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Abstract – Usage of Self-Organizing Map (SOM) for clustering vertices of any given graph. Simultaneously its input is observed and 

worked in terms of weight matrix, learning rate and final resultant matrix, which helps to form a cluster. The purpose of this paper is to 

introduce a procedure of SOM for clustering and observed impact corresponding to varied weight class for simple graph or vector 

matrix using Euclidean distance. A simple vector matrix problem is solved by using 2, 3 & 4 weight class matrix. By adopting a 

different weight matrix class with same vector matrix has presented a clustering and visualization.  

Keywords – self-organizing map, topology, visualization, clustering, Euclidean distance. 

INTRODUCTION 
Self-Organizing Map (SOM) was developed by Professor 

Kohonen’s. It is also called as Kohonen’s SOM (Self Organizing 

map).SOM works on unsupervised learning which means training 

without any guidance or teacher. SOM learns on its own from 

beginning till the end and it is unsupervised competitive learning. 

The self-organizing Map is a special type of neural network that 

accepts N-dimensional input vector and maps them, in which 

neurons are organized in a hexagonal or rectangular grid and find 

the feature space with its neighboring neuron. 

The main objective of this learning algorithm is that the network 

forms the feature map which takes input data and maps them into 1 

or 2-dimensional feature space. The main feature of SOM is that it 

contains only two layers, the input layer, and an output layer. There 

is no hidden layer in SOM so it is different from other learning 

algorithms like feedforward back prorogation learning algorithm.   

LITERATURE REVIEW 
Authors [1] have observed that “On the use of Self-Organizing Map 

for clustering and visualization” of the number of output units. In 

this paper, SOMs can be used for clustering and visualization 

separately or simultaneously. There are various types of application 

used to compare SOM with other statistical approaches.  

 

Authors [2] have focused “Clustering of the Self-Organizing Map” 

with different approaches. Authors used hierarchical agglomerative 

clustering and partitive clustering using K-means. By using SOM, 

they produced the prototypes and then performed direct clustering 

of the data and to reduce the computation time. 

 

Authors [3] have observed that “Clustering Application of SOM 

neural network in clustering” is an unsupervised neural network for 

two-dimensional maps. It finds the similar data that will map to 

nearby locations. In this paper, authors introduce an experiment to 

analyze the SOM in clustering. 

 

Authors [4] have emphasized that “The use of Three-dimensional 

Self-Organizing Maps for Visualizing Clusters in Geo-referenced 

Data” that maps 3D SOM data for visualizing clusters in geo-

referenced data. This paper provides a comparison of a 2D or 3D 

SOM for a problem and increases the clustering quality of 3D 

SOMs. 

 

In this paper Section 1 gives a review of the problem definition. 

Section 1.1 presents the architecture of self-organizing map. 

Section 1.2 describes the methodology of self-organizing map 

Section 1.3 shows Pseudo code section 1.4 describe how to 

train SOM  and Section 1.5 shows  research methodology. 

Section 2 it describes the computational analysis of self-

organizing map. Section 2.1 describes the computational result 

analysis of self-organizing. Section 2.1.1 gives the result based 

on 2 weight class matrix. Section 2.1.2 describes the result 

based on 3 weight class matrix. Section 2.1.3 describes the 

result based on 4 weight class matrix. Section 3 – Describe the 

result analysis that is available after the large calculation. 

1. PROBLEM DEFINITION 

The Self-Organizing Map (SOM) is an artificial neural network 

that is very effective for clustering via visualization. It is very 

difficult to visualize SOM for the vector data. In this paper, we 

show that the vertices of SOM can be used successfully for 

visualizing clusters using Euclidean distance method of the 

neural network. We try to find the small distance between 

nearest cluster. In this paper, we use the vector matrix and 2, 3 

and 4 weight matrix classes to find the winning neuron or the 

resultant output layer. Based on this we can find nearest cluster 

group and observed the changes. 

 

1.1 Architecture of SOM 

 

 

 

 

 

 

Each input node of the input layer is associated with weight wij 

that is adjusted during training. The SOM maintains 
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topological relationships between inputs in such a way that the 

neighboring inputs in the input layer are associated with 

neighboring neurons.  

1.2. Pseudo Code 

^ Declare n, m and Set its value by 5 and 1 

 

^ Set learning rate by default 0.5 

 

^ Declare input vector matrix 

 

^ Declare weight class matrix 

 

^ Repeat the procedure until m is less than or equal to n 

Repeat the procedure for 1 to 5 for n  

   Check when m equal to 1  

Store first input matrix  

Check when m equal to 2 

Store second input matrix 

Check when m equal to 3 

Store third input matrix 

Check when m equal to 4 

Store fourth input matrix 

Otherwise 

Store fifth input matrix 

Stop 

^ Repeat the procedure for 1 to 5 

 

Sum    Sum + square root (weight matrix value – input matrix 

value) 

 

Sum = Square root of(sum); 

  

^ Find min sum  

 

^ Update that weight matrix (new) = weight matrix (old) + learning 

rate *(input matrix – weight matrix)  

  

^ learning rate  learning rate -0.1 

 

^ Stop  

 

1.3. Training SOM 

There are two types of operation in self-organizing map 

1. Training Phase  

In the Training phase, the output node is found with 

the help of Euclidean distance between the input 

vector and the weight class connecting to that input 

and finds the minimum between them. This node is 

called the winner node and weight class. Now the 

weight of the neighboring output node will be 

updated so that the new weight is closer to the current 

input vector. This procedure is repeated for all input 

vectors and weight till they become constant. After 

one iteration or epoch of input vector, the learning 

rate gets changed and is multiplied by 0.5 at every 

epoch. In this way after applying the input vector, 

only the winner unit is determined. 

 

This function is selected for the size of weight change 

in the distance of the neuron. This distance is 

calculated with the topology defined on the output 

layer of the network. 

 

2. Clustering Phase 

After training the SOM should give visualization 

where similar data are clustered within close 

proximity, and having smooth transitions or overlaps 

where clusters change.   

 

1.4. Research Methodology 
Exploratory research is one type of research method which is 

based on the theoretical idea. Researcher gets an idea from 

currently available theory and tries to elaborate or understand 

more about that topic. Sometimes it is the initial groundwork 

for this type of research. Exploratory research used in two 

ways; either a new topic or a new idea. A new topic is finding 

from the currently existing theory. New idea can come to 

understand exiting theory and set new perception according to 

that.  

2. Computational Analysis of SOM 

The Experiment is derived by using following directed graph 

 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

Figure 1: Directed graph 

There is 5 node or input in the directed graph. They are 

connected with each other. The representations of 

Adjacency matrix (5 X 5) are as follows. 

 

 

 

 

X

X

X

X

X

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656 

www.ijcat.com  204 
 

 

 

 

 

 

Weight matrix for input is 4X5 which means there are 4 classes for 

5 input nodes. The weight initializes between 0 to 1 only. 

 

To evaluate the performance of the proposed algorithm, we tested 

5 input vector and 3 different classes. The SOM algorithm was 

tested 5 input vector and 3 different classes. The SOM algorithm 

was executed using DOTNET code. The source and input 

parameters for these problems are shown. 

Initial learning rate ɳ = 0.5  

After initialize learning rate and weight matrix calculate 

Euclidean distance with the following formula. 

D (j) = sqrt(∑ n (Xi -  wij) 2) 
                              

i=1
 

Where n is no of the input node. To find the distance between 

input vector subtract the input vector with weight matrix 

value and find the square root of that. After this calculates 

the summation of all input values for D1.value of j varies 

according to the number of vectors of weight matrix. 

In this way repeat the same procedure for all the classes of 

weight matrix. Then compare all distances and find the 

minimum distance between them. That minimum distance is 

the Best Matching Unit (BMU) or winning neuron. 

The distance of that weight matrix class is BMU or winning 

neuron. Now update the weight matrix on the winning 

cluster with the following formula. 

Wij (new) = Wij (old) + ɳ* [xi – wij (old)] 

Then get the new or updated weight matrix. Follow the same 

procedure for all input vectors. After repeating the same 

procedure for all input vectors, one epoch is over. The 

learning rate will change after one epoch. Learning rate will 

decrease with the following formula. 

ɳ = ɳ *0.5 

The default learning rate is 0.5.Now repeat the same for 

another epoch till updated weight matrix does not get a 

similar result. 

 

 

 

 

2.1. Computational Result Analysis of SOM 

A summary of all SOM parameters used for solving the 

problems is given in the table. 

2.1.1 Input vector 5X5 and weight class 2 
Class means a set or category of things having some property 

or attribute in common and differentiated from others by 

kind, type, or quality. 

 

Weight Matrix for class 2 

           

Wij   =  

 

Epoch 1- when ɳ=0.5 

 

In this example first take input vector v1 & weight of w1j 

(where j = 1 to 5) and find the distance1. Perform similar 

procedure for same input vector v1 & another weight class 

w2j (where j =1 to 5) and find distance 2.Now check 

minimum between Dist1 and Dist2. When we get minimum 

distance then update weight matrix as per the winning 

neuron. If dist1 is minimum then w1j will change otherwise 

w2j class. Now the similar procedure is followed for the 

entire input vector v2, v3, v4 and v5 and the updated weight 

matrix is found.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 X1 X2 X3 X4 X5 

X1 0 1 0 0 0 

X2 0 0 0 0 1 

X3 0 0 0 1 1 

X4 1 0 0 0 0 

X5 0 0 0 0 0 

 w11 w12 w13 w14 w15 

w1j .2 .4 .6 .8 1 

w2j .9 .7 .5 .3 .1 

 w21 w22 w23 w24 w25 
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Table 1: Result of weight matrix class 2 with learning rate 0.5 

  

 
When one epoch is over so decrease the learning rate with 0.1.Then again same procedure is followed for the input vector v1 to v5. 

  

Table 2: Result of weight matrix class 2 with learning rate 0.4(Epoch 2) 

 Input vector 
Winning 

Neuron 
Dist1 Dist2 Minimum 

Updated weight 

∆w1 ∆w2 

Iteration 1 v1 =[0,1,0,0,0] B 2.32 0.75 0.75 No Change [.218,.528,.038,.023,.007] 

Iteration 2 v2 =[0,0,0,0,1] A 0.52 1.31 .052 [.03,.06,.09,.42,1] No change 

Iteration 3 v3=[0,0,0,1,1] A 0.34 2.26 0.34 [.018,.036,.054,.65,1] No change 

Iteration 4 v4=[1,0,0,0,0] B 2.39 0.89 0.89 No change [.531,.317,.023,.014,.004] 

Iteration 5 v5=[0,0,0,0,0] B 1.52 0.72 0.72 No change [0.318,.19,.014,.014,.003] 

After repeating the same procedure with decreasing learning rates, the result will be found zero (ɳ=0) after 6 epoch and the values of all 

the input vectors will be same in class1 and class 2. 

 

Table 3: Result of weight matrix class 2 with learning rate 0.0(Epoch 6) 

 Input vector 
Winning 

Neuron 
Dist1 Dist2 Minimum 

Updated weight 

∆w1 ∆w2 

Iteration 1 v1 =[0,1,0,0,0] B 2.32 0.66 0.66 No Change [.326,.253,.002,.001,0] 

Iteration 2 v2 =[0,0,0,0,1] A 0.34 1.61 0.34 [.005,.009,.014,.583,1] No change 

Iteration 3 v3=[0,0,0,1,1] A 0.17 2.16 0.17 [.005,.009,.014,.583,1] No change 

Iteration 4 v4=[1,0,0,0,0] B 2.33 0.51 0.51 No change [.326,.253,.002,.001,0] 

Iteration 5 v5=[0,0,0,0,0] B 1.34 0.17 0.17 No change [.326,.253,.002,.001,0] 

Map Decision for 5X5 input matrix and 2 classes 

Here A and B based on weight class. In this example there are 2 weight classes so that in each epoch for v1 B is the winning neuron for 

v2 A is the winning neuron, for v3 A, for v4 B, and for v5 B is the winning neuron. 

    Table 4: Map table of input matrix and weight class 2 

 A B 

v1 0 1 

v2 1 0 

v3 1 0 

v4 0 1 

v5 0 1 

 

Here the input matrix is 5X5 and weight matrix is 5X2, it will be reducing in 5X2 output matrix and there will be three clusters only. 

c1 = {v2, v3}, c2 = {v4, v5} and c3 = {v1} have similar distance or nearest distance with each other. 

 

 
               Figure 2: Architecture diagram of map table for weight class 2  

2.1.2 Input vector 5X5 and weight class 3 

 Input vector 
Winning 

Neuron 
Dist 1 Dist 2 

Mini

mum 

Updated weight 

∆w1 ∆w2 

Iteration 1 v1 =[0,1,0,0,0] B 2.4 1.25 1.25 No change [.45,.85,.25,.15,.05] 

Iteration 2 v2 =[0,0,0,0,1] A 1.2 1.91 1.2 [.1,.2,.3,.4,1] No change 

Iteration 3 v3=[0,0,0,1,1] A 0.5 2.61 0.5 [.05,.1,.15,.7,1] No change 

Iteration 4 v4=[1,0,0,0,0] B 2.42 1.11 1.11 No change [.725,.425,.125,.075,.025] 

Iteration 5 v5=[0,0,0,0,0] B 1.52 0.72 0.72 No change [0.36,.213,.062,.038,.013] 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656 

www.ijcat.com  206 
 

Weight Matrix for class 3 

  

Wij = 

 

In this example first take input vector v1 and weight of w1j 

(where j = 1 to 5) and find the distance1. Similar procedure 

performed for same input vector v1 with another weight class 

w2j (where j =1 to 5) and with third weight class wj3. After that 

find minimum distance between dist1, dist2 and dist3 as per the 

formula and find the new weight that is called updated weight 

for the second input vector. If dist1 is minimum then updated 

weight class will change ∆w1, if dist2 minimum then updated 

weight class ∆w2 will changed otherwise ∆w3 will  be changed. 

Now the similar procedure is followed for the entire input 

vector v2, v3, v4 and v5 and finds the updated weight matrix.  

 

  Table 5: Result of weight matrix class 3 with learning rate 0.5(Epoch 1) 

After completing one epoch same procedure will be followed for the next epoch and learning rate will be decreased by 0.1, this procedure 

will continue till learning rate becomes zero. Because at this stage weighted weight get a constant value. 

 

Table 6: Result of weight matrix class 3 with learning rate 0.4(Epoch 2) 

 Input vector 
Winning 

Neuron 
out1 out2 

out3 

 
Min 

Updated Weight 

∆w1 ∆w1 ∆w3 

Iteration 1 v1 =[0,1,0,0,0] B 2.3 0.75 1.26 0.75 No Change 
[.217,.527,.037,.022,.0

07] 
No Change 

Iteration 2 v2 =[0,0,0,0,1] A 0.5 1.31 1.66 0.5 [.03,.06,.09,.42,1] No Change No Change 

Iteration 3 v3=[0,0,0,1,1] A 0.34 2.26 2.26 0.34 [.018,.036,.054,.652,1] No Change No Change 

Iteration 4 v4=[1,0,0,0,0] B 2.3 .89 1.8 .89 No Change 
[.530,.316,.022,.013,.0

04] 
No Change 

Iteration 5 v5=[0,0,0,0,0] B 1.4 0.38 1.4 0.38 No Change 
[.318,.189,.013,.008,.0

02] 
No Change 

 

Table 7: Result of weight matrix class 3 with learning rate 0.0(Epoch 6) 

 Input vector 
Winning 

Neuron 
out1 out2 

out3 

 
Min 

Updated Weight 

∆w1 ∆w1 ∆w3 

Iteration 1 
v1 

=[0,1,0,0,0] 
B 2.3 .66 1.26 .66 No Change 

[.325,.253,.001,.001,.0

00] 
No Change 

Iteration 2 
v2 

=[0,0,0,0,1] 
A .34 1.16 1.66 .34 

[.004,.009,.

013,.583,1] 
No Change No Change 

Iteration 3 v3=[0,0,0,1,1] A .17 2.16 2.26 .17 No Change No Change No Change 

Iteration 4 v4=[1,0,0,0,0] B 2.33 .51 1.8 .51 No Change No Change No Change 

Iteration 5 v5=[0,0,0,0,0] B 1.34 .17 1.4 .17 No Change No Change No Change 

After repeating the same procedure with decreasing learning rates, the result will be found the values of all the input vectors will be same 

in class1, class 2and class 3. 

Map Decision for 5X5 input matrix and 3 classes 

Here A and B based on weight class. In this example there are 3 weight classes so that in each epoch for v1 B is the winning neuron for 

v2 A is the winning neuron, for v3 A, for v4 B and for v5 B is the winning neuron. The third weight class is constant. 

 J = 1 to 5 

w1j .2 .4 .6 .8 1 

w2j .9 .7 .5 .3 .1 

w3j .3 .6 .9 .2 .4 

 Input vector 
Winning 

Neuron 
dist1 dist2 

dist3 

 
Min 

Updated Weight 

∆w1 ∆w1 ∆w3 

Iteration 1 v1=[0,1,0,0,0] B 2.4 1.25 1.26 1.25 No Change [.45,.85,.25,.15,.05] No Change 

Iteration 2 v2=[0,0,0,0,1] A 1.2 1.912 1.66 1.2 [.1,.2,.3,.4,1] No Change No Change 

Iteration 3 v3=[0,0,0,1,1] A 0.5 2.6 2.26 0.5 [.05,.1,.15,.7,1] No Change No Change 

Iteration 4 v4=[1,0,0,0,0] B 2.4 1.112 1.8 1.112 No Change [.725,.425,.125,.075,.025] No Change 

Iteration 5 v5=[0,0,0,0,0] B 1.5 0.72 1.4 0.72 No Change [.362,.212,.062,.037,.012] No Change 
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Table 8: Map table of input matrix and weight class 3 

 A B 

v1 0 1 

v2 1 0 

v3 1 0 

v4 0 1 

v5 0 1 

Here the input matrix is 5X5 and weight matrix is 5X3, it will be reducing in 5X2 output matrix and there will be one cluster only. 

c1 = {v2, v3}, c2 = {v4, v5} c3 = {v1} have similar distance or nearest distance with each other. 

 

 

Figure 3: Architecture diagram of map table for weight class 3  

2.1.3 For input vector 5X5 and weight class 4 

Weight Matrix for class 4  

Wij =  

 

 

 

In this example first take input vector v1 and weight of w1j 

(where j = 1 to 5) and find the distance1. Similar procedure 

performed for same input vector v1 with another weight class 

w2j (where j =1 to 5), with third weight class wj3 and w4j also. 

After that find minimum distance between dist1, dist2, dist3 

and dist4 as per the formula and find the new weight that is 

called updated weight for the second input vector. If dist1 is 

minimum then updated weight class will change ∆w1, if dist2 

minimum then updated weight class ∆w2 will change, if dist3 

minimum then updated weight class ∆w3 will change otherwise 

∆w4 will change. 

Now the similar procedure is followed for the entire input 

vector v2, v3, v4 and v5 and finds the updated weight matrix.  

 

Table 9: Result of weight matrix class 4 with learning rate 0.5(Epoch 1) 

 Input vector 
Winning 

Neuron 
out1 out2 out3 

out4 

 

Min 

dist 

Updated Weight 

∆w1 ∆w1 ∆w3 ∆w4 

Iteration 

1 
v1 =[0,1,0,0,0] C 2.4 1.3 .94 1.7 1.3 No Change No Change 

[.15,.8,.35,.1

,.2] 

No 

Change 

Iteration 

2 
v2 =[0,0,0,0,1] A 1.2 2.7 1.43 1.44 1.2 

[.1,.15,.35,.4,.9

5] 
No Change No Change 

No 

Change 

Iteration 

3 
v3=[0,0,0,1,1] A .5 3.1 2.2 2.24 .5 

[.05,.08,.17,.7,.

98] 
No Change No Change 

No 

Change 

Iteration 

4 
v4=[1,0,0,0,0] B 2.3 1.11 1.5 2.34 1.11 No Change 

[.95,.4,.3,.15,.0

5] 
No Change 

No 

Change 

Iteration 

5 
v5=[0,0,0,0,0] C 1.4 1.17 .83 1.64 .83 No Change No Change 

[.08,.4,.17,.0

5,.1] 

No 

Change 

 

After completing one epoch same procedure will be followed for the next epoch and learning rate will be decreased by 0.1, this procedure 

will continue till learning rate becomes zero. Because at this stage weighted weight get the constant value. 

 

 

 

 

 

 

 

 j = 1 to 5 

w1j .2 .3 .7 .8 .9 

w2j .9 .8 .6 .3 .1 

w3j .3 .6 .7 .2 .4 

w4j .1 .3 .4 .6 .9 
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Table 10: Result of weight matrix class 4 with learning rate 0.4(Epoch 2) 

 Input vector 
Winning 

Neuron 

out

1 

out

2 

out

3 
out 4 

Min 

dist 

 

Updated Weight 

∆w1 ∆w1 ∆w3 ∆w4 

Iteration 1 
v1 

=[0,1,0,0,0] 
C 2.3 1.3 .40 1.2 .40 No change No Change 

[.05,.64,.1,.03,.06

] 

No 

Change 

Iteration 2 
v2 

=[0,0,0,0,1] 
A .52 2.0 1.3 1.31 .52 

[.03,.05,.1,.4

2,.99] 
No Change No Change 

No 

Change 

Iteration 3 
v3=[0,0,0,1,1

] 
A .35 2.7 2.2 2.25 .35 

[.02,.03,.06,.

65,.99] 
No Change No Change 

No 

Change 

Iteration 4 
v4=[1,0,0,0,0

] 
B 2.3 .27 1.3 2.14 .277 No Change 

[.97,.24,.18

,.09,.03] 
No Change 

No 

Change 

Iteration 5 
v5=[0,0,0,0,0

] 
C 1.4 1.0 .42 1.23 .42 No Change No Change 

[.03,.38,.06,.02,.0

4] 

No 

Change 

 

Table 11: Result of weight matrix class 4 with learning rate 0.0(Epoch 6) 

 
Input 

vector 

Winning 

Neuron 

out

1 

out

2 

out

3 
Out4 Min 

Updated Weight 

∆w1 ∆w2 ∆w3 ∆w4 

Iteration 1 
v1 = 

[0,1,0,0,0] 
C 2.33 1.72 .34 1.15 .34 No Change No Change 

[.01,.43,.02,.0

,.01] 

No 

Change 

Iteration 2 
v2 = 

[0,0,0,0,1] 
A .35 1.9 1.2 1.21 .35 

[.01,.01,.02,.

58,1] 
No Change No Change 

No 

Change 

Iteration 3 
v3= 

[0,0,0,1,1] 
A .21 2.8 2.1 2.20 .21 No Change No Change No Change 

No 

Change 

Iteration 4 
v4= 

[1,0,0,0,0] 
B 2.3 .03 1.2 2.01 .03 No Change 

[.98,.12,.09,.05

,.02] 
No Change 

No 

Change 

Iteration 5 
v5=[0,0,0,0

,0] 
C 1.3 .99 .22 1.03 .22 No Change No Change 

[.01,.43,.02,.0

,.01] 

No 

Change 

After repeating the same procedure with decreasing the learning rate, the result will be found and the values of all the input vectors will 

be same in class1, class 2, class 3 and class 4. 

Map Decision for 5X5 input matrix and 4 classes 

Here A, B, C and D based on weight class. In this example there are 4 weight classes so that in each epoch for v1 C is the winning neuron 

for v2 A is the winning neuron, for v3 A, for v4 B and for v5 C is the winning neuron. 

Table 12: Map table of input matrix and weight class 4 

 A B C 

v1 0 0 1 

v2 1 0 0 

v3 1 0 0 

v4 0 1 0 

v5 0 0 1 

In every epoch, the BMU or winning neuron will be same. As per this discussion the map is like this. 

Here the 5X5 will be reducing in 5X3 output matrix and there are two clusters are. 

c1 = {v1}, c2 = {v2, v3}, c3={v4} and c4 ={v5} have similar distance or nearest distance with each other. 

 

Architecture of Output matrix for 4 classes SOM 

 

 

Figure 4: Architecture diagram of map table for weight class 4  
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3. RESULT ANALYSIS 
The main aim of clustering is to reduce the data by grouping or 

categorizing them. There are different types of clustering                   

methods. But here we apply partition clustering method. Clustering 

is used to reduce the data and to make a categorization. Partitioning 

cluster directly decomposes the data into a disjoint cluster. 

In these problems, there are 5X5 input vectors. But every time on 

applying different weight classes on the same input vector, if the 

classes are n (n > 2) the result will come for only n-1 classes and 

the result of last class will be constant in each iteration and in each 

epoch. 

 

Table 13: Topological mapping of all weight classes 

 

 

 

 

The topological neighboring decline monotonically, from a value 

less than half the largest diagonal of the map. This is necessary 

condition for convergence 

Result analysis of this problem is that the topology size is not 

equivalent to the size of weight matrix. If weight size will be the 

increase there will be the change in topology. 

CONCLUSION  

In this paper, we observed that learning rates the change after every 

epoch. If learning rate is constant then the result could not be found 

or we cannot visualize the cluster. When learning rate becomes zero 

then only the value of weight matrix gets constant. The value of 

learning rate changes either by decreasing it by 0.1 or multiplying 

it by 0.5. In every epoch the winning neuron is same. 

Moreover, in this paper, we also observed that when we calculate 

the distance for all vectors using one learning rate than one epoch 

is over. But for one epoch many iterations is performed. When we 

calculate the distance between one vector it is called iteration and 

when the same iteration is repeated for all vector it is called epoch. 

Here we used different types of weight matrix such as 2, 3 and 4 

for the same one-dimensional array. The value of weight matrix is 

changed based on iteration or the distance, we calculate the new 

weight for that class which has the minimum distance. 

Thus, one can conclude that in the case of 2 class weight matrixes, 

we get only 2 output layers or winning neuron. For 3 class weight 

matrix we get only 2 output layers or winning neuron and for 4 

class weight matrix, we get only 3 output layers or winning neuron. 

Here we observed that if weight matrix size is increased than one 

class is constant and we get output layer always minus one from 

weight matrix. 

 

 

 

 

 

FUTURE WORK 

Future work may further investigate on large data which has 

meaningful data items in the sets and find the variation on large 

data sets also. We will try to take multi-dimensional meaning full 

data and find the nearest clusters and minimize the data in terms of 

rows & columns.  

In future work we investigate the effect of increase the weight 

matrix class on multi-dimensional data also. We will also work on 

learning rate and try to find the cluster to reduces the epoch and 

iterations and minimize the calculation. 
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