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Abstract: Defects in modules of software systems is a major problem in software development. There are a variety of data mining 

techniques used to predict software defects such as regression, association rules, clustering, and classification. This paper is concerned 

with classification based software defect prediction. This paper investigates the effectiveness of using a radial basis function neural 

network and a probabilistic neural network on prediction accuracy and defect prediction. The conclusions to be drawn from this work is 

that the neural networks used in here provide an acceptable level of accuracy but a poor defect prediction ability. Probabilistic neural 

networks perform consistently better with respect to the two performance measures used across all datasets. It may be advisable to use 

a range of software defect prediction models to complement each other rather than relying on a single technique. 
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1. INTRODUCTION 
Defects in modules of software systems is a major problem in 

software development. Software failure of an executable 

product or non-conformance of software to its functional 

requirements is a software defect. A software defect is a fault, 

error, or failure in a software module that results in incorrect 

result or unexpected behavior. These defects can arise from 

mistakes and errors made during a software coding or in its 

design and few are caused by compilers producing incorrect 

code. Predicting faulty software modules and identifying 

general software areas where defects are likely to occur could 

help in planning, controlling and executing software 

development activities and save time and money [1]. In the 

context of software engineering, software quality refers to 

software functional quality and software architectural quality. 

Software functional quality reflects functional requirements 

whereas architectural quality emphasizes non-functional 

requirements. The objective of software product quality 

engineering is to achieve the required quality of the product 

through the definition of quality requirements and their 

implementation, measurement of appropriate quality attributes 

and evaluation of the resulting quality [2]. 

A software metric is a standard of a quantitative measure of the 

degree to which a software system or process possesses some 

property. Metrics are functions, while measurements are the 

numbers obtained by the application of metrics. Metrics allow 

us to gain understanding of relationships among processes and 

products and build models of these relationships. Software 

quality metrics are a subset of software metrics that focus on 

the quality aspects of the product, process, and project. Product 

metrics describe the characteristics of the product such as size, 

complexity, design features, performance, and quality level. 

Process metrics can be used to improve software development 

and maintenance such as the effectiveness of defect removal 

during development, the pattern of testing defects arrival, and 

the response time of the fix process. Project metrics describe 

the project characteristics and execution which includes the 

number of software developers, the staffing pattern over the life 

cycle of the software, cost, schedule, and productivity [3][4]. 

Software defect prediction refers to those models that try to 

predict potential software defects from test data. There exists a 

correlation between the software metrics and the existence of a 

fault in the software. A software defect prediction model 

consists of independent variables (software metrics) collected 

and measured during software development life cycle and a 

dependent variable (defective or non-defective software) [2]. 

2. LITERATURE REVIEW 
Wahono [4] provides a systematic literature review of software 

defect prediction including research trends, datasets, methods 

and frameworks. There are a variety of data mining techniques 

used to predict software defects such as regression, association 

rules, clustering, and classification. This paper is concerned 

with classification based software defect prediction. Various 

classification techniques have been used such as: 

• Neural Networks 

• Decision trees 

• Naïve Bayes 

• Support Vector Machines 

• Case Based Reasoning  

In their work, Okutan and Yildiz [5] used a Bayesian networks 

to determine the set of metrics that are most important and 

focus on them more to predict defectiveness. They used the 

Bayesian networks to determine the probabilistic influential 

relationships among software metrics and defect proneness. In 

addition to the metrics used in Promise data repository, they 

defined two more metrics, i.e. NOD for the number of 

developers and LOCQ for the lack of code quality. They extract 

these metrics by inspecting the source code repositories of the 

selected Promise data repository data sets. From the model they 

can determine the marginal defect proneness probability of the 

whole software system, the set of most effective metrics, and 

the influential relationships among metrics and defectiveness. 

Their experiments on nine open source Promise data repository 

data sets show that response for class (RFC), lines of code 

(LOC), and lack of coding quality (LOCQ) are the most 

effective metrics whereas coupling between objects (CBO), 

weighted method per class (WMC), and lack of cohesion of 

methods (LCOM) are less effective metrics on defect 

proneness. Furthermore, number of children (NOC) and depth 
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of inheritance tree (DIT) have very limited effect and are 

untrustworthy. On the other hand, based on the experiments on 

Poi, Tomcat, and Xalan data sets, they observed that there is a 

positive correlation between the number of developers (NOD) 

and the level of defectiveness. However, they stated that further 

investigation involving a greater number of projects is needed 

to confirm their findings.  

Kaur and Kaur [6] have tried to find the quality of the software 

product based on identifying the defects in the classes. They 

have done this by using different classifiers such as Naive base, 

Logistic regression, Instance based (Nearest-Neighbour), 

Bagging, J48, Decision Tree, Random Forest. This model is 

applied on five different open source software to find the 

defects of 5885classes based on object oriented metrics. Out of 

which they found only Bagging and J48 to be the best.  

Li and others [7] described three methods for selecting a 

sample: random sampling with conventional machine learners, 

random sampling with a semi-supervised learner and active 

sampling with active semi-supervised learner. To facilitate the 

active sampling, we propose a novel active semi-supervised 

learning method ACoForest which is able to sample the 

modules that are most helpful for learning a good prediction 

model. Our experiments on PROMISE datasets show that the 

proposed methods are effective and have potential to be applied 

to industrial practice.  

Gao and Khoshgoftarr [8], presented an approach for using 

feature selection and data sampling together to deal with the 

problems. Three scenarios are considered: 1) feature selection 

based on sampled data, and modeling based on original data; 2) 

feature selection based on sampled data, and modeling based 

on sampled data; and 3) feature selection based on original data, 

and modeling based on sampled data. Several software 

measurement data sets, obtained from the PROMISE 

repository, are used in the case study. The empirical results 

demonstrated that classification models built in scenario 1) 

result in significantly better performance than the models built 

in the other two scenarios. In their work, Purswani and others 

[9] have combined a K-means clustering based approach with 

a feed-forward neural network using PC1 data set from NASA 

MDP software projects. The performance was based on MAE 

and RMSE values. Results have shown that this hybrid 

approach is better than analytical approaches. 

Artificial Neural Networks (ANN) have been used in software 

defect prediction. ANNs are inspired by the way biological 

nervous system works, such as brain processes an information. 

An ANN mimics models of biological system, which uses 

numeric and associative processing. In two aspects, it 

resembles the human brain. First it acquires knowledge from its 

environment through a learning process. Second, synaptic 

weights that are used to store the acquired knowledge, which is 

interneuron connection strength. There are three classes of 

neural networks, namely single layer, multilayer feed forward 

networks and recurrent networks. Neural networks have been 

shown to perform well in classification tasks. However, there 

are different neural networks architectures. This paper 

investigates the effectiveness of using a radial basis function 

neural network and a probabilistic neural network on prediction 

accuracy and defect prediction compared with other 

approaches [10]. 

3. RESEARCH METHODOLOGY 
The most commonly used neural network architecture is the 

back propagation trained multilayered feed forward networks 

with sigmoidal activation function [11]. Each neuron in a MLP 

takes the weighted some of its input values. That is, each input 

value is multiplied by a coefficient, and the results are all 

summed together. A single MLP neuron is a simple linear 

classifier, but complex non-linear classifiers can be built by 

combining these neurons into a network. 

 

Figure 1. Radial Basis Function Neural Network 

3.1 Radial Basis Function Neural Network 
Another type of ANN that has been used in the literature is the 

radial basis functions neural network (RBFNN) [12]. A 

RBFNN can approximate any function which makes it suitable 

to model the relationship between inputs (the various cost 

drivers) and output (effort required). RBFNN performs 

classification by measuring the input’s similarity to examples 

from the training set. Each RBFNN neuron stores a 

“prototype”, which is just one of the examples from the training 

set. To classify a new input, each neuron computes the 

Euclidean distance between the input and its prototype. In other 

words, if the input more closely resembles class A prototypes 

than the class B prototypes, it is classified as class A. It has 

been show that RBFNN perform better than other types of 

neural networks based models [13]. In this paper we will use 

RBFNN to examine the effect of preprocessing datasets with 

PCA on the accuracy of software effort estimation models.  

3.2 RBFNN Implementation 
The following generic description of a RBF neural network is 

based on a tutorial given in [11][12]. Figure 1 describes a 

typical architecture of an RBFNN. It consists of an input vector, 

a layer of RBF neurons, and an output layer with one node per 

category or class of data. The input vector is the m-dimensional 

vector to be classified. The hidden layer consists of neurons 

where each one stores a “prototype” vector which is just one of 

the vectors from the training set. Each RBFNN neuron 

compares the input vector to its prototype, and outputs a value 

between 0 and 1 which is a measure of similarity. If the input 

is equal to the prototype, then the output of that RBFNN neuron 

will be 1. As the distance between the input and prototype 

grows, the response falls off exponentially towards zero.  

The neuron’s response value is also called its “activation” 

value. The prototype vector is also often called the neuron’s 
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“center”, since it’s the value at the center of the bell curve. The 

output of the network consists of a set of nodes, one per 

category to be classified or a value to be computed. Each output 

node computes a sort of score for the associated category. 

Typically, a classification decision is made by assigning the 

input to the category with the highest score. The score is 

computed by taking a weighted sum of the activation values 

from every RBF neuron. Because each output node is 

computing the score for a different category, every output node 

has its own set of weights. The output node will typically give 

a positive weight to the RBF neurons that belong to its 

category, and a negative weight to the others. 

Each RBFNN neuron computes a measure of the similarity 

between the input and its prototype vector (taken from the 

training set). Input vectors which are more similar to the 

prototype return a result closer to 1. There are different possible 

choices of similarity functions, but the most popular is based 

on the Gaussian function. Equation 1 describe the formula for 

a Gaussian with a one-dimensional input. 

 

Where x is the input, µ is the mean, and   is the standard 

deviation. This produces the familiar bell curve shown below 

in Figure 2, which is centered at the mean, µ. In the Gaussian 

distribution,  refers to the mean of the distribution. Here, it is 

the prototype vector which is at the center of the bell curve. 

 

Figure 2. A Gaussian function with µ=5, and  =1. 

For the activation function, ( ), the standard deviation, , 

is not important and the following two simplifying 

modifications can be made. The first modification is to remove 

the outer coefficient, 1 / ( * sqrt (2 * π)). This term normally 

controls the height of the Gaussian curve. Here, though, it is 

redundant with the weights applied by the output nodes. During 

training, the output nodes will learn the correct coefficient or 

“weight” to apply to the neuron’s response. The second change 

is to replace the inner coefficient, 1 / (2 * 2), with a single 

parameter β which controls the width of the bell curve. Again, 

in this context, the value of  is not in itself important and what 

is needed is some coefficient that controls the width of the bell 

curve. Thus, after making these two modifications, the RBFNN 

neuron activation function can be written as in equation 2 [12]: 

 

There is also a slight change in notation here when we apply 

the equation to n-dimensional vectors. The double bar notation 

in the activation equation indicates that we are taking the 

Euclidean distance between x and µ, and squaring the result. 

For a 1-dimensional Gaussian, this simplifies to just (x – µ) 2. 

It is important to note that the underlying metric here for 

evaluating the similarity between an input vector and a 

prototype is the Euclidean distance between the two vectors. 

Also, each RBF neuron will produce its largest response when 

the input is equal to the prototype vector. This allows to take it 

as a measure of similarity, and sum the results from all of the 

RBFNN neurons. As we move out from the prototype vector, 

the response falls off exponentially. Every RBF neuron in the 

network will have some influence over the classification 

decision. The exponential fall off of the activation function, 

however, means that the neurons whose prototypes are far from 

the input vector will actually contribute very little to the result 

[12]. 

 

Figure 3. Activation Function for different values of beta. 

3.3 Probabilistic Neural Networks 
Probabilistic neural networks (PNN) can be used for 

classification problems. The following description of 

probabilistic neural networks is taken from the Neural 

Networks Toolbox documentation [11]. When an input is 

presented, the first layer computes distances from the input 

vector to the training input vectors, and produces a vector 

whose elements indicate how close the input is to a training 

input. The second layer sums these contributions for each class 

of inputs to produce as its net output a vector of probabilities. 

Finally, a compete transfer function on the output of the second 

layer picks the maximum of these probabilities, and produces a 

one for that class and a 0 for the other classes. The architecture 

for this system is shown in Figure 4. 

 

Figure 4. Probabilistic Neural Network Architecture.  

It is assumed that there are Q input vector/target vector pairs. 

Each target vector has K elements. One of these element is one 

and the rest is zero. Thus, each input vector is associated with 

one of K classes. The first layer input weights, IW1,1 are set to 
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the transpose of the matrix formed from the Q training pairs, 

P'. When an input is presented the ||dist|| box produces a vector 

whose elements indicate how close the input is to the vectors 

of the training set. These elements are multiplied, element by 

element, by the bias and sent the radbas transfer function. An 

input vector close to a training vector will be represented by a 

number close to one in the output vector a1. If an input is close 

to several training vectors of a single class, it will be 

represented by several elements of a1 that are close to one. The 

second layer weights, LW1,2, are set to the matrix T of target 

vectors. Each vector has a one only in the row associated with 

that particular class of input, and zeros elsewhere. The 

multiplication Ta1 sums the elements of a1 due to each of the 

K input classes. Finally, the second layer transfer function, 

compete, produces a one corresponding to the largest element 

of n2, and zeros elsewhere. Thus, the network has classified the 

input vector into a specific one of K classes because that class 

had the maximum probability of being correct. 

3.4 Software Defect Prediction Datasets 
The following NASA software defect prediction datasets 

available publicly from the PROMISE repository are used in 

this research: 

 KC1: a C++ system implementing storage management 

for receiving and processing ground data. 

 KC2: same as KC1 but with different personnel. 

 CM1: is a NASA spacecraft instrument written in “C”. 

 JM1: A real-time predictive ground system written in 

“C”. 

 PC1: is s flight software for earth orbiting satellite 

written in “C”. 

Defect detectors are assessed according based on the following 

confusion matrix: 

 Modules actually has 

defects 

  No Yes 

Classifier predicts no defects No a b 

Classifier predicts some defects Yes c d 

Measures used based on the above confusion matrix are: 

 Acc, Accuracy = (a + d) / (a + b + c + d) 

 PD, Probability of detection  = d / (b + d) 

4. IMPLEMENTATION and RESULTS 
MATLAB neural network toolbox [11] was used to implement 

the RBFNN and the PNN. For RBFNN, the newrb function is 

used: 

Ne t= newrb (P, T, goal, spread, MN, DF), where  

 P is a m×n matrix of input vector, m is the number of 

cost drivers for each project, and n is the number of 

projects used in the training phase. 

 T is 1×n vector of actual efforts for each project used in 

the training phase. 

 Goal: mean squared errors, 0.0001 is used. 

 Spread: a value between 1.0 and 3.0 is used. 

 MN: maximum number of neurons (default n) 

 DF: number of neurons to add between displays, 2 is 

used. 

For the PNN, the newppnn function is used: 

Ne t= newpnn (P, T, Spread), where  

 P is a m×n matrix of input vector, m is the number of 

attributes, and n is the number of input vectors used in 

the training phase. 

 T is 1×n vector of target vectors used in the training 

phase. 

 Spread: spread of radial basis functions (default = 0.1). 

If spread is near zero, the network acts as a nearest 

neighbor classifier. As spread becomes larger, the 

designed network takes into account several nearby 

design vectors.  

Table 1 shows the results obtained from applying a radial 

basis and a probabilistic neural networks to the PROMISE 

datasets.  

Table 1. Performance measures of applying RBFNN and 

PNN to the PROMISE datasets. 

 RBFNN PNN 

Dataset Acc PD Acc PD 

KC1 %77.0 %44 %83.1 %29.7 

KC2 %78.0 %50 %83.4 %50.0 

CM1 %82.5 %20 %87.3 %33.3 

JM1 %77.0 %31 %77.5 %30.0 

PC1 %89.2 %32 %91.6 %40.0 

Figure 5 shows the accuracy and prediction power of radial 

basis function neural net when applied to the PROMISE 

datasets. It can been seen that accuracy obtained is very close 

for the various datasets except for the PC1 dataset. As these 

data sets use the same software attributes and collected by the 

same processes, the difference in performance may be 

attributed to the nature of the PC1 project. The performance 

with respect to prediction of defects is not encouraging. This 

issue need to be investigated further. 

 

Figure 5. Accuracy and prediction power of RBF neural 

network to the PROMISE datasets. 
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Figure 6. Actual, estimated, and PCA estimated efforts for 

the Cocomo81 data set. 

The accuracy and defect prediction ability of probabilistic 

neural networks are depicted in Figure 6.  Accuracy obtained is 

slightly better than that obtained from RBFNN. However, 

prediction ability is poor. However, it can be seen from Figures 

7 and 8 that probabilistic neural nets performed consistently 

better that radial basis function neural networks with respect to 

accuracy and defect prediction ability. 

 

Figure 7. Actual, estimated, and PCA estimated efforts for 

the Maxwell data set. 

 

Figure 8. Actual, estimated, and PCA estimated efforts for 

the China data set. 

5. CONCLUSIONS 
The conclusions to be drawn from this work is that the neural 

networks used in here provide an acceptable level of accuracy 

but a poor defect prediction ability. Probabilistic neural 

networks perform consistently better with respect to the two 

performance measures used across all datasets. It may be 

advisable to use a range of software defect prediction models 

to complement each other rather than relying on a single 

technique. Further investigation of the use of neural network 

approached in software defect prediction is necessary to reach 

a solid conclusion.   
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