
International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 15-19, 2016, ISSN:2319–8656

www.ijcat.com 15

Presenting a New Ant Colony Optimization Algorithm

(ACO) for Efficient Job Scheduling in Grid Environment

Firoozeh Ghazipour

Department of Computer

Science and Research Branch

Islamic Azad University, Kish, Iran

Seyyed Javad Mirabedini

Department of Computer

Islamic Azad University

Central Tehran Branch

Ali Harounabadi

Department of Computer

Islamic Azad University

Central Tehran Branch

Abstract: Grid computing utilizes the distributed heterogeneous resources in order to support complicated computing problems. Job

scheduling in computing grid is a very important problem. To utilize grids efficiently, we need a good job scheduling algorithm to assign

jobs to resources in grids.

In the natural environment, the ants have a tremendous ability to team up to find an optimal path to food resources. An ant algorithm

simulates the behavior of ants. In this paper, a new Ant Colony Optimization (ACO) algorithm is proposed for job scheduling in the

Grid environment. The main contribution of this paper is to minimize the makespan of a given set of jobs. Compared with the other job

scheduling algorithms, the proposed algorithm can outperform them according to the experimental results.

Keywords: jobs, scheduling, Grid environment, Ant Colony Optimization (ACO), makespan.

1. INTRODUCTION
Current scientific problems are very complex and need huge

computing power and storage space. The past technologies such

as distributed or parallel computing are unsuitable for current

scientific problems with large amounts of data. Processing and

storing massive volumes of data may take a very long time.

Grid computing [1] is a new paradigm for solving those complex

problems. In grids, we need to consider the conditions such as

network status and resources status. If the network or resources

are unstable, jobs would be failed or the total computation time

would be very large. So we need an efficient job scheduling

algorithm for these problems in the grid environment.

The purpose of job scheduling is to balance the entire system load

while completing all the jobs at hand as soon as possible

according to the environment status. Because the environment

status may change frequently, traditional job scheduling

algorithm may not be suitable for the dynamic environment in

grids.

In grids, users may face hundreds of thousands of computers to

utilize. It is impossible for anyone to manually assign jobs to

computing resources in grids. Therefore, grid job scheduling is a

very important issue in grid computing. Because of its

importance, importance, many job scheduling algorithms for

grids [2-5] have been proposed.

A good schedule would adjust its scheduling strategy according

to the changing status of the entire environment and the types of

jobs. Therefore, a dynamic algorithm in job scheduling such as

Ant Colony Optimization (ACO) [6, 7] is appropriate for grids.

ACO is a heuristic algorithm with efficient local search for

combinatorial problems. ACO imitates the behavior of real ant

colonies in nature to search for food and to connect to each other

by pheromone laid on paths traveled. Many researches use ACO

to solve NP-hard problems such as traveling salesman problem

[8], graph coloring problem [9], vehicle routing problem [10],

and so on.

This paper applies the ACO algorithm to job scheduling

problems in Grid computing. We assume each job is an ant and

the algorithm sends the ants to search for resources. We also

modify the global and local pheromone update functions in ACO

algorithm in order to balance the load for each grid resource.

Finally, we compare the proposed ACO algorithm with Min-Min

[11] and Max-Min [12]. According to the experimental results,

we can find out that our proposed ACO algorithm is capable of

achieving system load balance and decreasing the makespan

better than other job scheduling algorithms. The rest of the paper

is organized as follows. Section 2 explains the background of

ACO algorithm and scheduling problem. Section 3 introduces

some related work. Section 4 details the proposed ACO

algorithm for job scheduling. Section 5 indicates the

experimental results and finally, Section 6 concludes the paper.

2. BACKGROUND

2.1 Characteristics of ACO
Dorigo introduced the ant algorithm [18], which is a new

heuristic algorithm and based on the behavior of real ants. When

the blind insects, such as ants look for food, the moving ant lays

some pheromone on the ground, thus marking the path it

followed by a trail of this substance. While an isolated ant moves

essentially at random, an ant encountering a previously laid trail

can detect it and decide with high probability to follow it, thus

reinforcing the trail with its own pheromone. The collective

behavior that emerges means where the more are the ants

following a trail, the more that trail becomes attractive for being

followed. The process is thus characterized by a positive

feedback loop, where the probability with which an ant chooses

an optimum path increases with the number of ants that chose the

same path in the preceding steps. Above observations inspired a

new type of algorithm called ant algorithms or ant systems,

which is presented by Dorigo and Gambardella [19]. The ACO

algorithm uses a colony of artificial ants that behave as co-

operative agents in a mathematical space were they are allowed

to search and reinforce pathways (solutions) in order to find the

optimal ones. Solution that satisfies the constraints is feasible.

All ACO algorithms adopt specific algorithmic scheme which is

shown in Figure 1.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 15-19, 2016, ISSN:2319–8656

www.ijcat.com 16

Figure 1. All ACO Algorithm scheme.

We utilize the characteristics of ant algorithms above mentioned

to schedule job. We can carry on new job scheduling by

experience depend on the result in the past job scheduling. It is

very helpful for being within the grid environment.

2.2 Scheduling Problem Formulation
The grid environment consists of a large number of resources and

jobs which should be assigned to the resources. The jobs cannot

divide into smaller parts and after assigning a job to a resource,

its executing cannot be stopped.

The main challenge in scheduling problems is time. Finding a

solution in these problems tries to decrease the time of executing

all jobs. In this case, the most popular criterion is makespan and

our purpose in this paper is reducing the makespan with the aid

of ACO.

In grid, we have a set of resources (Resources = {m1, m2, …,

mm}) and a set of jobs (Jobs = {t1, t2, …, tn}) which should be

assigned to the resources and executed on them. There is a matrix

ETC [Resources] [Jobs] (Figure 2) that represents the time of

executing (EX) ti on mj.

Figure 2. Matrix ETC

Suppose that Eij (i ϵ Jobs , j ϵ Resources) is the time of job i on resource

j and Wj (j ϵ Resources) is the time of executing jobs which are

assigned to resource j before. Then equation (1) shows the time

of executing all jobs which are allocated to mj.

∑ (𝐸𝑖𝑗 + 𝑊𝑗)∀ 𝐽𝑜𝑏 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗 (1)

We can find the value of makespan according to equation (2):

makespan = max {∑ (𝐸𝑖𝑗 +∀ 𝑗𝑜𝑏 𝑖𝑠 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑡𝑜 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑗

 𝑊𝑗)} , 𝑖 ∈ 𝐽𝑜𝑏𝑠 𝑎𝑛𝑑 𝑗 ∈ 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 (2)

With another look on these definitions, we can calculate the

completion time of resources with equation (3):

𝐶𝑇𝑖𝑗 = 𝐸𝑖𝑗 + 𝑊𝑗 (3)

There is a Scheduling List for all resources that shows the jobs

which are assigned to each resource. Each resource has a

completion time and according to equation (4), the value of

makespan is equal to the maximum completion time.

makespan = 𝑚𝑎𝑥 (𝑖,𝑗) ∈ 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔 𝐿𝑖𝑠𝑡 (𝐶𝑇𝑖𝑗) (4)

The makespan is a criterion to evaluate the grid system and the

main purpose of a scheduler is to minimize this criterion.

3. RELATED WORK
Jobs submitted to a grid computing system need to be processed

by the available resources.

Best resources are categorized as optimal resources. In a research

by [13], Ant Colony Optimization (ACO) has been used as an

effective algorithm in solving the scheduling problem in grid

computing.

ACO has been applied in solving many problems in scheduling

such as Job Shop Problem, Open Shop Problem, Permutation

Flow Shop Problem, Single Machine Total Tardiness Problem,

Single Machine Total Weighted Tardiness Problem, Resource

Constraints Project Scheduling Problem, Group Shop Problem

and Single Machine Total Tardiness Problem with Sequence

Dependent Setup Times [6]. A recent approach of ACO

researches in the use of ACO for scheduling job in grid

computing [14]. ACO algorithm has been used in grid computing

because it is easily adapted to solve both static and dynamic

combinatorial optimization problems and job scheduling in grid

computing is an example.

Balanced job assignment based on ant algorithm for computing

grids called BACO was proposed by [15]. The research aims to

minimize the computation time of job executing in Taiwan

UniGrid environment which focused on load balancing factors of

each resource. By considering the resource status and the size of

the given job, BACO algorithm chooses optimal resources to

process the submitted jobs by applying the local and global

pheromone update technique to balance the system load. Local

pheromone update function updates the status of the selected

resource after job has been assigned and the job scheduler

depends on the newest information of the selected resource for

the next job submission. Global pheromone update function

updates the status of each resource for all jobs after the

completion of the jobs. By using these two update techniques, the

job scheduler will get the newest information of all resources for

the next job submission. From the experimental result, BACO is

capable of balancing the entire system load regardless of the size

of the jobs. However, BACO was only tested in Taiwan UniGrid

environment.

An ant colony optimization for dynamic job scheduling in grid

environment was proposed by [16] which aimed to minimize the

total job tardiness time. The initial pheromone value of each

resource is based on expected execution time and actual

execution time of each job. The process to update the pheromone

value on each resource is based on local update and global update

rules as in ACS. In that study, ACO algorithm performed the best

when compared to First Come First Serve, Minimal Tardiness

Earliest Due Date and Minimal Tardiness Earliest Release Date

techniques.

The study to improved ant algorithm for job scheduling in grid

computing which is based on the basic idea of ACO was

proposed by [17]. The pheromone update function in this

research is performed by adding encouragement, punishment

coefficient and load balancing factor. The initial pheromone

value of each resource is based on its status where job is assigned

to the resource with the maximum pheromone value. The

strength of pheromone of each resource will be updated after

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 15-19, 2016, ISSN:2319–8656

www.ijcat.com 17

completion of the job. The encouragement and punishment and

local balancing factor coefficient are defined by users and are

used to update pheromone values of resources. If a resource

completed a job successfully, more pheromone will be added by

the encouragement coefficient in order to be selected for the next

job execution. If a resource failed to complete a job, it will be

punished by adding less pheromone value. The load of each

resource is taken into account and the balancing factor is also

applied to change the pheromone value of each resource.

4. THE PROPOSED ALGORITHM
Real ants foraging for food lay down quantities of pheromone

(chemical substance) marking the path that they follow. An

isolated ant moves essentially at random but an ant encountering

a previously laid pheromone will detect it and decide to follow it

with high probability and thereby reinforce it with a further

quantity of pheromone. The repetition of the above mechanism

represents the auto catalytic behavior of real ant colony where

the more the ants follow a trail, the more attractive that trail

becomes [13].

The ACO algorithm uses a colony of artificial ants that behave

as co-operative agents in a mathematical space were they are

allowed to search and reinforce pathways (solutions) in order to

find the optimal ones. Solution that satisfies the constraints is

feasible. After initialization of the pheromone trails, ants

construct feasible solutions, starting from random nodes, and

then the pheromone trails are updated. At each step ants compute

a set of feasible moves and select the best one (according to some

probabilistic rules) to carry out the rest of the tour. The transition

probability is based on the heuristic information and pheromone

trail level of the move. The higher value of the pheromone and

the heuristic information, the more profitable it is to select this

move and resume the search.

4.1 Initialize Pheromone and Probability List
At the beginning, a population of ants is generated and they start

their own search from one of the resource (the ants assigned to

resources randomly). The initial Pheromone and Probability List

is set to a small positive value t0 and then ants update this value

after completing the construction stage. In the nature there is not

any pheromone on the ground at the beginning, or the initial

pheromone in the nature is t0 = 0. If in ACO algorithm the initial

Pheromone is zero, then the probability to choose the next state

will be zero and the search process will stop from the beginning.

Thus it is important to set the initial Pheromone and Probability

List to a positive value. The value of t0 is calculated with

equation (5):

𝑡0 =
1

𝐽𝑜𝑏𝑠 × 𝑅𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠
 (5)

4.2 Local Pheromone Update
Moving from a state to another means that a job is assigned to a

resource. After choosing next node by ants, the pheromone trail

should be updated. This update is local pheromone update and

the equation (6) shows how it happens:

Pheromone𝑖𝑗
𝑘 = ((1 − 𝜀) × (Pheromone𝑖𝑗

𝑘)) + (𝜀 × 𝜃) (6)

In local pheromone update equation, θ is a coefficient which

obtains its value from equation (7):

𝜃 =
𝑡0

𝐶𝑇𝑖𝑗(𝐴𝑛𝑡𝑘)
 (7)

The less value of CTij, the more value of θ. In fact, if the value of

θ is larger, the more pheromone value will be deposited.

Therefore, the chance of choosing resource j in next assigning is

more than other resources.

4.3 Probability List Update
In addition to update Pheromone, the Probability List should be

updated, too. The ants choose the next states based on heuristic

information, equation (8):

Heuristic 𝑖𝑗
𝑘 =

1

(𝑊𝑗) × (𝐸𝑇𝐶𝑖𝑗)
 (8)

With the heuristic information, we can update the Probability

List, equation (9):

Probability List𝑖𝑗
𝑘 = (Pheromone𝑖𝑗

𝑘) × (Heuristic 𝑖𝑗
𝑘)𝛽 (9)

4.4 Global Pheromone Update
In the nature, some pheromone value on the trails evaporates. At

the end of each iteration in the proposed algorithm, when all ants

finish the search process, the all ants’ value of pheromone will

be reduced by evaporation rule, equation (10):

Pheromone𝑖𝑗
𝑘 = (Pheromone𝑖𝑗

𝑘) × (1 − 𝜌) (10)

When all ants construct a solution, it means that the ants moves

from the nest to the food resource and finish the search process

(all the jobs are assigned to the resources in grid). In the proposed

algorithm, the best solution and the best ant which construct that

solution will be found. The global pheromone update is just for

the ant that finds the best solution. This ant is the best ant of

iteration. At this stage, the value of Pheromone should be

updated, equation (11):

Pheromone𝑖𝑗
𝐵𝑒𝑠𝑡 𝐴𝑛𝑡 = Pheromone𝑖𝑗

𝐵𝑒𝑠𝑡 𝐴𝑛𝑡 + ((𝜌) × (∆)) +

𝜀

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐵𝑒𝑠𝑡 𝐴𝑛𝑡)
 (11)

In global pheromone update, ρ is the elitism coefficient and Δ is

calculated by equation (12):

∆=
1

𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝐵𝑒𝑠𝑡 𝐴𝑛𝑡)
 (12)

The pseudo-code of the proposed algorithm is presented in

Figure 3.

5. EXPERIMENTAL RESULTS
The results of the evaluation of the proposed algorithm with the

two algorithms of Min-Min and Max-Min [11] for scheduling

independent jobs in grid environment are presented in this

section.

All experiments have been done on a system running Windows

7 Professional operating system with configuration of 2 GHz

CPU and 2GB of RAM.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 15-19, 2016, ISSN:2319–8656

www.ijcat.com 18

Figure 3. Pseudo-code of the proposed algorithm.

Table 1 indicates the amounts of parameters which are used in

executing the proposed algorithm.

Table 1. Parameters of the proposed algorithm.

A real heterogeneous computational system such as grid is a

combination of hardware and software elements and a

comparison of the scheduling techniques is often complicated in

this environment. To solve this problem, Braun et al. [20],

proposed a simulation model. They defined a grid environment

which consists of a set of resources and a set of independent jobs.

The scheduling algorithms aim to minimize the makespan. All

scheduling algorithms need to know the completion time of each

job on each resource. The model consists of 12 different kinds of

examples: u_c_hihi, u_c_hilo, u_c_lohi, u_c_lolo, u_i_hihi,

u_i_hilo, u_i_lohi, u_i_lolo, u_s_hihi, u_s_hilo, u_s_lohi,

u_s_lolo; that any of them can be shown in a matrix. This model

uses a matrix ETC which illustrates the estimated times of

completion (Figure 2).

In this paper, the same model is used to evaluate the proposed

algorithm and the two scheduling algorithms, Min-Min and Max-

Min. After executing these three algorithms, different amounts

of makespan are obtained which are shown in Table 2.

Table 2. Comparison of three algorithms’ makespans.

The Results of experiment are shown as a chart in Figure 4, 5, 6

and 7.

Figure 4. Algorithms’ makespans based on u-*-hihi.

Figure 5. Algorithms’ makespans based on u-*-hilo.

Figure 6. Algorithms’ makespans based on u-*-lohi.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5–Issue 1, 15-19, 2016, ISSN:2319–8656

www.ijcat.com 19

Figure 7. Algorithms’ makespans based on u-*-lolo.

The two scheduling algorithms, Min-Min and Max-Min, are two

best algorithms among other scheduling algorithms but the

results of the experiment (Table 2) indicate that the proposed

algorithm has higher performance and lower amount of

makespan than the other two scheduling algorithms.

6. CONCLUSIONS
In this paper, a new ACO algorithm is proposed to choose

suitable resources to execute jobs according to the completion

times of resources and the size of given job in the grid

environment. The local and global pheromone update functions

are changed to do balance the system load. Local pheromone

update function updates the status of the selected resource after

jobs assignment. Global pheromone update function updates the

status of scheduling list of best solution. The purpose of this

paper is to minimize the makespan and the experimental results

show that the proposed algorithm is capable of minimizing the

makespan better than other two scheduling algorithms.

7. REFERENCES
[1] Reed, D. A., “Grids, the TeraGrid and beyond”, IEEE, Vol.

36, Issue 1, 2003.

[2] Chang, R. S., Chang, J. S., Lin, P. S., “An ant algorithm for

balanced job scheduling in grids”, Future Generation Computer

Systems, Vol. 25, pp. 20-27, 2009.

[3] Ku-Mahamud, K. R., Nasir, H. J. A., “Ant Colony Algorithm

for Job Scheduling in Grid Computing”, Fourth Asia

International Conference on Mathematical/Analytical Modeling

and Computer Simulation, pp. 40-45, 2010.

[4] Chang, R. S., Chang, J. S., Lin, S. Y., “Job scheduling and

data replication on data grids”, Future Generation Computer

Systems, Vol. 23, Issue 7, pp. 846-860, 2007.

[5] Gao, Y., Rong, H., Huang, J. Z., “Adaptive grid job

scheduling with genetic algorithms”, Future Generation

Computer Systems, Vol. 21, Issue 1, pp. 151-161, 2005.

[6] Dorigo, M., Stutzle, T., “Ant Colony Optimization”, A

Bradford Book, 2004.

[7] Dorigo, M., Blum, C., “Ant colony optimization theory: A

survey”, Theoretical Computer Science, Vol. 344, Issue 2, pp.

243-278, 2005.

[8] Dorigo, M., Gambardella, L. M., “Ant colony system: a

cooperative learning approach to the traveling salesman

problem”, IEEE Transaction on Evolutionary Computation, Vol.

1, Issue 1, pp. 53-66, 1997.

[9] Salari, E., Eshghi, K., “An ACO algorithm for graph coloring

problem”, ICSC Congress on Computational Intelligence

Methods and Applications, 2005.

[10] Zhang, X., Tang, L., “CT-ACO-hybridizing ant colony

optimization with cyclic transfer search for the vehicle routing

problem”, ICSC Congress on Computational Intelligence

Methods and Applications, 2005.

[11] Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D., Freund,

R. F., “Dynamic matching and scheduling of a class of

independent tasks onto heterogeneous computing systems”,

Journal of Parallel and Distributed Computing, pp. 107-131,

1999.

[12] Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.,

“Heuristics for scheduling parameter sweep applications in grid

environments”, Heterogeneous Computing Workshop, pp. 349-

363, 2000.

[13] Fidanova, S., Durchova, M., “Ant Algorithm for Grid

Scheduling Problem”, Springer, pp. 405-412, 2006.

[14] Pavani, G. S., Waldman, H., “Grid Resource Management

by means of Ant Colony Optimization”, 3rd International

Conference on Broadband Communications, Networks and

Systems, pp. 1-9, 2006.

[15] Chang, R. S., Chang, J. S., Lin, P. S., “Balanced Job

Assignment Based on Ant Algorithm for Computing Grids”, The

2nd IEEE Asia-Pacific Service Computing Conference, pp. 291-

295, 2007.

[16] Lorpunmanee, S., Sap, M. N., Abdullah, A. H., Chompoo-

inwai, C., “An Ant Colony Optimization for Dynamic Job

Scheduling in Grid Environment”, Proceedings of World

Academy of Science, Engineering and Technology, Vol. 23, pp.

314-321, 2007.

[17] Yan, H., Shen, X. Q., Li, X., Wu, M. H., “An improved ant

algorithm for job scheduling in grid computing”, Proceedings of

the fourth International Conference on Machine Learning and

Cybernetics, Vol. 5, pp. 2957-2961, 2005.

[18] Dorigo, M., Maniezzo, V., Colorni, A., “Ant system:

optimization by a colony of cooperating agents”, IEEE

Transactions on Systems, Man and Cybernetics - Part B, Vol. 26,

No. 1, pp. 1-13, 1996.

[19] Dorigo, M., Gambardella, L. M., “Ant colonies for the

traveling salesman problem”, Biosystems, Vol. 43, Issue 2, pp.

73-81, 1997.

[20] Braun, T. D., Siegel, H. J., Beck, N., “A Comparison of

Eleven static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing systems”,

Journal of Parallel and Distributed Computing, Vol. 61, pp. 810-

837, 2001.

http://www.ijcat.com/

