
International Journal of Computer Applications Technology and Research

Volume 5– Issue 5, 260 - 265, 2016, ISSN:- 2319–8656

www.ijcat.com 260

Software Defect Prediction Using Radial Basis and

Probabilistic Neural Networks

Riyadh A.K. Mehdi

College of Information Technology

Ajman University of Science and Technology

Ajman, United Arab Emirates

Abstract: Defects in modules of software systems is a major problem in software development. There are a variety of data mining

techniques used to predict software defects such as regression, association rules, clustering, and classification. This paper is concerned

with classification based software defect prediction. This paper investigates the effectiveness of using a radial basis function neural

network and a probabilistic neural network on prediction accuracy and defect prediction. The conclusions to be drawn from this work is

that the neural networks used in here provide an acceptable level of accuracy but a poor defect prediction ability. Probabilistic neural

networks perform consistently better with respect to the two performance measures used across all datasets. It may be advisable to use

a range of software defect prediction models to complement each other rather than relying on a single technique.

Keywords: Software defect prediction; datasets; neural networks; radial basis functions; probabilistic neural networks.

1. INTRODUCTION
Defects in modules of software systems is a major problem in

software development. Software failure of an executable

product or non-conformance of software to its functional

requirements is a software defect. A software defect is a fault,

error, or failure in a software module that results in incorrect

result or unexpected behavior. These defects can arise from

mistakes and errors made during a software coding or in its

design and few are caused by compilers producing incorrect

code. Predicting faulty software modules and identifying

general software areas where defects are likely to occur could

help in planning, controlling and executing software

development activities and save time and money [1]. In the

context of software engineering, software quality refers to

software functional quality and software architectural quality.

Software functional quality reflects functional requirements

whereas architectural quality emphasizes non-functional

requirements. The objective of software product quality

engineering is to achieve the required quality of the product

through the definition of quality requirements and their

implementation, measurement of appropriate quality attributes

and evaluation of the resulting quality [2].

A software metric is a standard of a quantitative measure of the

degree to which a software system or process possesses some

property. Metrics are functions, while measurements are the

numbers obtained by the application of metrics. Metrics allow

us to gain understanding of relationships among processes and

products and build models of these relationships. Software

quality metrics are a subset of software metrics that focus on

the quality aspects of the product, process, and project. Product

metrics describe the characteristics of the product such as size,

complexity, design features, performance, and quality level.

Process metrics can be used to improve software development

and maintenance such as the effectiveness of defect removal

during development, the pattern of testing defects arrival, and

the response time of the fix process. Project metrics describe

the project characteristics and execution which includes the

number of software developers, the staffing pattern over the life

cycle of the software, cost, schedule, and productivity [3][4].

Software defect prediction refers to those models that try to

predict potential software defects from test data. There exists a

correlation between the software metrics and the existence of a

fault in the software. A software defect prediction model

consists of independent variables (software metrics) collected

and measured during software development life cycle and a

dependent variable (defective or non-defective software) [2].

2. LITERATURE REVIEW
Wahono [4] provides a systematic literature review of software

defect prediction including research trends, datasets, methods

and frameworks. There are a variety of data mining techniques

used to predict software defects such as regression, association

rules, clustering, and classification. This paper is concerned

with classification based software defect prediction. Various

classification techniques have been used such as:

• Neural Networks

• Decision trees

• Naïve Bayes

• Support Vector Machines

• Case Based Reasoning

In their work, Okutan and Yildiz [5] used a Bayesian networks

to determine the set of metrics that are most important and

focus on them more to predict defectiveness. They used the

Bayesian networks to determine the probabilistic influential

relationships among software metrics and defect proneness. In

addition to the metrics used in Promise data repository, they

defined two more metrics, i.e. NOD for the number of

developers and LOCQ for the lack of code quality. They extract

these metrics by inspecting the source code repositories of the

selected Promise data repository data sets. From the model they

can determine the marginal defect proneness probability of the

whole software system, the set of most effective metrics, and

the influential relationships among metrics and defectiveness.

Their experiments on nine open source Promise data repository

data sets show that response for class (RFC), lines of code

(LOC), and lack of coding quality (LOCQ) are the most

effective metrics whereas coupling between objects (CBO),

weighted method per class (WMC), and lack of cohesion of

methods (LCOM) are less effective metrics on defect

proneness. Furthermore, number of children (NOC) and depth

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 5, 260 - 265, 2016, ISSN:- 2319–8656

www.ijcat.com 261

of inheritance tree (DIT) have very limited effect and are

untrustworthy. On the other hand, based on the experiments on

Poi, Tomcat, and Xalan data sets, they observed that there is a

positive correlation between the number of developers (NOD)

and the level of defectiveness. However, they stated that further

investigation involving a greater number of projects is needed

to confirm their findings.

Kaur and Kaur [6] have tried to find the quality of the software

product based on identifying the defects in the classes. They

have done this by using different classifiers such as Naive base,

Logistic regression, Instance based (Nearest-Neighbour),

Bagging, J48, Decision Tree, Random Forest. This model is

applied on five different open source software to find the

defects of 5885classes based on object oriented metrics. Out of

which they found only Bagging and J48 to be the best.

Li and others [7] described three methods for selecting a

sample: random sampling with conventional machine learners,

random sampling with a semi-supervised learner and active

sampling with active semi-supervised learner. To facilitate the

active sampling, we propose a novel active semi-supervised

learning method ACoForest which is able to sample the

modules that are most helpful for learning a good prediction

model. Our experiments on PROMISE datasets show that the

proposed methods are effective and have potential to be applied

to industrial practice.

Gao and Khoshgoftarr [8], presented an approach for using

feature selection and data sampling together to deal with the

problems. Three scenarios are considered: 1) feature selection

based on sampled data, and modeling based on original data; 2)

feature selection based on sampled data, and modeling based

on sampled data; and 3) feature selection based on original data,

and modeling based on sampled data. Several software

measurement data sets, obtained from the PROMISE

repository, are used in the case study. The empirical results

demonstrated that classification models built in scenario 1)

result in significantly better performance than the models built

in the other two scenarios. In their work, Purswani and others

[9] have combined a K-means clustering based approach with

a feed-forward neural network using PC1 data set from NASA

MDP software projects. The performance was based on MAE

and RMSE values. Results have shown that this hybrid

approach is better than analytical approaches.

Artificial Neural Networks (ANN) have been used in software

defect prediction. ANNs are inspired by the way biological

nervous system works, such as brain processes an information.

An ANN mimics models of biological system, which uses

numeric and associative processing. In two aspects, it

resembles the human brain. First it acquires knowledge from its

environment through a learning process. Second, synaptic

weights that are used to store the acquired knowledge, which is

interneuron connection strength. There are three classes of

neural networks, namely single layer, multilayer feed forward

networks and recurrent networks. Neural networks have been

shown to perform well in classification tasks. However, there

are different neural networks architectures. This paper

investigates the effectiveness of using a radial basis function

neural network and a probabilistic neural network on prediction

accuracy and defect prediction compared with other

approaches [10].

3. RESEARCH METHODOLOGY
The most commonly used neural network architecture is the

back propagation trained multilayered feed forward networks

with sigmoidal activation function [11]. Each neuron in a MLP

takes the weighted some of its input values. That is, each input

value is multiplied by a coefficient, and the results are all

summed together. A single MLP neuron is a simple linear

classifier, but complex non-linear classifiers can be built by

combining these neurons into a network.

Figure 1. Radial Basis Function Neural Network

3.1 Radial Basis Function Neural Network
Another type of ANN that has been used in the literature is the

radial basis functions neural network (RBFNN) [12]. A

RBFNN can approximate any function which makes it suitable

to model the relationship between inputs (the various cost

drivers) and output (effort required). RBFNN performs

classification by measuring the input’s similarity to examples

from the training set. Each RBFNN neuron stores a

“prototype”, which is just one of the examples from the training

set. To classify a new input, each neuron computes the

Euclidean distance between the input and its prototype. In other

words, if the input more closely resembles class A prototypes

than the class B prototypes, it is classified as class A. It has

been show that RBFNN perform better than other types of

neural networks based models [13]. In this paper we will use

RBFNN to examine the effect of preprocessing datasets with

PCA on the accuracy of software effort estimation models.

3.2 RBFNN Implementation
The following generic description of a RBF neural network is

based on a tutorial given in [11][12]. Figure 1 describes a

typical architecture of an RBFNN. It consists of an input vector,

a layer of RBF neurons, and an output layer with one node per

category or class of data. The input vector is the m-dimensional

vector to be classified. The hidden layer consists of neurons

where each one stores a “prototype” vector which is just one of

the vectors from the training set. Each RBFNN neuron

compares the input vector to its prototype, and outputs a value

between 0 and 1 which is a measure of similarity. If the input

is equal to the prototype, then the output of that RBFNN neuron

will be 1. As the distance between the input and prototype

grows, the response falls off exponentially towards zero.

The neuron’s response value is also called its “activation”

value. The prototype vector is also often called the neuron’s

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 5, 260 - 265, 2016, ISSN:- 2319–8656

www.ijcat.com 262

“center”, since it’s the value at the center of the bell curve. The

output of the network consists of a set of nodes, one per

category to be classified or a value to be computed. Each output

node computes a sort of score for the associated category.

Typically, a classification decision is made by assigning the

input to the category with the highest score. The score is

computed by taking a weighted sum of the activation values

from every RBF neuron. Because each output node is

computing the score for a different category, every output node

has its own set of weights. The output node will typically give

a positive weight to the RBF neurons that belong to its

category, and a negative weight to the others.

Each RBFNN neuron computes a measure of the similarity

between the input and its prototype vector (taken from the

training set). Input vectors which are more similar to the

prototype return a result closer to 1. There are different possible

choices of similarity functions, but the most popular is based

on the Gaussian function. Equation 1 describe the formula for

a Gaussian with a one-dimensional input.

Where x is the input, µ is the mean, and is the standard

deviation. This produces the familiar bell curve shown below

in Figure 2, which is centered at the mean, µ. In the Gaussian

distribution, refers to the mean of the distribution. Here, it is

the prototype vector which is at the center of the bell curve.

Figure 2. A Gaussian function with µ=5, and =1.

For the activation function, (), the standard deviation, ,

is not important and the following two simplifying

modifications can be made. The first modification is to remove

the outer coefficient, 1 / (* sqrt (2 * π)). This term normally

controls the height of the Gaussian curve. Here, though, it is

redundant with the weights applied by the output nodes. During

training, the output nodes will learn the correct coefficient or

“weight” to apply to the neuron’s response. The second change

is to replace the inner coefficient, 1 / (2 * 2), with a single

parameter β which controls the width of the bell curve. Again,

in this context, the value of is not in itself important and what

is needed is some coefficient that controls the width of the bell

curve. Thus, after making these two modifications, the RBFNN

neuron activation function can be written as in equation 2 [12]:

There is also a slight change in notation here when we apply

the equation to n-dimensional vectors. The double bar notation

in the activation equation indicates that we are taking the

Euclidean distance between x and µ, and squaring the result.

For a 1-dimensional Gaussian, this simplifies to just (x – µ) 2.

It is important to note that the underlying metric here for

evaluating the similarity between an input vector and a

prototype is the Euclidean distance between the two vectors.

Also, each RBF neuron will produce its largest response when

the input is equal to the prototype vector. This allows to take it

as a measure of similarity, and sum the results from all of the

RBFNN neurons. As we move out from the prototype vector,

the response falls off exponentially. Every RBF neuron in the

network will have some influence over the classification

decision. The exponential fall off of the activation function,

however, means that the neurons whose prototypes are far from

the input vector will actually contribute very little to the result

[12].

Figure 3. Activation Function for different values of beta.

3.3 Probabilistic Neural Networks
Probabilistic neural networks (PNN) can be used for

classification problems. The following description of

probabilistic neural networks is taken from the Neural

Networks Toolbox documentation [11]. When an input is

presented, the first layer computes distances from the input

vector to the training input vectors, and produces a vector

whose elements indicate how close the input is to a training

input. The second layer sums these contributions for each class

of inputs to produce as its net output a vector of probabilities.

Finally, a compete transfer function on the output of the second

layer picks the maximum of these probabilities, and produces a

one for that class and a 0 for the other classes. The architecture

for this system is shown in Figure 4.

Figure 4. Probabilistic Neural Network Architecture.

It is assumed that there are Q input vector/target vector pairs.

Each target vector has K elements. One of these element is one

and the rest is zero. Thus, each input vector is associated with

one of K classes. The first layer input weights, IW1,1 are set to

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 5, 260 - 265, 2016, ISSN:- 2319–8656

www.ijcat.com 263

the transpose of the matrix formed from the Q training pairs,

P'. When an input is presented the ||dist|| box produces a vector

whose elements indicate how close the input is to the vectors

of the training set. These elements are multiplied, element by

element, by the bias and sent the radbas transfer function. An

input vector close to a training vector will be represented by a

number close to one in the output vector a1. If an input is close

to several training vectors of a single class, it will be

represented by several elements of a1 that are close to one. The

second layer weights, LW1,2, are set to the matrix T of target

vectors. Each vector has a one only in the row associated with

that particular class of input, and zeros elsewhere. The

multiplication Ta1 sums the elements of a1 due to each of the

K input classes. Finally, the second layer transfer function,

compete, produces a one corresponding to the largest element

of n2, and zeros elsewhere. Thus, the network has classified the

input vector into a specific one of K classes because that class

had the maximum probability of being correct.

3.4 Software Defect Prediction Datasets
The following NASA software defect prediction datasets

available publicly from the PROMISE repository are used in

this research:

 KC1: a C++ system implementing storage management

for receiving and processing ground data.

 KC2: same as KC1 but with different personnel.

 CM1: is a NASA spacecraft instrument written in “C”.

 JM1: A real-time predictive ground system written in

“C”.

 PC1: is s flight software for earth orbiting satellite

written in “C”.

Defect detectors are assessed according based on the following

confusion matrix:

 Modules actually has

defects

 No Yes

Classifier predicts no defects No a b

Classifier predicts some defects Yes c d

Measures used based on the above confusion matrix are:

 Acc, Accuracy = (a + d) / (a + b + c + d)

 PD, Probability of detection = d / (b + d)

4. IMPLEMENTATION and RESULTS
MATLAB neural network toolbox [11] was used to implement

the RBFNN and the PNN. For RBFNN, the newrb function is

used:

Ne t= newrb (P, T, goal, spread, MN, DF), where

 P is a m×n matrix of input vector, m is the number of

cost drivers for each project, and n is the number of

projects used in the training phase.

 T is 1×n vector of actual efforts for each project used in

the training phase.

 Goal: mean squared errors, 0.0001 is used.

 Spread: a value between 1.0 and 3.0 is used.

 MN: maximum number of neurons (default n)

 DF: number of neurons to add between displays, 2 is

used.

For the PNN, the newppnn function is used:

Ne t= newpnn (P, T, Spread), where

 P is a m×n matrix of input vector, m is the number of

attributes, and n is the number of input vectors used in

the training phase.

 T is 1×n vector of target vectors used in the training

phase.

 Spread: spread of radial basis functions (default = 0.1).

If spread is near zero, the network acts as a nearest

neighbor classifier. As spread becomes larger, the

designed network takes into account several nearby

design vectors.

Table 1 shows the results obtained from applying a radial

basis and a probabilistic neural networks to the PROMISE

datasets.

Table 1. Performance measures of applying RBFNN and

PNN to the PROMISE datasets.

 RBFNN PNN

Dataset Acc PD Acc PD

KC1 %77.0 %44 %83.1 %29.7

KC2 %78.0 %50 %83.4 %50.0

CM1 %82.5 %20 %87.3 %33.3

JM1 %77.0 %31 %77.5 %30.0

PC1 %89.2 %32 %91.6 %40.0

Figure 5 shows the accuracy and prediction power of radial

basis function neural net when applied to the PROMISE

datasets. It can been seen that accuracy obtained is very close

for the various datasets except for the PC1 dataset. As these

data sets use the same software attributes and collected by the

same processes, the difference in performance may be

attributed to the nature of the PC1 project. The performance

with respect to prediction of defects is not encouraging. This

issue need to be investigated further.

Figure 5. Accuracy and prediction power of RBF neural

network to the PROMISE datasets.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 5, 260 - 265, 2016, ISSN:- 2319–8656

www.ijcat.com 264

Figure 6. Actual, estimated, and PCA estimated efforts for

the Cocomo81 data set.

The accuracy and defect prediction ability of probabilistic

neural networks are depicted in Figure 6. Accuracy obtained is

slightly better than that obtained from RBFNN. However,

prediction ability is poor. However, it can be seen from Figures

7 and 8 that probabilistic neural nets performed consistently

better that radial basis function neural networks with respect to

accuracy and defect prediction ability.

Figure 7. Actual, estimated, and PCA estimated efforts for

the Maxwell data set.

Figure 8. Actual, estimated, and PCA estimated efforts for

the China data set.

5. CONCLUSIONS
The conclusions to be drawn from this work is that the neural

networks used in here provide an acceptable level of accuracy

but a poor defect prediction ability. Probabilistic neural

networks perform consistently better with respect to the two

performance measures used across all datasets. It may be

advisable to use a range of software defect prediction models

to complement each other rather than relying on a single

technique. Further investigation of the use of neural network

approached in software defect prediction is necessary to reach

a solid conclusion.

6. ACKNOWLEDGMENTS
I would like to thank Ajman University of Science and

Technology for providing the time and resources to conduct

this research.

7. REFERENCES
[1]. K. Gupta, S. Kang, “Fuzzy Clustering Based

approach for Prediction of Level of Severity of

Faults in Software Systems,” International Journal

of Computer and Electrical Engineering, vol. 3, no.

6, 2011.

[2]. M. Prasad, L. Florence, and A. Arya, “A Study on

Software Metrics Based Software Defect Prediction

using Data Mining and Machine Learning

Techniques,” International Journal of Database

Theory and Application, vol. 8, no. 3, 2015.

[3]. L. Madeyski, M. Jureczko, “Which process metrics

can significantly improve defect prediction

models? An empirical study,” Software Quality

Journal, vol. 23, issue 3, 2015.

[4]. R. S. Wahono, “A Systematic Literature Review of

Software Defect Prediction: Research Trends,

Datasets, Methods and Frameworks,” Journal of

Software Engineering, vol. 1, no. 1, 2015.

[5]. A. Okutan, O. T. Yildiz, “Software defect

prediction using Bayesian networks,” Empirical

Software Engineering, vol. 19, no. 1, 2014.

[6]. A. Kaur, I. Kaur, “Empirical Evaluation of Machine

Learning Algorithms for Fault Prediction,” Lecture

Notes on Software Engineering, vol. 2, no. 2, 2014.

[7]. M. Li, H. Zhang, R. Wu, and Z. H. Zho, “Sample-

based software defect prediction with active and

semi-supervised learning,” Automated Software

Engineering, vol. 19, no.2, 2012.

[8]. K. Gao, T. M. Khoshgoftaar, “Software Defect

Prediction for High-Dimensional and Class-

Imbalanced Data,” 23rd International Conference

on Software Engineering & Knowledge

Engineering, Eden Roc Renaissance, Miami Beach,

USA, 2012.

[9]. K. Purswani, P. Dalal, A. Panwar, and K. Dashora,

“Software Fault Prediction Using Fuzzy C-Means

Clustering and Feed Forward Neural Network,”

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 5, 260 - 265, 2016, ISSN:- 2319–8656

www.ijcat.com 265

International Journal of Digital Application &

Contemporary research, vol. 2, issue 1, 2013.

[10]. S. Haykin. Neural Networks: A Comprehensive

Foundation (2nd Edition). Prentice-Hall

International, 2013, pp. 43-45.

[11]. Neural Networks Toobox: User’s Guide, The

Mathworks, Inc., Natic, MA 01760-2098, 1992-

2002.

[12]. Liu, Radial Basis Function (RBF) Neural Network

Control for Mechanical Systems. Springer, 2013.

[13]. E. Praynlin, and P. Latha, “Performance Analysis

of Software Effort Estimation Models Using Radial

Basis Function Network,” International Journal of

Computer, Information, Systems and Control

Engineering, vol. 8, no. 1, 2014.

http://www.ijcat.com/

