
International Journal of Computer Applications Technology and Research

Volume 5– Issue 8, 551 - 555, 2016, ISSN:- 2319–8656

www.ijcat.com 551

An Optimized Search Engine for Academics

Abbas Fadhil Mohammed Ali AL-Juboori

Department of Computer Science

University of Kerbala

Kerbala, Iraq

Abstract: Search engines are among the most useful and high-profile resources on the Internet. The problem of finding information on

the Internet has been replaced with the problem of knowing where search engines are, what they are designed to retrieve, and how to

use them. The main function of An Optimized Academic Search Engine is to allow its users to search for academic files. It also allows

the users to specify query for searching phrases. The ranking and optimization was achieved for the result by the most website visit.

The system have been designed by using PHP, MYSQL, and WAMP server.

Keywords: Search engine; Optimization; Academic; Information retrieval; Ranking

1. INTRODUCTION
Search Engine technology was born almost at the same time

as the World Wide

Web [1], and has certainly improved dramatically over the

past decade and become an integral part of everybody’s Web

browsing experience, especially after the phenomenal success

of Google.

At the first glance, it appears that Search Engines have been

studied very well, and many articles and theories including the

paper by the founders of Google [2] have been published to

describe and analyze their internal mechanisms.

1.2 The Basic Components of a Search

Engine

All search engines includes:

1. A Web crawler.

2. A parser.

3. A ranking system.

4. A repository system.

5. A front-end interface.

These components are discussed individually below.

The starting point is a Web Crawler (or spider) to retrieve all

Web pages: it simply traverses the entire Web or a certain

subset of it, to download the pages or files it encounters and

save for other components to use. The actual traversal

algorithm varies depends on the implementation; depth first,

breadth first, or random traversal are all being used to meet

different design goals. The parser takes all downloaded raw

results, analyze and eventually try to make sense out of them.

In the case of a text search engine, this is done by extracting

keywords and checking the locations and/or frequencies of

them. Hidden HTML tags, such as KEYWORDS and

DESCRIPTION are also considered. Usually a scoring system

is involved to give a final point for each keyword on each

page. Simple or complicated, a search engine must have a way

to determine which pages are more important than the others,

and present

them to users in a particular order. This is called the Ranking

System. The most famous one is the Page Rank Algorithm

published by Google founders [2].

A reliable repository system is definitely critical for any

application. Search engine also requires everything to be

stored in the most efficient way to ensure maximum

performance. The choice of database vendor and the schema

design can make big difference on performance for metadata

such a URL description, crawling date, keywords, etc. More

challenging part is the huge volume of downloaded files to be

saved before they are picked up by other modules. Finally, a

front-end interface for users: This is the face and presentation

of the search engine. When a user submits a query, usually in

the form of a list of textual terms, an internal scoring function

is applied to each Web page in the repository [3],and the list

of result is presented, usually in the order or relevance and

importance .Google has been known for its simple and

straight forward interface, while some most recent

competitors, such as Ask.com, provide much richer user

experience by adding features like preview or hierarchy

displaying.

1.3 Search Engines Available Today

Other than well-known commercial products, such as Google,

Yahoo and MSN, there are many open source Search Engines,

for example, ASPSeek, BBDBot,Datapark Search, and

ht://Dig. Evaluating their advantages and disadvantages is not

the purpose of this thesis, but based on reviews and feedbacks

from other people [4], they are either specialized only in a

particular area, or not adopting good ranking algorithms, or

have not been maintained for quite a while. Another important

fact is that while most current search engines are focused on

text, there is an inevitable trend that they are being extended

to the multi-media arena, including dynamic contents, images,

sounds and others [5]. None of the open source engines listed

above has multimedia searching modules, and none of them is

flexible enough to add new ones without significant effort.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 8, 551 - 555, 2016, ISSN:- 2319–8656

www.ijcat.com 552

1.4 Issues in Search Engine Research

Design of Web crawlers: Web crawler, also known as robot,

spider, worm, and wanderer, is no doubt the first part of any

search engine and designing a web crawler is a complex

endeavor. Due to the competitive nature of the search engine

business, there are very few papers in the literature describing

the challenges and tradeoffs inherent in web crawler design

[6]. Page ranking system: Page Rank [2] .is a system of

scoring nodes in a directed graph

based on the stationary distribution of a random walk on the

directed graph. Conceptually, the score of a node corresponds

to the frequency with which the node is visited as an

individual strolls randomly through the graph. Motivated

largely by the success and scale of Google’s Page Rank

ranking function, much research has emerged on efficiently

computing the stationary distributions of Web-scale Markov

chain, the mathematical mechanism underlying Page Rank.

The main challenge is that the Web graph is so large that its

edges typically only exist in external memory and an explicit

representation of its stationary distribution just barely fits in to

main memory[7]. Repository freshness: A search engine uses

its local repository to assign scores to the Web pages in

response to a query, with the implicit assumption that the

repository closely mirrors the current Web [3]. However, it is

infeasible to maintain an exact mirror of a large portion of the

Web due to its considerable aggregate size and dynamic

nature, combined with the autonomous nature of Web servers.

If the repository is not closely synchronized with the Web, the

search engine may not include the most useful pages, for a

query at the top of the result list. The repository has to be

updated so as to maximize the overall quality of the user

experience. Evaluating the feedback from users: Two

mechanisms have been commonly used to accomplish this

purpose: Click Popularity and Stickiness [8]. Click Popularity

calculates how often a record in the returned list is actually

clicked by the user, and promote/demote its rank accordingly.

Stickiness assumes the longer an end user stays on a particular

page, the more important it must be. While being

straightforward, the implementation of these two algorithms

can be quite error prone. The data collecting the most difficult

part, as the server has to uniquely identify each user. This has

been further complicated by the fact that many people want to

manually or programmatically promote their own Web sites

by exploiting the weaknesses of certain implementations [9].

Two graduate students at UCCS [10][11] have been working

on an Image search engine and a text search engine,

respectively. Part of their work is to adopt the published Page

Rank algorithm [2], and the results are quite promising.

However, giving the experimental nature of these two

projects, they are not suitable for scaling up and not mature

enough to serve as a stable platform for future research. A

complete redesign and overhaul is needed.

1.5 The Original Page Rank algorithm

Google is known for its famous Page Rank algorithm, a way

to measure the importance of a Web page by counting how

many other pages link to it, as well as how important those

page themselves are. The published Page Rank algorithm can

be described in a very simple manner:

PR(A) = (1-d) + d (PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

In the equation above: PR(Tn): Each page has a notion of its

own self-importance. That’s “PR(T1)” for the first page in the

web all the way up to PR(Tn) for the last page. C(Tn): Each

page spreads its vote out evenly amongst all of its outgoing

links. The count, or number, of outgoing links for page 1 is

C(T1), C(Tn) for page n, and so onfor all

pages.PR(Tn)/C(Tn): if a page (page A) has a back link from

page N, the share ofthe vote page A gets is PR(Tn)/C(Tn). d:

All these fractions of votes are added together but, to stop the

other pages having too much influence, this total vote is

"damped down" by multiplying it by 0.85(the factor d). The

definition of d also came from an intuitive basis in random

walks on graphs. The idea is that a random surfer keeps

clicking on successive links at random, but the surfer

periodically “gets bored” and jumps to a random page. The

probability that the surfer gets bored is the dampening

factor.(1 - d): The (1 – d) bit at the beginning is a probability

math magic so the "sum of all Web pages" Page Rank is 1,

achieved by adding the part lost by the d(....) calculation. It

also means that if a page has no links to it, it still gets a small

PR of 0.15 (i.e. 1 – 0.85). At the first glance, there is a

paradox. In order to calculate the PR of page A, one must first

have the PR of all other pages, whose Page Rank is calculated

in the same way. The algorithm solves it by first assuming all

pages to have the same PR of 1, and at each iteration PR is

propagated to other pages until all PR stabilize to within some

threshold. Because the large dataset PR algorithm deals with,

measuring the stabilization of the PRs can be a difficult job

itself. Research indicates that in some cases PR can be

calculated in as few as 10 iterations [12], or it may take more

than 100 iterations [13]. Another important fact is that when a

page does not have outgoing links, the C(Tn), this page

becomes a dangling URL, and must be removed from the

whole picture. If such “pruning” was not done, the dangling

may have critical implications in terms of computation. First,

Page Rank values are likely to be smaller than they should be,

and might become all zero in the worst case. Second, the

iteration process might not converge to a fixed point [14] .

1.6 Crawler

A primitive implementation was written at very early stage of

the project to retrieve some data for other modules to work

with. While functioning correctly, this version rather is plain

in terms of features: it is single threaded and does not have

retrying, repository refreshing, URL hashing, smart checking

on dynamic URLs, smart recognizing on file types, and

avoiding crawler traps, etc. Its speed is also quite questionable

and can only retrieve about 2000 URLs per hour on a fast

network in the UCCS lab. Improvements can be made to add

the features above and improve its speed. Fortunately two

UCCS graduate students are already working on this area [14]

.

1.7 Parsers

Same as the crawler, a simple functional text parser was

written to glue the whole system together. It only parses

certain selected areas of a document such as Meta data, title,

anchor text, three levels of headers, and a short part at the

beginning of each paragraph. A complete full text parser with

satisfactory performance is in immediate need. Image

processing is not currently implemented [14] .

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 8, 551 - 555, 2016, ISSN:- 2319–8656

www.ijcat.com 553

2. INFORMATION RETRIEVAL AND

RANKING

Web search engines return lists of web pages sorted by the

page’s relevance to the user query. The problem with web

search relevance ranking is to estimate relevance of a page to

a query. Nowadays, commercial web-page search engines

combine hundreds of features to estimate relevance. The

specific features and their mode of combination are kept

secret to fight spammers and competitors. Nevertheless, the

main types of features at use, as well as the methods for their

combination, are publicly known and are the subject of

scientific investigation.

Information Retrieval (IR) Systems are the predecessors of

Web and search engines. These systems were designed to

retrieve documents in curated digital collections such as

library abstracts, corporate documents, news, etc.

Traditionally, IR relevance ranking algorithms were designed

to obtain high recall on medium-sized document collections

using long detailed queries. Furthermore, textual documents

in these collections had little or no structure or hyperlinks.

Web search engines incorporated many of the principles and

algorithms of Information Retrieval Systems, but had to adapt

and extend them to fit their needs. Early Web Search engines

such as Lycos and AltaVista concentrated on the scalability

issues of running web search engines using traditional

relevance ranking algorithms. Newer search engines, such as

Google, exploited web-specific relevance features such as

hyperlinks to obtain significant gains in quality. These

measures were partly motivated by research in citation

analysis carried out in the biblio metrics field. For most

queries, there exist thousands of documents containing some

or all of the terms in the query. A search engine needs to rank

them in some appropriate way so that the first few results

shown to the user will be the ones that are most pertinent to

the user’s need. The interest of a document with respect to the

user query is referred to as “document relevance.” this

quantity is usually unknown and must be estimated from

features of the document, the query, the user history or the

web in general. Relevance ranking loosely refers to the

different features and algorithms used to estimate the

relevance of documents and to sort them appropriately. The

most basic retrieval function would be a Boolean query on the

presence or absence of terms in documents. Given a query

“word1 word2” the Boolean AND query would return all

documents containing the terms word1 and word2 at least

once. These documents are referred to as the query’s “AND

result set” and represent the set of potentially relevant

documents; all documents not in this set could be considered

irrelevant and ignored. This is usually the first step in web

search relevance ranking. It greatly reduces the number of

documents to be considered for ranking, but it does not rank

the documents in the result set. For this, each document needs

to be “scored”, that is, the document’s relevance needs to be

estimated as a function of its relevance features.

Contemporary search engines use hundreds of features. These

features and their combination are kept secret to fight spam

and competitors. Nevertheless, the general classes of

employed features are Publicly known and are the subject of

scientific investigation. The main types of relevance features

are described in the remainder of this section, roughly in order

of importance. Note that some features are query-dependent

and some are not. This is an important distinction because

query-independent features are constant with respect to the

user query and can be pre-computed off-line. Query-

dependent features, on the other hand, need to be computed at

search time or cached [15].

3. SYSTEM DESIGN

The displayed search results based on the number of visits

.The system designed by using HTML, PHP and MYSQL.

And WampServer.

Our system divided into two sides, client side and server side

which contain the database of the system.

3.1. Database
Our of System consists of Database which is built in MYSQL.

The type of data entered is (PDF, DOC, and PPT).it contains

six fields which are explained in the table (1) blow:-

Table (1): Database of the system

The description of the table above explained as follows:

1-site_id: it is the primary key of database.

2-site_title: contain Web addresses.

3- Site_link: contain URLs.

4- site_keywords : It contains reserved words that are on the

basis of which Search.

5- Site_desc: It has a simple description of the sites.

6- site_counter : A dynamic where it calculates the number of

visits to the site.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 5– Issue 8, 551 - 555, 2016, ISSN:- 2319–8656

www.ijcat.com 554

4. SYSTEM IMPLEMENTATION

The following three steps in the process are:

1. Entering the word, or phrase of the file to be

searched.

2. Getting the search results, or receiving the list of

found documents back to terminal.

3. Finding the right file, or the information you were

looking for and downloading to our own terminal.

This system can be implement by opening the first page of the

system site as shown in figure(1) :

Figure (1):the Home page

We can write the keyword we need in search bar (any words

or phrase) to search about, for example (Computer Science)

and after that click on (Search) , the search results for that

keyword will appear as shown in figure(2):

Figure (2): (computer science)Search results

Another example (Thesis) as shown in figure (3):-

Figure (3): (Thesis) Search results

Ranking used in this system depending on the most Visit of

any website included in the database. For example when we

write (Articles) in the search bar, after that the results appear.

If we enter the link time (Read the 5 Most Download Articles

in 2011 for Free!) as shown in figure below (4):

Figure (4): Search results before ranking

for the first time, and then visit this link many times more

than the other links, the ranking of the search result will be

changed when we write the same keyword in the search bar

as shown in figure (5)below:

http://www.ijcat.com/
http://localhost/se0/goto.php?ul=www.tandf.co.uk/journals/pdf/top10/WITPdown.pdf&id=26
http://localhost/se0/goto.php?ul=www.tandf.co.uk/journals/pdf/top10/WITPdown.pdf&id=26

International Journal of Computer Applications Technology and Research

Volume 5– Issue 8, 551 - 555, 2016, ISSN:- 2319–8656

www.ijcat.com 555

Figure (5): Search results after ranking

5. CONCLUSIONS

1-In this paper we conclude that there is an ability to search

for information has already been entered into the database.

The ranking in our search engine was achieved by using the

most visit of any website included in the database. The

suggestions we recommend to be achieved in the future works

is to add Boolean operators to help in the search and increase

the size of the database, also we can recommend to choose

other Ranking algorithms to include the system.

6. REFERENCES

[1] Wall, Aaron. History of Search Engines & Web History.

Visited November, 2005.

[2] Brin, Sergey and Lawrence Page. The Anatomy of a

Large-Scale Hypertextual Web Search Engine. Proceedings of

the Seventh International Conference on World Wide Web 7,

Brisbane, Australia, Pages 107 – 117, 1998

[3] Pandey, Sandeep and Christopher Olston, User-Centric

Web Crawling, International World Wide Web Conference,

Chiba, Japan, May 10-14, 2005.

[4] Morgan, Eric. Comparing Open Source Indexers. O'Reilly

Open Source Software Conference, San Diego, CA, July 23-

27, 2001.

 [5] Wall, Aaron. Future of Search Engines. Visited

November, 2005.

 [6] Allan Heydon, Marc Najork, Mercator: A scalable,

extensible Web Crawler, World Wide Web 2, Pages 219-229,

1999

[7] McSherry, Frank, A Uniform Approach to Accelerated

Page Rank Computation, International World Wide Web

Conference, Chiba, Japan, May 10-14, 2005.

[8] Nowack, Craig. Using Topological Constructs To Model

Interactive Information Retrieval Dialogue In The Context Of

Belief, Desire, and Intention Theory. Dissertation of Ph.D.

Pennsylvania State University, Pennsylvania, 2005.

 [9] Harpf, Lauri. Free website promotion tutorial. Visited

Nov, 2005.

http://www.apromotionguide.com/

[10] Jacobs, Jing. CatsSearch An Improved Search Engine

Design For web pages in the UCCS Domain. University Of

Colorado at Colorado Springs, December, 2005.

[11] Kodavanti, Apparao. Implementation of an Image Search

Engine. University Of Colorado at Colorado Springs,

December, 2005.

[12] Haveliwala, Taher H. Effcient Computation of Page

Rank. Technical Report. Stanford University, California, 1999

 [13] Kamvar Sepandar D, Taher H. Haveliwala, Christopher

D. Manning, and Gene H. Golub. Extrapolation methods for

accelerating Page Rank computations. The 12th International.

Conference on the World Wide Web, pages 261–270, 2003.

[14] Kim, Sung Jin and Sang Ho Lee. An improved

computation of the Page Rank algorithm. The European

Conference on Information Retrieval (ECIR), pages 73–85,

2002.

[15] Hugo Zaragoza and Marc Najork Web Search Relevance

Ranking. Yahoo Research Group, Barcelona, Spain. 2009.

http://www.ijcat.com/
http://www.apromotionguide.com/

