
International Journal of Computer Applications Technology and Research

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656

www.ijcat.com 202

Usage of Self-Organizing Map for Clustering Vertices

Rashmi Lad

MIT, Arts Commerce and Science

College, Alandi (D),

Pune-412106, M. S., India

P S Metkewar

Symbiosis Institute of

Computer,Studies and Research

(SICSR)

Pune-411016, M. S., India

R.S. Walse

College of Dairy technology,

Pusad, Nagpur,

M.S., India

Abstract – Usage of Self-Organizing Map (SOM) for clustering vertices of any given graph. Simultaneously its input is observed and

worked in terms of weight matrix, learning rate and final resultant matrix, which helps to form a cluster. The purpose of this paper is to

introduce a procedure of SOM for clustering and observed impact corresponding to varied weight class for simple graph or vector

matrix using Euclidean distance. A simple vector matrix problem is solved by using 2, 3 & 4 weight class matrix. By adopting a

different weight matrix class with same vector matrix has presented a clustering and visualization.

Keywords – self-organizing map, topology, visualization, clustering, Euclidean distance.

INTRODUCTION
Self-Organizing Map (SOM) was developed by Professor

Kohonen’s. It is also called as Kohonen’s SOM (Self Organizing

map).SOM works on unsupervised learning which means training

without any guidance or teacher. SOM learns on its own from

beginning till the end and it is unsupervised competitive learning.

The self-organizing Map is a special type of neural network that

accepts N-dimensional input vector and maps them, in which

neurons are organized in a hexagonal or rectangular grid and find

the feature space with its neighboring neuron.

The main objective of this learning algorithm is that the network

forms the feature map which takes input data and maps them into 1

or 2-dimensional feature space. The main feature of SOM is that it

contains only two layers, the input layer, and an output layer. There

is no hidden layer in SOM so it is different from other learning

algorithms like feedforward back prorogation learning algorithm.

LITERATURE REVIEW
Authors [1] have observed that “On the use of Self-Organizing Map

for clustering and visualization” of the number of output units. In

this paper, SOMs can be used for clustering and visualization

separately or simultaneously. There are various types of application

used to compare SOM with other statistical approaches.

Authors [2] have focused “Clustering of the Self-Organizing Map”

with different approaches. Authors used hierarchical agglomerative

clustering and partitive clustering using K-means. By using SOM,

they produced the prototypes and then performed direct clustering

of the data and to reduce the computation time.

Authors [3] have observed that “Clustering Application of SOM

neural network in clustering” is an unsupervised neural network for

two-dimensional maps. It finds the similar data that will map to

nearby locations. In this paper, authors introduce an experiment to

analyze the SOM in clustering.

Authors [4] have emphasized that “The use of Three-dimensional

Self-Organizing Maps for Visualizing Clusters in Geo-referenced

Data” that maps 3D SOM data for visualizing clusters in geo-

referenced data. This paper provides a comparison of a 2D or 3D

SOM for a problem and increases the clustering quality of 3D

SOMs.

In this paper Section 1 gives a review of the problem definition.

Section 1.1 presents the architecture of self-organizing map.

Section 1.2 describes the methodology of self-organizing map

Section 1.3 shows Pseudo code section 1.4 describe how to

train SOM and Section 1.5 shows research methodology.

Section 2 it describes the computational analysis of self-

organizing map. Section 2.1 describes the computational result

analysis of self-organizing. Section 2.1.1 gives the result based

on 2 weight class matrix. Section 2.1.2 describes the result

based on 3 weight class matrix. Section 2.1.3 describes the

result based on 4 weight class matrix. Section 3 – Describe the

result analysis that is available after the large calculation.

1. PROBLEM DEFINITION

The Self-Organizing Map (SOM) is an artificial neural network

that is very effective for clustering via visualization. It is very

difficult to visualize SOM for the vector data. In this paper, we

show that the vertices of SOM can be used successfully for

visualizing clusters using Euclidean distance method of the

neural network. We try to find the small distance between

nearest cluster. In this paper, we use the vector matrix and 2, 3

and 4 weight matrix classes to find the winning neuron or the

resultant output layer. Based on this we can find nearest cluster

group and observed the changes.

1.1 Architecture of SOM

Each input node of the input layer is associated with weight wij

that is adjusted during training. The SOM maintains

X1

Actual Input

X2

 Input Layer Output Layer

Y1

Y

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656

www.ijcat.com 203

topological relationships between inputs in such a way that the

neighboring inputs in the input layer are associated with

neighboring neurons.

1.2. Pseudo Code

^ Declare n, m and Set its value by 5 and 1

^ Set learning rate by default 0.5

^ Declare input vector matrix

^ Declare weight class matrix

^ Repeat the procedure until m is less than or equal to n

Repeat the procedure for 1 to 5 for n

 Check when m equal to 1

Store first input matrix

Check when m equal to 2

Store second input matrix

Check when m equal to 3

Store third input matrix

Check when m equal to 4

Store fourth input matrix

Otherwise

Store fifth input matrix

Stop

^ Repeat the procedure for 1 to 5

Sum  Sum + square root (weight matrix value – input matrix

value)

Sum = Square root of(sum);

^ Find min sum

^ Update that weight matrix (new) = weight matrix (old) + learning

rate *(input matrix – weight matrix)

^ learning rate  learning rate -0.1

^ Stop

1.3. Training SOM

There are two types of operation in self-organizing map

1. Training Phase

In the Training phase, the output node is found with

the help of Euclidean distance between the input

vector and the weight class connecting to that input

and finds the minimum between them. This node is

called the winner node and weight class. Now the

weight of the neighboring output node will be

updated so that the new weight is closer to the current

input vector. This procedure is repeated for all input

vectors and weight till they become constant. After

one iteration or epoch of input vector, the learning

rate gets changed and is multiplied by 0.5 at every

epoch. In this way after applying the input vector,

only the winner unit is determined.

This function is selected for the size of weight change

in the distance of the neuron. This distance is

calculated with the topology defined on the output

layer of the network.

2. Clustering Phase

After training the SOM should give visualization

where similar data are clustered within close

proximity, and having smooth transitions or overlaps

where clusters change.

1.4. Research Methodology
Exploratory research is one type of research method which is

based on the theoretical idea. Researcher gets an idea from

currently available theory and tries to elaborate or understand

more about that topic. Sometimes it is the initial groundwork

for this type of research. Exploratory research used in two

ways; either a new topic or a new idea. A new topic is finding

from the currently existing theory. New idea can come to

understand exiting theory and set new perception according to

that.

2. Computational Analysis of SOM

The Experiment is derived by using following directed graph

Figure 1: Directed graph

There is 5 node or input in the directed graph. They are

connected with each other. The representations of

Adjacency matrix (5 X 5) are as follows.

X

X

X

X

X

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656

www.ijcat.com 204

Weight matrix for input is 4X5 which means there are 4 classes for

5 input nodes. The weight initializes between 0 to 1 only.

To evaluate the performance of the proposed algorithm, we tested

5 input vector and 3 different classes. The SOM algorithm was

tested 5 input vector and 3 different classes. The SOM algorithm

was executed using DOTNET code. The source and input

parameters for these problems are shown.

Initial learning rate ɳ = 0.5

After initialize learning rate and weight matrix calculate

Euclidean distance with the following formula.

D (j) = sqrt(∑ n (Xi - wij) 2)

i=1

Where n is no of the input node. To find the distance between

input vector subtract the input vector with weight matrix

value and find the square root of that. After this calculates

the summation of all input values for D1.value of j varies

according to the number of vectors of weight matrix.

In this way repeat the same procedure for all the classes of

weight matrix. Then compare all distances and find the

minimum distance between them. That minimum distance is

the Best Matching Unit (BMU) or winning neuron.

The distance of that weight matrix class is BMU or winning

neuron. Now update the weight matrix on the winning

cluster with the following formula.

Wij (new) = Wij (old) + ɳ* [xi – wij (old)]

Then get the new or updated weight matrix. Follow the same

procedure for all input vectors. After repeating the same

procedure for all input vectors, one epoch is over. The

learning rate will change after one epoch. Learning rate will

decrease with the following formula.

ɳ = ɳ *0.5

The default learning rate is 0.5.Now repeat the same for

another epoch till updated weight matrix does not get a

similar result.

2.1. Computational Result Analysis of SOM

A summary of all SOM parameters used for solving the

problems is given in the table.

2.1.1 Input vector 5X5 and weight class 2
Class means a set or category of things having some property

or attribute in common and differentiated from others by

kind, type, or quality.

Weight Matrix for class 2

Wij =

Epoch 1- when ɳ=0.5

In this example first take input vector v1 & weight of w1j

(where j = 1 to 5) and find the distance1. Perform similar

procedure for same input vector v1 & another weight class

w2j (where j =1 to 5) and find distance 2.Now check

minimum between Dist1 and Dist2. When we get minimum

distance then update weight matrix as per the winning

neuron. If dist1 is minimum then w1j will change otherwise

w2j class. Now the similar procedure is followed for the

entire input vector v2, v3, v4 and v5 and the updated weight

matrix is found.

 X1 X2 X3 X4 X5

X1 0 1 0 0 0

X2 0 0 0 0 1

X3 0 0 0 1 1

X4 1 0 0 0 0

X5 0 0 0 0 0

 w11 w12 w13 w14 w15

w1j .2 .4 .6 .8 1

w2j .9 .7 .5 .3 .1

 w21 w22 w23 w24 w25

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656

www.ijcat.com 205

Table 1: Result of weight matrix class 2 with learning rate 0.5

When one epoch is over so decrease the learning rate with 0.1.Then again same procedure is followed for the input vector v1 to v5.

Table 2: Result of weight matrix class 2 with learning rate 0.4(Epoch 2)

 Input vector
Winning

Neuron
Dist1 Dist2 Minimum

Updated weight

∆w1 ∆w2

Iteration 1 v1 =[0,1,0,0,0] B 2.32 0.75 0.75 No Change [.218,.528,.038,.023,.007]

Iteration 2 v2 =[0,0,0,0,1] A 0.52 1.31 .052 [.03,.06,.09,.42,1] No change

Iteration 3 v3=[0,0,0,1,1] A 0.34 2.26 0.34 [.018,.036,.054,.65,1] No change

Iteration 4 v4=[1,0,0,0,0] B 2.39 0.89 0.89 No change [.531,.317,.023,.014,.004]

Iteration 5 v5=[0,0,0,0,0] B 1.52 0.72 0.72 No change [0.318,.19,.014,.014,.003]

After repeating the same procedure with decreasing learning rates, the result will be found zero (ɳ=0) after 6 epoch and the values of all

the input vectors will be same in class1 and class 2.

Table 3: Result of weight matrix class 2 with learning rate 0.0(Epoch 6)

 Input vector
Winning

Neuron
Dist1 Dist2 Minimum

Updated weight

∆w1 ∆w2

Iteration 1 v1 =[0,1,0,0,0] B 2.32 0.66 0.66 No Change [.326,.253,.002,.001,0]

Iteration 2 v2 =[0,0,0,0,1] A 0.34 1.61 0.34 [.005,.009,.014,.583,1] No change

Iteration 3 v3=[0,0,0,1,1] A 0.17 2.16 0.17 [.005,.009,.014,.583,1] No change

Iteration 4 v4=[1,0,0,0,0] B 2.33 0.51 0.51 No change [.326,.253,.002,.001,0]

Iteration 5 v5=[0,0,0,0,0] B 1.34 0.17 0.17 No change [.326,.253,.002,.001,0]

Map Decision for 5X5 input matrix and 2 classes

Here A and B based on weight class. In this example there are 2 weight classes so that in each epoch for v1 B is the winning neuron for

v2 A is the winning neuron, for v3 A, for v4 B, and for v5 B is the winning neuron.

 Table 4: Map table of input matrix and weight class 2

 A B

v1 0 1

v2 1 0

v3 1 0

v4 0 1

v5 0 1

Here the input matrix is 5X5 and weight matrix is 5X2, it will be reducing in 5X2 output matrix and there will be three clusters only.

c1 = {v2, v3}, c2 = {v4, v5} and c3 = {v1} have similar distance or nearest distance with each other.

 Figure 2: Architecture diagram of map table for weight class 2

2.1.2 Input vector 5X5 and weight class 3

 Input vector
Winning

Neuron
Dist 1 Dist 2

Mini

mum

Updated weight

∆w1 ∆w2

Iteration 1 v1 =[0,1,0,0,0] B 2.4 1.25 1.25 No change [.45,.85,.25,.15,.05]

Iteration 2 v2 =[0,0,0,0,1] A 1.2 1.91 1.2 [.1,.2,.3,.4,1] No change

Iteration 3 v3=[0,0,0,1,1] A 0.5 2.61 0.5 [.05,.1,.15,.7,1] No change

Iteration 4 v4=[1,0,0,0,0] B 2.42 1.11 1.11 No change [.725,.425,.125,.075,.025]

Iteration 5 v5=[0,0,0,0,0] B 1.52 0.72 0.72 No change [0.36,.213,.062,.038,.013]

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656

www.ijcat.com 206

Weight Matrix for class 3

Wij =

In this example first take input vector v1 and weight of w1j

(where j = 1 to 5) and find the distance1. Similar procedure

performed for same input vector v1 with another weight class

w2j (where j =1 to 5) and with third weight class wj3. After that

find minimum distance between dist1, dist2 and dist3 as per the

formula and find the new weight that is called updated weight

for the second input vector. If dist1 is minimum then updated

weight class will change ∆w1, if dist2 minimum then updated

weight class ∆w2 will changed otherwise ∆w3 will be changed.

Now the similar procedure is followed for the entire input

vector v2, v3, v4 and v5 and finds the updated weight matrix.

 Table 5: Result of weight matrix class 3 with learning rate 0.5(Epoch 1)

After completing one epoch same procedure will be followed for the next epoch and learning rate will be decreased by 0.1, this procedure

will continue till learning rate becomes zero. Because at this stage weighted weight get a constant value.

Table 6: Result of weight matrix class 3 with learning rate 0.4(Epoch 2)

 Input vector
Winning

Neuron
out1 out2

out3

Min

Updated Weight

∆w1 ∆w1 ∆w3

Iteration 1 v1 =[0,1,0,0,0] B 2.3 0.75 1.26 0.75 No Change
[.217,.527,.037,.022,.0

07]
No Change

Iteration 2 v2 =[0,0,0,0,1] A 0.5 1.31 1.66 0.5 [.03,.06,.09,.42,1] No Change No Change

Iteration 3 v3=[0,0,0,1,1] A 0.34 2.26 2.26 0.34 [.018,.036,.054,.652,1] No Change No Change

Iteration 4 v4=[1,0,0,0,0] B 2.3 .89 1.8 .89 No Change
[.530,.316,.022,.013,.0

04]
No Change

Iteration 5 v5=[0,0,0,0,0] B 1.4 0.38 1.4 0.38 No Change
[.318,.189,.013,.008,.0

02]
No Change

Table 7: Result of weight matrix class 3 with learning rate 0.0(Epoch 6)

 Input vector
Winning

Neuron
out1 out2

out3

Min

Updated Weight

∆w1 ∆w1 ∆w3

Iteration 1
v1

=[0,1,0,0,0]
B 2.3 .66 1.26 .66 No Change

[.325,.253,.001,.001,.0

00]
No Change

Iteration 2
v2

=[0,0,0,0,1]
A .34 1.16 1.66 .34

[.004,.009,.

013,.583,1]
No Change No Change

Iteration 3 v3=[0,0,0,1,1] A .17 2.16 2.26 .17 No Change No Change No Change

Iteration 4 v4=[1,0,0,0,0] B 2.33 .51 1.8 .51 No Change No Change No Change

Iteration 5 v5=[0,0,0,0,0] B 1.34 .17 1.4 .17 No Change No Change No Change

After repeating the same procedure with decreasing learning rates, the result will be found the values of all the input vectors will be same

in class1, class 2and class 3.

Map Decision for 5X5 input matrix and 3 classes

Here A and B based on weight class. In this example there are 3 weight classes so that in each epoch for v1 B is the winning neuron for

v2 A is the winning neuron, for v3 A, for v4 B and for v5 B is the winning neuron. The third weight class is constant.

 J = 1 to 5

w1j .2 .4 .6 .8 1

w2j .9 .7 .5 .3 .1

w3j .3 .6 .9 .2 .4

 Input vector
Winning

Neuron
dist1 dist2

dist3

Min

Updated Weight

∆w1 ∆w1 ∆w3

Iteration 1 v1=[0,1,0,0,0] B 2.4 1.25 1.26 1.25 No Change [.45,.85,.25,.15,.05] No Change

Iteration 2 v2=[0,0,0,0,1] A 1.2 1.912 1.66 1.2 [.1,.2,.3,.4,1] No Change No Change

Iteration 3 v3=[0,0,0,1,1] A 0.5 2.6 2.26 0.5 [.05,.1,.15,.7,1] No Change No Change

Iteration 4 v4=[1,0,0,0,0] B 2.4 1.112 1.8 1.112 No Change [.725,.425,.125,.075,.025] No Change

Iteration 5 v5=[0,0,0,0,0] B 1.5 0.72 1.4 0.72 No Change [.362,.212,.062,.037,.012] No Change

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656

www.ijcat.com 207

Table 8: Map table of input matrix and weight class 3

 A B

v1 0 1

v2 1 0

v3 1 0

v4 0 1

v5 0 1

Here the input matrix is 5X5 and weight matrix is 5X3, it will be reducing in 5X2 output matrix and there will be one cluster only.

c1 = {v2, v3}, c2 = {v4, v5} c3 = {v1} have similar distance or nearest distance with each other.

Figure 3: Architecture diagram of map table for weight class 3

2.1.3 For input vector 5X5 and weight class 4

Weight Matrix for class 4

Wij =

In this example first take input vector v1 and weight of w1j

(where j = 1 to 5) and find the distance1. Similar procedure

performed for same input vector v1 with another weight class

w2j (where j =1 to 5), with third weight class wj3 and w4j also.

After that find minimum distance between dist1, dist2, dist3

and dist4 as per the formula and find the new weight that is

called updated weight for the second input vector. If dist1 is

minimum then updated weight class will change ∆w1, if dist2

minimum then updated weight class ∆w2 will change, if dist3

minimum then updated weight class ∆w3 will change otherwise

∆w4 will change.

Now the similar procedure is followed for the entire input

vector v2, v3, v4 and v5 and finds the updated weight matrix.

Table 9: Result of weight matrix class 4 with learning rate 0.5(Epoch 1)

 Input vector
Winning

Neuron
out1 out2 out3

out4

Min

dist

Updated Weight

∆w1 ∆w1 ∆w3 ∆w4

Iteration

1
v1 =[0,1,0,0,0] C 2.4 1.3 .94 1.7 1.3 No Change No Change

[.15,.8,.35,.1

,.2]

No

Change

Iteration

2
v2 =[0,0,0,0,1] A 1.2 2.7 1.43 1.44 1.2

[.1,.15,.35,.4,.9

5]
No Change No Change

No

Change

Iteration

3
v3=[0,0,0,1,1] A .5 3.1 2.2 2.24 .5

[.05,.08,.17,.7,.

98]
No Change No Change

No

Change

Iteration

4
v4=[1,0,0,0,0] B 2.3 1.11 1.5 2.34 1.11 No Change

[.95,.4,.3,.15,.0

5]
No Change

No

Change

Iteration

5
v5=[0,0,0,0,0] C 1.4 1.17 .83 1.64 .83 No Change No Change

[.08,.4,.17,.0

5,.1]

No

Change

After completing one epoch same procedure will be followed for the next epoch and learning rate will be decreased by 0.1, this procedure

will continue till learning rate becomes zero. Because at this stage weighted weight get the constant value.

 j = 1 to 5

w1j .2 .3 .7 .8 .9

w2j .9 .8 .6 .3 .1

w3j .3 .6 .7 .2 .4

w4j .1 .3 .4 .6 .9

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656

www.ijcat.com 208

Table 10: Result of weight matrix class 4 with learning rate 0.4(Epoch 2)

 Input vector
Winning

Neuron

out

1

out

2

out

3
out 4

Min

dist

Updated Weight

∆w1 ∆w1 ∆w3 ∆w4

Iteration 1
v1

=[0,1,0,0,0]
C 2.3 1.3 .40 1.2 .40 No change No Change

[.05,.64,.1,.03,.06

]

No

Change

Iteration 2
v2

=[0,0,0,0,1]
A .52 2.0 1.3 1.31 .52

[.03,.05,.1,.4

2,.99]
No Change No Change

No

Change

Iteration 3
v3=[0,0,0,1,1

]
A .35 2.7 2.2 2.25 .35

[.02,.03,.06,.

65,.99]
No Change No Change

No

Change

Iteration 4
v4=[1,0,0,0,0

]
B 2.3 .27 1.3 2.14 .277 No Change

[.97,.24,.18

,.09,.03]
No Change

No

Change

Iteration 5
v5=[0,0,0,0,0

]
C 1.4 1.0 .42 1.23 .42 No Change No Change

[.03,.38,.06,.02,.0

4]

No

Change

Table 11: Result of weight matrix class 4 with learning rate 0.0(Epoch 6)

Input

vector

Winning

Neuron

out

1

out

2

out

3
Out4 Min

Updated Weight

∆w1 ∆w2 ∆w3 ∆w4

Iteration 1
v1 =

[0,1,0,0,0]
C 2.33 1.72 .34 1.15 .34 No Change No Change

[.01,.43,.02,.0

,.01]

No

Change

Iteration 2
v2 =

[0,0,0,0,1]
A .35 1.9 1.2 1.21 .35

[.01,.01,.02,.

58,1]
No Change No Change

No

Change

Iteration 3
v3=

[0,0,0,1,1]
A .21 2.8 2.1 2.20 .21 No Change No Change No Change

No

Change

Iteration 4
v4=

[1,0,0,0,0]
B 2.3 .03 1.2 2.01 .03 No Change

[.98,.12,.09,.05

,.02]
No Change

No

Change

Iteration 5
v5=[0,0,0,0

,0]
C 1.3 .99 .22 1.03 .22 No Change No Change

[.01,.43,.02,.0

,.01]

No

Change

After repeating the same procedure with decreasing the learning rate, the result will be found and the values of all the input vectors will

be same in class1, class 2, class 3 and class 4.

Map Decision for 5X5 input matrix and 4 classes

Here A, B, C and D based on weight class. In this example there are 4 weight classes so that in each epoch for v1 C is the winning neuron

for v2 A is the winning neuron, for v3 A, for v4 B and for v5 C is the winning neuron.

Table 12: Map table of input matrix and weight class 4

 A B C

v1 0 0 1

v2 1 0 0

v3 1 0 0

v4 0 1 0

v5 0 0 1

In every epoch, the BMU or winning neuron will be same. As per this discussion the map is like this.

Here the 5X5 will be reducing in 5X3 output matrix and there are two clusters are.

c1 = {v1}, c2 = {v2, v3}, c3={v4} and c4 ={v5} have similar distance or nearest distance with each other.

Architecture of Output matrix for 4 classes SOM

Figure 4: Architecture diagram of map table for weight class 4

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 4, 202 - 209, 2016, ISSN:- 2319–8656

www.ijcat.com 209

3. RESULT ANALYSIS
The main aim of clustering is to reduce the data by grouping or

categorizing them. There are different types of clustering

methods. But here we apply partition clustering method. Clustering

is used to reduce the data and to make a categorization. Partitioning

cluster directly decomposes the data into a disjoint cluster.

In these problems, there are 5X5 input vectors. But every time on

applying different weight classes on the same input vector, if the

classes are n (n > 2) the result will come for only n-1 classes and

the result of last class will be constant in each iteration and in each

epoch.

Table 13: Topological mapping of all weight classes

The topological neighboring decline monotonically, from a value

less than half the largest diagonal of the map. This is necessary

condition for convergence

Result analysis of this problem is that the topology size is not

equivalent to the size of weight matrix. If weight size will be the

increase there will be the change in topology.

CONCLUSION

In this paper, we observed that learning rates the change after every

epoch. If learning rate is constant then the result could not be found

or we cannot visualize the cluster. When learning rate becomes zero

then only the value of weight matrix gets constant. The value of

learning rate changes either by decreasing it by 0.1 or multiplying

it by 0.5. In every epoch the winning neuron is same.

Moreover, in this paper, we also observed that when we calculate

the distance for all vectors using one learning rate than one epoch

is over. But for one epoch many iterations is performed. When we

calculate the distance between one vector it is called iteration and

when the same iteration is repeated for all vector it is called epoch.

Here we used different types of weight matrix such as 2, 3 and 4

for the same one-dimensional array. The value of weight matrix is

changed based on iteration or the distance, we calculate the new

weight for that class which has the minimum distance.

Thus, one can conclude that in the case of 2 class weight matrixes,

we get only 2 output layers or winning neuron. For 3 class weight

matrix we get only 2 output layers or winning neuron and for 4

class weight matrix, we get only 3 output layers or winning neuron.

Here we observed that if weight matrix size is increased than one

class is constant and we get output layer always minus one from

weight matrix.

FUTURE WORK

Future work may further investigate on large data which has

meaningful data items in the sets and find the variation on large

data sets also. We will try to take multi-dimensional meaning full

data and find the nearest clusters and minimize the data in terms of

rows & columns.

In future work we investigate the effect of increase the weight

matrix class on multi-dimensional data also. We will also work on

learning rate and try to find the cluster to reduces the epoch and

iterations and minimize the calculation.

REFERENCES:

1] “On the use of self-organizing maps for clustering and

visualization” by Arthur Flexer.

[2] “Clustering of the Self-Organizing Map” by Juha Vesanto and

Esa Alhoniemi IEEE transactions on neural networks, vol. 11, no.

3, pp 586-600, may 2000.

[3]”Application of SOM neural network in clustering” by Soroor

Behbahani, Ali Moti Nasrabadi J. Biomedical Science and

Engineering, 2009, 2, 637-643.

[4] “On the use of Three-dimensional Self-Organizing Maps for

Visualizing Clusters in Geo-referenced Data” by Jorge M. L.

Gorricha and Victor J. A. S. Lobo

[5] Application of Visual Clustering Properties of Self-Organizing

Map in Machine-part Cell Formation Manojit Chattopadhyay,

Pranab K. Dan, Sitanath Majumdar.

[6] “Improving Performance of Self-Organising Maps with

Distance Metric Learning Method” by Piotr P lo´nski and

Krzysztof Zaremba published 1407.1201v1 [cs.LG] 4 Jul 2014.

[7] “Clustering Internet Usage Behaviours with SOM Neural

Networks” by U. Celenk, O. Ucan Proceedings of the World

Congress on Engineering and Computer Science 2012 Vol II

WCECS 2012, October 24-26, 2012.

[8] “Self-Organizing Map -based Document Clustering

UsingWordNet Ontologies” by Tarek F. Gharib, Mohammed M.

Fouad, Abdulfattah Mashat, Ibrahim Bidawi IJCSI International

Journal of Computer Science Issues, Vol. 9, Issue 1, No 2, January

2012 ISSN (Online): 1694-0814.

[9] “Clustering with SOM: u*c” by Alfred ultsch.

Input

Vector

Weight

classes

Topology Map(output

layer)

5x5 5x2 5x2

5x5 5x3 5x2

5x5 5x4 5x3

http://www.ijcat.com/

