce the amount of time and effort DBAs
need to spend optimizing storage usage and storage
performance.

International Journal of Computer Applications Technology and Research
Volume 4– Issue 7, 529 - 534, 2015, ISSN:- 2319–8656

www.ijcat.com 534

4. CONCLUSION
Information Lifecycle Management (ILM) should enable
organizations to understand how their data are accessed over
time, and manage the data accordingly. However, most ILM
solutions for databases lack two key capabilities – automatic
classification of data, and automatic data compression and
movement across storage tiers.

The Heat Map and Automatic Data Optimization features of
Oracle Database 12c support comprehensive and automated
ILM solutions that minimize costs while maximizing
performance. In combination with the comprehensive
compression features in Oracle Database 12c, Oracle
Database 12c provides an ideal platform for implementing
ILM.

Furthermore in this paper we have suggested very few other
performance optimization techniques in transactional (OLTP)
SQL Server databases. Optimization is a “Mindset”, rather
than an automatic occurrence. In order to optimize access in
our database performance, first we have to believe that,
optimization is possible. Then we need to give our best effort
and apply knowledge and best practices to optimize. The most
important part is, we have to try to prevent any possible
performance issue that may take place later, by applying our
knowledge before or along with our development activity,
rather than trying to recover after the problem occurs.

5. REFERENCES

[1] Churcher, C., 2007. Beginning Database Design:
From Novice to Professional, Apress, ISBN-10:
1590597699, ISBN-13:978-1590597699.

[2] Date, C. J., 2003. An Introduction to Database
Systems", Addison Wesley, ISBN-10: 0321197844,
ISBN-13: 978-0321197849.

[3] Date, C. J., 2000. Foundation for Future Database
Systems: The Third Manifesto", Addison-Wesley
Professional, ISBN-10:0201709287, ISBN-13: 978-
0201709285.

[3] Codd, E. F., 2002. The relational model for database
management: version 2", Addison-Wesley Longman
Publishing Co., Inc. Boston, MA, USA, ISBN:0-
201-14192-2.

[4] Joseph M. H., 2000. Optimization Techniques of
Queries with Expensive Methods.

[5] Freytag J. C., 1989. The Principles of Query
Optimization in Relational Database Management
Systems.

[6] Jernigan, K. Christman, G. C. Pedregal. Automatic
Data Optimiization with Oracle. Database 12c,
2013.

[7] Hernandez, M. J. Database Design for Mere Mortals.
A Hands-On Guide to Relational Database Design,
Addison-Wesley Professional, ISBN-10:
0201694719, 1996.

[8] Asagba P. O. Distributed Processing and Distributed
Database System. Journal of Applied. Science
Environmental Management. Vol. 18 (2) 249-253,
2014.

[9] Zhiyuan Chen et al. Query Optimization in
Compressed Database Systems. International
Journal of Computer Science and Network Security
(IJCSNS), VOL.10 No.8, 2010.

