
International Journal of Computer Applications Technology and Research

Volume 4– Issue 8, 623 - 628, 2015, ISSN: 2319–8656

www.ijcat.com 623

Internal Architecture of Junction Based Router

Tulikapriya Sinha

Symbiosis Institute of

Technology,

Symbiosis International

University,

Pune, India

Shraddha Patil
Symbiosis Institute of

Technology,

Symbiosis International

University,

Pune, India

Smita Khole

Symbiosis Institute of

Technology,

Symbiosis International

University,

Pune, India

Abstract: The router is an important component in NoC as it provides routes for the communication between different cores. A router

consists of registers, switches, arbitration and control logic that collectively implement the routing and flow control function required

to buffer and forward flits to their destination. This router will be implemented on FPGA using Spartan-3 kit. This paper describes the

internal blocks of a junction based router and there operation.

Keywords: Router, NoC, FPGA, Verilog, arbiter.

1. INTRODUCTION

1.1Network on Chip (NoC)

Network on chip or network on a chip is a communication

subsystem on an integrated circuit (commonly called a

"chip"), typically between IP cores in a System on a

Chip (SoC). Network-on-Chip (NoC) architectures provide a

good way of realizing efficient interconnections and largely

alleviate the limitations of bus-based solutions. NoCs can

span synchronous and asynchronous clock domains or use un-

clocked asynchronous logic. NoC technology

applies networking theory and methods to on-

conventional bus and crossbar interconnections. NoC

improves the scalability of SoCs (System on Chips), and the

power efficiency of complex SoCs compared to other

designs.[1]

Traditionally, ICs have been designed with dedicated point-to-

point connections, with one wire dedicated to each signal. For

large designs, in particular, this has several limitations from

a physical design viewpoint. The wires occupy most of the

area on the chip, interconnects dominate both performance

and dynamic power dissipation, as signal propagation in wires

across the chip requires multiple clock cycles. NoC links can

reduce the complexity of designing wires for predictable

speed, power, noise, reliability, etc., thanks to their regular,

well controlled structure. From a system design viewpoint,

with the advent of multi-core processor systems, a network is

a natural architectural choice. A NoC can provide separation

between computation and communication, support modularity

and IP reuse via standard interfaces,

handle synchronization issues, serve as a platform for system

test, and, hence, increase engineering productivity. The whole

router design can be implemented on a FPGA (Field

programmable gate arrays).

There are three main components of NoC.

 Resource

 Resource Network Interface (RNI)

 Router

Figure 1 Example of Network on Chip platform[1]

Figure 2: NoC Components [1]

A Core is connected to the router through RNI. RNI is the

interface between router and the core. Core sends packet to

the router through RNI, and from router it is send to the other

routers or core depending on the destination.

http://www.ijcat.com/
http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Semiconductor_intellectual_property_core
http://en.wikipedia.org/wiki/System_on_a_chip
http://en.wikipedia.org/wiki/System_on_a_chip
http://en.wikipedia.org/wiki/Asynchronous_circuit
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Crossbar_switch
http://en.wikipedia.org/wiki/Integrated_circuit_design
http://en.wikipedia.org/wiki/CMOS
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Multi-core_(computing)
http://en.wikipedia.org/wiki/Computation
http://en.wikipedia.org/wiki/Communication
http://en.wikipedia.org/wiki/IP_address
http://en.wikipedia.org/wiki/Interface_(computer_science)
http://en.wikipedia.org/wiki/Synchronization
http://en.wikipedia.org/wiki/Platform_(computing)
http://en.wikipedia.org/wiki/System_test
http://en.wikipedia.org/wiki/System_test
http://en.wikipedia.org/wiki/Productivity_(economics)

International Journal of Computer Applications Technology and Research

Volume 4– Issue 8, 623 - 628, 2015, ISSN: 2319–8656

www.ijcat.com 624

Benefits of NoC Architecture:

 Independent implementation and optimization of

layers.

 Simplified customization per application.

 Supports multiple topologies and options for

different parts of the network.

 Simplified feature development, interface

interoperability, and scalability.

1.2 Design for Junction based routing

Routing in NoC can be classified in many ways. Router

design depends on the routing protocol and routing algorithm

used. [1]

Two kinds of routing algorithms are source routing and

distributed routing.

In source routing, path to be followed by the flit is locked

from source to destination. The complete route information is

available in head flit. Here, router takes decision by looking at

the head flit. Path tables are stored inside the resource

network interface (RNI). These path tables contain the

complete path information for a specific destination in the

network. Path information is calculated by applying routing

algorithms.

In distributed routing, routing decisions are taken inside every

router on the path and hence is a complex design due to extra

hardware. There is no information about the path inside the

header packet.

Compared to distributed routing, source routing has speed

advantage because the routing information is stored in the

packet itself. But source routing leads to overhead to store

complete path information in the header of each packet.

An algorithm called Junction based source routing was

developed to overcome these flaws. Junction Based Source

Routing limits the required path information to be stored in

every packet to a small number of bits which correspond to

only a few hops as shown in figure 3. There are temporary

destinations called junctions to cover the large distance such

that sub-paths are always smaller than or equal to a maximum

hop count. If a packet needs to go through a junction, the

source just appends path information from source to the

junction. On reaching the junction, the packet picks up path

information to reach the destination from this junction.

The design of a NoC router depends on various aspects of

NoC architecture and the performance requirement. The

Junction Router contains path information in tables to reach

any destination. The table can implement either in the router

itself or in the resource network interface (RNI) or in the

resource (core). There are three distinct cases for a packet to

reach a junction:

i. If the destination of the packet is the resource connected to

the Junction itself, then it should be routed to the resource

through RNI.

ii. If the destination is not very far and the packet header has

enough information to reach the destination, then the router

forwards the packet just by looking at the relevant field in the

header.

iii. If the destination is far, then the junction will be the

intermediate destination. This will be clear from the relevant

field in the header. In this case, Junction modifies the path

information in the packet header for onward journey to the

destination, if possible otherwise to another junction as

intermediate destination. [1]

Fig.3 Junction Based Network on Chip based system [1]

The router architecture is a typical Network on Chip router.

Design of a router depends on the routing algorithm used.

Here junction based resource router has been described. This

router architecture supports both kinds of routers which mean

that the router can be used as a normal router as well as a

junction router. Main components in the router architecture

are as follow:

i. Arbiter and Control

ii. Crossbar

iii. Input Handler [1].

Figure 4: Main components of Router

Figure 5: Block Diagram depicting all blocks of Junction

based Router

Input Handler

(gets 34 bit data

from user)

Crossbar (provides

the output to the

user)

Arbiter and

Control

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 8, 623 - 628, 2015, ISSN: 2319–8656

www.ijcat.com 625

1.3 Flit Format:

Figure 6: Flit Format.[1]

RB- Resource Bit.

JB- Junction Bit.

Dest. Address- Destination Address

The above diagram represents the Flit Format or the

distribution of bits of the 34 bit data.

Flit type:

00- Head Flit.

01- Body Flit.

10- End Flit.

11- Full Flit.

Head Flit:
When the Flit type is “00”, its Head Flit. This flit is initially

sent to lock a particular path for transmission of data. This

contains the destination address, direction bits, etc.

Body Flit:
When the Flit type is “01”, its Body Flit. This flit follows the

path reserved by the Head flit. It contains the main data which

needs to be transmitted.

End Flit:
When the Flit type is”10”, its End flit. When this flit is sent, it

means that the data has been sent and no more data needs to

be transmitted. This indicates end of transmission of data.

Full Flit:
When the Flit type is “11”, its full flit. When this flit is sent,

the path which was locked for transmission of data is

unlocked for next data to be transmitted.

2. DESCRIPTION OF COMPONENTS

PRESENT IN ROUTER:

2.1 Input Handler:
This block receives the data and stores it temporarily in a

stack present. By using a stack of width 34bits and depth

4bits. The outputs are sent to different parts of Crossbar and

Arbiter .This block consists of 3 subparts:

i. Input Port

ii. Header Modifier

iii. Junction and Resource Control.

2.1.1. Input Port
 The main function of this block is to store the

incoming flits and send them to header modifier

block.

 For the storing the data temporarily, stack is used,

which operates on ‘First In First Out’ (FIFO)

concept.

 There are many temporary registers used to control

the stack

 As the data is sent into the router, it becomes the

data for this block, signal is generated and the data

is written into the stack.

 Stack consists of a depth of 4, which means it can

save maximum of 4 data at a time. When the stack is

full, other data go into the waiting state for stack to

empty at least one row.

2.1.2 Header Modifier

 When the block receives request signal from the

input port, data is sent from the port.

 When the data is received, flits are checked first. If

the flits are Head flit or Full flit, then the RB

(Resource Bit) is checked.

 If Resource Bit=1, then wait for request signal from

junction to the Header modifier. When the signal is

received, along with this the data from Junction and

Resource control which is of 34bits is also received.

 First 4 bits of Header Modifier is sent to the Arbiter,

these become the inputs of Arbiter block, which is

discussed later.

 The 4 bits of Header Modifier are divided in

following manner:

 2 bits for Flit type, first two bits.

 2 bits for direction i.e. from where the

data is coming, next two bits.

 The entire 34bit data is sent to the Crossbar as its

input from this block.

 If RB=0, then concatenation operation of data is

performed. Here the path information is modified,

first two bits are sent behind the last 2 bits of path

information. This modified data is then sent to the

crossbar as 34bits data and 4 bit data is sent to the

Arbiter and control block.

 If the Flit type is body flit or end flit, data in the

modifier is directly sent to the crossbar and the 4 bit

data is sent to the Arbiter and control block.

2.1.3 Junction and Resource Control

The main function of this block is to receive flits from input

port, send destination address to Path Table Arbiter

Component and receive new path information , To send flit

with new path information to Header Modifier.

 When the block receives request signal from the

input port, data is sent from the port.

 As soon as the data is received , flit type is checked.

If the flit type is Head or Full type , then it checks

for Resource Bit condition.

 If resource bit is 1, then it loads the data in

destination address which goes from junction to

path table arbiter else it goes into waiting state till it

receives the address with resource bit as 1 .

 Further, if junction and resource control block is

getting signal from path table arbiter then this block

gets new path information from path table.

 Junction and resource control concatenates the new

path information such that the first two bits are sent

behind the last 2 bits of path information.

 If the flits are Body or End type, then it goes into

waiting state till it receives Head or Full as flit type.

2.2 Arbiter and control

2.2.1 Path Table Arbiter

 The main function of this block is to handle all the

new path information requests and forward them to

the path table, where the new path information is

generated.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 8, 623 - 628, 2015, ISSN: 2319–8656

www.ijcat.com 626

 Firstly, there is a request signal from Junction and

Resource Control block. Run an FSM to set priority

if data is coming from more than one direction:

o North -------- First

o South ------- Second

o West -------- Third

o East --------- Fourth

o Resource -- Last

Resource is given lowest priority to avoid entrance

of a new flit when present data is being processed.

 As the request is accepted to be serviced, the

destination address is forwarded to the path table to

obtain new path information. Simultaneously, a read

signal is generated and forwarded to the path table.

 The block remains in waiting state until a signal is

obtained from the path table.

 As soon as this signal is obtained, signal is

generated and sent to Junction Resource Control

block.

 After this, the block enters the initial state of

scanning requests.

2.2.2 Path Table

 Main function of this block is to forward the new

path information to the Junction and Resource

Controller.

 For this purpose, there is a new path information

created in the initial steps, input of destination

address from the Path Table Arbiter, payload from

the Input Port and an FSM is run to decide the

direction bits i.e. 001 for north, 010 for south, 011

for west and 100 for east.

 The above three are concatenated and stored in a

temporary register of 17 bits length.

 This data is then written into a stack. Its operation is

similar to that of stack used in Input Port.

 At positive transition of clock, the path info is

concatenated and written in the fifo,

 As soon as a read signal is received, the data is sent

to the Junction and Resource Control block. After

this, a signal is sent to the Path Table Arbiter

indicating the completion of the task.

2.2.3 Arbiter using Round RobinAlgorithm:

Arbiter & Control is considered as the Brain of the router

because of its following functions described below:

 handles request for output direction.

 takes decision for output direction by decoding the

Head flit.

 locking and unlocking the path.

 checks the space in the buffer of next router.

 To send signals for selecting the output direction.

 To send signal to the next router or resource to save

data in buffer. [1]

Arbiter and Control makes use of Round robin Algorithm to

assign priority to directions/ routing of the data. There are 5

directions which needs to be considered while making this

router, North, South, West, East and Resource.

Figure7: FSM for using Round Robin Algorithm[2]

North- 1000

West- 0100

South- 0010

East- 0001

While using this algorithm assume a 3*3 mesh, resource will

be the 5th router or the centre router, as discussed diagram

above. Hence resource direction has not been taken into

considerations. By using round Robin algorithm each state

checks for all signals from all directions and then passes the

signal according to their priority.

Highest priority is given to north, then west, south and east.

The direction into consideration is anti-clockwise.

Arbiter works in following way:

 When it receives the signal from Header Modifier

which is a 4 bit data, the first 2 bits are used for

checking Flit type.

 If the Flit type is head, it means that

arbiter needs to assign a direction for the

flow of data i.e. lock the path for data.

 If the flit type is body or end, data follows

the path assigned/ the path which is

locked.

 If the flit type is full, it means that the

data transmission is over and the path

should be unlocked.

 It checks from which direction Arbiter has received

the signal and accordingly assigns the next state.

Directions are assigned and used to avoid

congestion of Data.

 When the direction the data is in the present state

then the path is locked. Locking of path takes place

only for flit type head.

 Along with this select is also assigned some value

of 3bits. These values are given to crossbar for

deciding the direction through which the output is

expected.

For example if the Present State is ‘North’ then

select= 001 and select line for north=1, others are

assigned as 0.

 This cycle continues till the data does not reach

destination.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 8, 623 - 628, 2015, ISSN: 2319–8656

www.ijcat.com 627

Figure 8: Simulation Result of Arbiter. Flit type is Head,

North is given higher priority hence select=001 and, signal for

north goes high(p_n) and select line for north (sel_n) goes

high.

2.3 Crossbar

The main function of the crossbar is to send the data from one

path to the assigned path.

 Select lines are assigned for choosing the direction

or path of data flow.

 There are 5 select lines for 5 directions which are

controlled by Arbiter.

 When the select line is known then data is collected

from the Header Modifier and sent out through the

same line.

 For example, if select=001, which means North

state and in this state if west select line is high, then

data is collected from modifier and sent as data out

from west direction.

Figure 9 : Simulation report of Crossbar

2.4 Interfacing of the blocks

Verilog coding is usually done in segments and later a number

of smaller segments is integrated together to give a common

output. The process of interfacing involves the following

mentioned steps:

 Writing the codes individually.

 Creating a top module and calling the above

programs as instances in the top module.

 Instantiating a program is calling the code is a

defined format, that is, module ‘name’

‘instance’(ports).

 After all the codes are instantiated and added in the

top module group and a common simulation is

checked.

2.5 Conclusions

This work presented the implementation of router which is

divided into small blocks input port, header modifier ,

junction and resource control , path table, path table arbiter,

crossbar and arbiter and control. The blocks were

implemented through Verilog codes using ISE XILINX

version 14.6 software. The simulation facilitates clear

understanding of the functionality of each block in the router

for a network on chip.

Six blocks have been interfaced satisfactorily which includes

input port, header modifier, junction and resource control,

path table arbiter, arbiter and crossbar.

Interfacing of the 7th block, Path Table is in the process.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 4– Issue 8, 623 - 628, 2015, ISSN: 2319–8656

www.ijcat.com 628

Figure 10: Simulation Report of 6 blocks(Input port, Header Modifier, Junction and Resource Control, Path Table Arbiter,

Arbiter and Crossbar) have been interfaced together. The inputs are given to data_in pin in any direction required and the

output is obtained from data_out in the same direction as the input given.

3. ACKNOWLEDGMENTS
We would like to thank our mentor Ms. Priti Shahne for

her continuous support and giving us the opportunity to

work on this project.

4. REFERENCES
1. Muhammad Awais Aslam,” Router Architecture for

Junction Based source routing: design and FPGA

Prototyping”, Tekniska Hogskolan, 2011.

2. Jer-Min Jou and Yun-Lung Lee,” An Optimal Round-

Robin Arbiter Design for NoC”, Journal of Information

Science and Engineering,2010.

3. Tobias Bjerregaard and Shankar Mahadevan,” A

Survey of Research and Practices of Network-on-Chip”,

ACM computing surveys, 2006.

4. Ville Rantala, Teijo Lehtonen and Juha Plosila,

“Network on Chip Routing Algorithms”, TUCS technical

Report, 2006.

5. Stephen L. Chamberlin,” Design and implementation

of Router using Xilinx FPGA”, Massachusetts Institute

of Technology.

6. Sunil, Shaik Khadar Sharif, 3praveen Vanaparthy,

“Fpga Implementation of Five Port Router Network”,

International Journal of Engineering Development and

Research.

7. Adrijean Adriahantenaina, Hervé Charlery, Alain

Greiner, Laurent Mortiez, Cesar Albenes Zeferino,

“SPIN: a Scalable, Packet Switched, On-chip Micro-

network”.

8. Samir Palnitkar, “Verilog- HDL, a guide to Digital and

Synthesis”.

9. J. Duato, S. Yalamanchili, and L. Ni, Interconnection

Networks: An Engineering Approach. IEEE Computer

Society Press, 1997.

http://www.ijcat.com/

