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Abstract: Physical activity recognition using embedded sensors has enabled by many context-aware applications in different areas. In 

sequential acceleration data there is a natural dependence between observations of movement or behavior, a fact that has been largely 

ignored in most analyses. In this paper, investigate the role that smart devices, including smartphones, can play in identifying activities 

of daily living. Monitoring and precisely quantifying users’ physical activity with inertial measurement unit-based devices, for 

instance, has also proven to be important in health management of patients affected by chronic diseases, e.g. We show that their 

combination only improves the overall recognition performance when their individual performances are not very high, so that there is 

room for performance improvement. We show that the system can be used accurately to monitor both feet movement and use this 

result in many applications such as any playing. Time and frequency domain features of the signal were used to discriminate between 

activities, it demonstrates accuracy of 93% when employing a random forest analytical approach. 
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1. INTRODUCTION 

STEOARTHRITIS (OA) is a degenerative disease causing pain, 

joint stiffness, loss of function and disability [1]. The knee is one of 

the most commonly affected joints disabling a large proportion of 

the adult population over a range of daily activities [2].  

Exercise is recognized as a key component in the management of 

knee OA [3] but its effectiveness in restoring joint function is 

hampered by a lack of individualized programs and by low treatment 

fidelity. Research studies have quantified the effect of different 

treatment options in reducing pain and disability reporting small to 

moderate effects over control groups [4]-[8]. However, the delivered 

exercise therapies were not tailored to patients’ specific impairments 

or their aspirations, and this may be why none of the studies have 

reported a definite impact of exercise on quality of life and functional 

outcomes. Furthermore, the long-term impact of exercise on cessation 

of the intervention is frequently lost or significantly reduced or 

simply not reported [8], [9].  This indicates a paucity of longitudinal 

studies into the effect of optimal rehabilitative approaches and even 

fewer studies addressing how to optimize the short and long-term 

exercise compliance in this population group. 

Individualized programs can be obtained based on objective 

measures of patients’ joint functional status; however, the routine 

collection of these measures is rare with the output seldom accessible 

or made meaningful to healthcare professionals. Simple solutions to 

enhance compliance may be achieved by solving organizational and 

accessibility issues (e.g. location, time, work and other commitments) 

and addressing cost concerns. Furthermore, providing patients with 

marker of performance and ensuring a correct understanding of the 

content of rehabilitation will keep them motivated while supporting 

self-management [10], [11]. 

It is expected that by prescribing patients exercise regimes based 

on sound biomechanical assessed deficits and providing them with 

targets and feedback on performance will enhance compliance and 

hence treatment effectiveness [12], [13]. Objective measures of knee 

functional status, referring mainly to knee 3-D angles, are generally 

obtained in laboratories using expensive, time consuming and 

difficult to operate equipment. Moreover, the retrievable information 

is related to an artificial environment over a short period of time. On 

the other hand, the clinical benefit for long-term monitoring of 

patients in everyday situations has been advised and it has been 

proposed that it should be used to inform treatment [14], [15]. Long-

term monitoring within each patient environment can only be 

possible with the use of an ambulatory monitoring system. However, 

to be effective, this technology needs to be able to inform clinicians 

on patients’ joint status and, be simple and easy to use for patients 

and allow them to gain feedback on their performance. Despite the 

use of wearable technology and particularly inertial measurement 

units (IMUs) gaining popularity within the research environment, 

clinical uptake remains poor [16], [17].  

The main advantage of using wearable devices over standard 

laboratory-based motion analysis systems to track joint movement 

relates to the portability of the instrument allowing for prolonged data 

collection in more realistic environments. However, their everyday 

use is still limited by poor patient acceptance. To obtain knee angles 

from IMUs two devices have to be positioned on the shank and thigh 

of the subject to extrapolate the relative movement between the two 

segments. The output accuracy is affected by drift from required 

integration of acceleration and angular velocity values and, artefacts 

errors due to skin movement and misalignments [18], [19]. In 

addition to this, their use still requires a certain level of expertise that 

can limit wide adoption especially in the ageing population. More 

simple activity monitors based on accelerometry are common and 

readily accessible on the market for a range of applications. However, 

the measures obtained are frequently limited to how active a patient 

is, and few are able to discriminate between activity performed, or 

able to record step counts and distance travelled. Although important 

for general activity levels, these parameters do not represent 

clinically relevant measures directly related to knee joint status. For 

rehabilitative purposes, it would be important to be able to monitor 

knee function (e.g., Knee kinematics).  

Within our group we explored the use of a flexible conductive 

polymer material as a sensing modality for knee movement [20]. 

Laboratory experiments were conducted to evaluate the polymer 

sensor in measuring flexion and extension angles of the knee in a 

controlled environment where the knee movement was restricted and 

standardized with a dynamometer. A subject specific algorithm was 

defined to obtain measures of knee flexion and extension angles to an 

accuracy of 1° with the gold standard [20]. The previous study 

characterized the sensor and validated it in a controlled laboratory 

setting, but no investigations were conducted to evaluate the sensor’s 

response to free, unconstrained movement. With the intended use of 

the sensor for knee rehabilitation in the home and clinics, further 

testing is required to evaluate the sensor capability to follow knee 

movement patterns in dynamic real life conditions. It was also 

essential that the sensor had low power requirement to facilitate 

continuous data acquisition. 

The aim of this study was to investigate the reliability of the 

response of the sensor to everyday tasks and to evaluate its potential 

towards assessing joint range of motion and activity identification. To 

support out-of-the laboratory assessments, wearable electronics were 

developed in the form of a sensing node to allow wireless data 

acquisition from the sensor. Design constraints included the need for 

the system to be unobtrusive, low cost, low power and simple to use. 

This paper focuses on the evaluation and exploitation of the system in 

reference to the output from a flexible polymer sensor embedded in a 

pair of leggings. The main contributions relate to the system ability to 

demonstrate activity discrimination based on a single passive 

polymer sensor and simultaneously derive a surrogate of knee range 

of motion from the sensor output to comprehensively describe knee 

functional status during a specific activity context.  

O 

http://www.ijcat.com/


International Journal of Computer Applications Technology and Research 

Volume 5– Issue 9, 561 - 569, 2016, ISSN:- 2319–8656 

 

www.ijcat.com  570 

 
Fig.1. Photographs showing (A) wireless node positioned in the back pocket, 

(B) sensor integration to a pair of leggings and (C) detail of flexible sensor 

unit. (D) Photos showing node package with overall dimensions (left) and 

assembly of printed circuit boards (right). 

Two exploitation cases were considered: (i) one that necessitates a 

subject specific calibration, based on a simplified approach to activity 

discrimination and (ii) an approach that eliminates the individual 

calibration but incorporates computational resources for a machine 

learning approach. Individual subject activity discrimination was 

successfully achieved based on an innovative combination of two 

spectral features, median frequency and total power of the spectrum, 

while group classification was achieved with high accuracy based on 

a random forest algorithm. Independently of the exploitation set-up of 

choice, by proving the capability of the system in monitoring knee 

function in everyday life scenarios, with an appropriate feedback 

interface, it will be a valuable tool to support knee rehabilitation by 

providing objective measure of function to clinicians as well as 

enhancing long term patients’ compliance and promoting self-

management. 

2. METHOD 

2.1 Smart Leggings 

The sensor unit (Fig.1.C) consists of a conductive flexible 

polymeric material in the form of a thin (0.2 mm) rectangular strip 

(50 mm x 100 mm). The conductivity is provided by the presence of 

graphitized carbon black Nano powder particles (< 500 nm) in a 

polyurethane substrate. The ratio between the two compounds in the 

conductive polymer composite is 20:80. Two connectors were 

attached at each end of the sensor unit. The sensor was secured on to 

a pair of commercially available leggings (92% polyester, 8% elastin) 

(Fig.1.B), in a pre-stretched condition, to coincide with the anterior 

aspect of the knee joint. The composite material has a resistor like-

function so when stretched, it changes resistance. Knee motion 

stretches the sensor allowing for a direct sensing modality for knee 

flexion/extension movement. 

2.2 Data Acquisition: Multi Sensors Wireless Platform 

Data from the sensor unit were acquired by means of a custom 

wireless sensing node (Fig.1.A, D). The developed sensor node 

consists of three printed circuit board (PCB) tiers (Fig.1.D), each 

with its own functionality as follows: 

i. PCB 1: analogue interface tier accommodating circuitry for 

the flexible sensor unit; a Wheatstone bridge configuration 

is used to detect resistive changes within the flexible 

sensor, the signal is then further amplified by a micropower 

precision instrumentation amplifier (LT1789, Linear 

Technology, Milpitas, CA, USA) before being converted to 

digital values; 

ii. PCB 2: core tier with a microprocessor (64MHz PIC18F 

family, Microchip Technology Inc., Chandler, AZ, USA) 

and an inertial measurement unit (IMU) embedding a 3 axis 

accelerometer (ADXL345, Analog Devices Inc, Norwood, 

MA, USA) and 3 axis gyroscope (L3G4200D, 

STMicroelectronics, Geneva, Switzerland);  

iii. PCB 3: connectivity tier incorporating a small form factor, 

low power Bluetooth module (RN42, Microchip 

Technology Inc., Chandler, AZ, USA) allowing wireless 

data transmission for distances up to 20 meters. Data were 

acquired synchronously from the IMU and flexible sensor 

unit at 122 Hz sampling frequency; 

The PCB tiers are encased in a box with sides of 35 mm x 50 mm x 

40 mm (width x length x height). The node operates on a 3 V battery 

and its overall mass is 54g. During testing the node was placed on the 

back pocket of the leggings. Thin wires sewn along the seam of the 

leggings connected the sensor unit to the PCB 1 of the wireless node. 

2.3 Participants 

Twelve healthy subjects with no reported knee pain (Age: 27 ± 5 

years, Height: 1.7 ±0.1 m, Body Mass: 66 ± 12 kg) took part in the 

study. The sample size was defined in accordance with earlier 

recomendations [21]. For a power of 80% and to achieve a specificity 

of 95%, and assuming test-retest reliability of 0.9 for the sensor 

outputs with two observations, a sample size of 12 would suffice to 

allow for observations of test-retest reliability of 0.6 or greater. 

Written informed consent was obtained from all subjects prior 

testing, following attainment of ethical approval. Ethical approval 

was granted by the Imperial College Ethics Research Committee. 

 

2.4 Experimental Procedures 

Each participant was tested on two separate occasions with at least 

a one-week gap between sessions, referred in the text as Test 1 and 

Test 2. A test session consisted of the participant walking and 

running both indoors and outdoors, and going up and down 

consecutive flights of stairs. The indoor test took place along a 30 m 

corridor; and participants were asked to walk and run this distance 10 

times. The stair test was conducted in a public building back stair 

case using 5 consecutive flights of stair with 10 steps each (width 

30cm, height 16cm) with subjects being requested to go up and down 

the stairs two times. This allowed 10 data sets for both ascending and 

descending the stairs. The outdoors test was conducted in a quiet 

nearby park and subjects were instructed to walk and run without 

stopping for two minutes, twice, with sufficient rest periods allowed 

between tests. Each subject performed the different activities at their 

preferred, comfortable speed. During each session, participants were 

asked to wear the smart leggings and to position the sensor unit to 
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cover the anterior aspect of their right knee. This imitates the use of 

the system in home environments where users are unsupervised 

allowing to evaluate the system in real condition. The sensing node 

was positioned by the investigator in the back pocket of the leggings 

once Bluetooth connection was established with a notebook (HP Mini 

5103 Notebook PC, Hewlett-Packard Company, Palo Alto, CA, 

USA) for data acquisition. A test session lasted approximately 45 

minutes. 

2.5 Data Pre-Processing and Sensor Output 

The wearable system allows for simultaneous multisensor data 

collection, but for the aim of the current study only the flexible 

sensor unit output was analyses. The use of accelerometer and 

gyroscopes data is already well established and widely accepted for 

activity monitoring whereas, the novelty of the present study resides 

in the ability to provide direct information of knee function while 

characterizing activities performed using a single passive polymer 

sensor. Data were pre-processed by filtering and having the DC offset 

removed from the signal output. A 4th order Butterworth filter with 

10Hz cut-off frequency was used. Time histories of the signal outputs 

were analysed to investigate the capability of the sensor to monitor 

dynamic knee movement. The range of the signal output in the time 

domain was evaluated. This range can be considered as a surrogate of 

the knee range of motion, since the sensor stretches as the knee 

bends, generating the output which allows mapping the knee 

flexion/extension movement. Range was normalized to each subject’s 

leg length [22]. Test-retest reliability of the signal output range was 

assessed by mean of intra-class correlation as defined by Shrout and 

Fleiss [23] and examined accordingly to the classification of Landis 

and Kock [24]. Bland and Altman tests statistics [25] were performed 

to provide a measure of agreement between tests. All data processing 

and statistical analysis were completed with Matlab (The MathWorks 

Inc., Natick, MA, USA) and SPSS (SPSS Inc., Chicago, IL, USA) 

software. 

 

2.6 Spectral Domain Activity Discrimination 

A frequency domain approach was adopted to discriminate between 

activities. A single-sided power spectral density (PSD) analysis was 

performed using the periodogram method over the whole signal 

recorded per trial. From the PSD function ( ), total power of the 

spectrum and median frequency (MDF) were computed. The total 

power of the spectrum ( ) is the cumulative power of the signal: 

 

     (1)  

 

The median frequency is the frequency dividing the signal power 

spectrum into two equal halves: 

 

   (2) 

       

These two parameters were used as discriminative features to 

classify tasks performed. This approach was taken to verify if a 

simple discriminative algorithm using only these two parameters 

would allow activity differentiation instead of using computationally 

complex algorithms involving machine learning techniques. 

 

 

  
Fig.2. Graph showing the relationship between accuracy and number of trees. 

descent (upper right), running (lower left) and, walking (lower right). 

 

Table 1 

TEST-RETEST RELIABILITY AND BLAND AND ALTMAN TEST RESULTS 

 Test-Retest Reliability  Bland and Altman Test 

 

ICC Coefficient 

95% CI 

(Lower,Upper 

Bound) 

 
 

(mV/m) 

 

(mV/m) 

 

(mV/m) 

Repeatability 

Coefficient 

(mV/m) 

95% LOA 

(Lower,Upper 

Bound) 

Run Indoors 0.958 0.860;  0.988  11.0 11.2 3.2 21.9 -10.9; 32.9 

Run Outdoors 0.984 0.945; 0.995  1.0 11.8 3.4 23.1 -22.1; 24.1 

Walk Indoors 0.897 0.657; 0.970  -0.5 8.9 2.6 17.5 -18.0; 17.0 

Walk 

Outdoors 
0.958 0.861; 0.988  -0.9 4.2 1.2 8.3 -9.2; 7.4 

Stair Ascent 0.867 0.557; 0.961  -3.6 14.4 4.2 28.2 -31.9; 24.6 

Stair Descent 0.938 0.796; 0.982  -0.6 9.3 2.7 18.1 -18.8; 17.5 
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Fig.3. Sensor output time histories during stair ascent (upper left), stair  

 

 

The sensor capability in discriminating activity was analysed treating 

participants individually as well as a group for the two tests 

conducted. This was done to investigate if a general activity detection 

algorithm could have been defined based on a simple classification 

method that would not require subject specific calibration (e.g.: 

identify specific thresholds for each subject to allow real time 

classification). Median frequency and total power of the spectrum 

were normalized to each individual’s anthropometric features (leg 

length, body mass and height) when comparing data across 

participants using the method proposed by Hof [22]. Data analysis 

was performed using Matlab software. The data showed the need for 

subject specific calibration when only MDF and power of the 

spectrum were used for activity classification as no general-purpose 

thresholds could be defined that would have satisfied all participants’  

data. Machine learning was then utilized to tackle this problem and 

overcome the necessity of a baseline subject calibration.  

 

2.7 Random Forest Activity Classification 

A Random Forest [26] was used to develop a generalized 

classification method to discriminate between activities based on 

features extracted from the flexible sensor output. Random forests are 

statistical modern machine learning techniques that allow accurate 

classification of large datasets that are screened by independent trees, 

in this instance, classification trees, which form the forest. Each tree 

develops upon a set of rules based on discriminatory features 

randomly selected from measured parameters. Random forests 

perform feature selection automatically to develop each tree that can 

alternatively be expressed as set of rules. In each node of a tree, a 

decision is made based on one feature. The random forest combines 

the response of each tree via majority voting to obtain the ultimate 

classification response. 

The random forest employed in this study is an ensemble of 10 

classification decision trees. The number 10 was decided by verifying 

that increasing the number of trees did not affect  
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Fig.4. Sensor output range as surrogate of knee range of motion during the 

different activities for both tests conducted. 

 

accuracy significantly (Fig.2) but, increased the computational 

complexity of the method. Our aim is to keep the complexity of the 

data processing to a minimum to allow a timely real time data 

visualisation in the future. 

The ensemble classifies activities into walking, running, and 

ascending and descending stairs. The ensemble was provided with 

features from time and frequency domain analysis of the sensor 

output namely: MDF, power of the spectrum, peak frequency, 

maximum spectral amplitude and output range of the signal in the 

time domain. Anthropometric parameters, gender, age, height and leg 

length, were also utilised. 90% of  the data were randomly selected 

and used for the construction of the trees and 10% of the data were 

used to test the algorithm. 

Performance metrics consisting of accuracy, specificity, sensitivity, 

and F measure were computed from the confusion matrix to evaluate 

the classification method. This analysis was performed using Matlab 

Statistics Toolbox. 

3. RESULTS 

Typical time series of the sensor output are plotted in Fig.3 for the 

different activities performed, 20 s time frames are depicted. These 

plots show that the sensor is able to follow the knee movement during 

dynamic tasks by capturing the knee flexion/extension repetitions 

throughout the trials. The output, presented in mV, can thereby be 

considered a surrogate of knee sagittal kinematics. 

The range of the measured voltage from the sensor is shown in the 

bar charts in Fig. 4 for both tests conducted for each subject. No 

statistical significant differences were found within subject (p > 

0.05).  This range could be considered a surrogate of knee range of 

motion as it quantifies the amount the sensor has stretched due to 

knee movement during each performed task. 

An almost perfect test-retest reliability (ICC > 0.8) was obtained 

for the output range among all participants (Table I). Bland and 

Altman test results in Table I and Fig.5 demonstrate good to high 

agreement between tests with the majority of  
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Fig.5. Bland and Altman plot of agreement between Test 1 and 2. Dashed 

lines represent upper and lower limit of agreement and the solid line 

represents the mean difference. 
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Fig.6. Activities discrimination using MDF and Total Power of the spectrum. 

Filled markers refers to Test 1, unfilled ones to Test 2 for one participant. The 

bars indicate ± one standard deviation. 

 

data points falling within the locus of agreement. The highest biased 

(d  =11 mV/m) was observed for running indoors indicating higher 

variations occurred in this task. This could be related to the intrinsic 

variability of the movement but also to the fact that the sensor may 

have been prone to major movement artefacts with respect to the 

underlying knee during this fast task which was repeated 10 times.  

Fig.6 shows an example of activity clustering for one participant 

when only using MDF and the total power of the spectrum as 

discriminative features. Comparable results are obtained for Test 1 

and 2. Similar clustering was observed for other participants; 

summary values of normalized MDF and total power of the spectrum 

(with standard deviation indicated in brackets below each value) are 

shown in Table 2. 
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Fig.7. Activities discrimination using MDF and Total Power of the spectrum. 

Filled markers refers to Test 1, unfilled ones to Test 2 for all participants. The 

bars indicate ± one standard deviation. Data are normalised to subject specific 

anthropometric parameters. 
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Fig.8. Histogram showing the frequency of the features selected by the 

Random forest for its decision trees. 

 

Considering the participants as a group led to the discriminatory 

ability of the MDF and power of the spectrum to be lost (Fig. 7). This 
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occurred despite normalization of the outputs to subject specific 

anthropometric parameters [22]. 

Subject specific calibration is therefore required if these two 

parameters are to be used alone to identify activities and define 

thresholds boundaries for the different activities performed.  

The possibility of using a machine learning approach, in particular 

a random forest algorithm, was investigated to allow a generalized 

discrimination between activities from the sensor output, avoiding the 

need for subject specific calibration. An ensemble of 10 trees was 

created using 9 features (Table 2).  

 

Table 2 

RANDOM FOREST PERFOMANCE METRICS AND FEATURES 

Accuracy 92.8% 

 Run Walk 
Stair 

Descent 

Stair 

Ascent 

Sensitivity 1 1 0.75 NaN 

Specificity 1 1 1 0.92 

F-score 1 1 0.85 0 

# of 

features 

9   

Features 

Median Frequency, Total Power of the 

Spectrum, Peak Frequency, Max Amplitude, 

Output Range, Body Mass, Height, Leg 

Length, Age 

 

Moreover, data from the two tests were combined to allow for more 

data during the training phase of the random forest. The ensemble, 

when tested with the remaining 10% of the sample data, performed 

well with an accuracy of 93%. This implies 93% of the time activities 

were correctly identified. Detailed performance metrics of the 

ensemble are shown in Table III. 

Fig.8 shows the frequency of occurrence of features automatically 

selected by the decision trees (i.e.: how many times each feature is 

picked across all nodes for all trees). Among these features MDF is 

the most important one, whereas anthropometric parameters, and 

particularly body mass and height, do not play an important role in 

the classification process. 

4. DISCUSSION 

A novel wearable system has been presented that allows 

simultaneous estimation of a surrogate for knee range of motion and 

identification of activity type performed. The sensor unit was able to 

reliably detect knee movement during dynamic activities at different 

speeds as shown in Table I. The excellent reliability demonstrated the 

sensor is not affected by movement artefacts allowing for valid 

results despite don-doff of the system and participants positioning it. 

This offers the potential of the system to support rehabilitation 

however, without further work to understand the relationship of the 

surrogate to knee range of motion it may have limited utility as an 

outcome measure at this stage.  

 The time series waveforms of the sensor output (Fig.3) recall 

typical knee kinematics curves reported in the literature [27], [28].  

This indicates the potential to use the sensor output as a surrogate for 

knee sagittal kinematics, as the output is the direct response to 

stretching caused by knee flexion/extension movements, thereby 

permitting acquisition of data from unconstrained environments over 

extended periods of time. It follows that the range of motion required 

to perform activities of daily living can also be inferred from the 

sensor output. Repetitive patterns (Fig.4) were observed among 

participants in the sensor output range reflecting the knee joint 

angulation expected for the activities performed [27], [28], lower 

values indicate the sensor has been stretched less responding to the 

demand of the activity in requiring less knee flexion/extension. The 

findings show that walking was the activity that required the smallest 

range of movement (smaller stretching of the sensor) whereas stair 

ascent the one with the greatest range of knee motion (greater 

stretching of the sensor) in agreement with range patterns reported in 

biomechanical studies [27], [28]. For three of the participants tested, 

however, running showed the highest stretching span as can be 

observed from Fig.4, this may be due to the fact that these 

participants were recreational sport runners and this may be 

associated to a greater knee flexion/extension range of motion [29]. 

The knee range of motion is expressed in mV for this preliminary 

investigation as a first step to identify the capability of the sensor to 

track knee movement dynamically; the next step will be to identify 

the relation between the sensor output (mV) and knee angles (°) 

captured through a 3-D motion analysis system to allow the 

representation of the output in degrees. However, the possibility to 

use the output in mV as representation of knee sagittal angles will be 

explored further together with the clinical interpretation. A database 

of healthy knees movement, monitored in mV, can be acquired to 

allow for comparison with pathological knees in the future or, 

similarly, if we have a baseline measure of a patient knee angles in 

mV based on the sensor data and having proved, in this study, the 

accuracy and repeatability of the sensor outputs, the sensor can be 

used to monitor knee function over time as relative comparison to 

each individual baseline measure. This also aligns with the idea that 

functional improvements are relative and specific to each subject. 

Therefore, there exists a situated use for the sensor in monitoring 

knee movement also if expressed in mV. 

Knee range of motion is often evaluated during the clinical 

assessment of patients with knee OA with the use of goniometers via 

a static end range of motion passive test and has frequently been 

reported as clinically significant parameter in studies of the knee OA 

population [30]. However, such data and the majority of research data 

are one off measurements performed within a laboratory or clinical 

environment and as such not representative of everyday tasks in real 

life settings. In this study, differences in participants’ performances 

could be appreciated between a task performed indoor or outdoor. An 

improved understanding of knee function, in real life contexts would 

permit more effective evaluation of a patient’s functional limitations 
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that could be used to prescribe targeted exercise regime to improve 

specific functions and follow-up patients’ progresses. This may be 

facilitated by the described system. The system allows continuous 

long-term monitoring of the knee, which can be expressed as 

surrogate of knee range of motion, and furthermore it allows the 

context of the activity to be identified accurately.  

Firstly, a simple classification method using MDF and total power 

of the spectrum was investigated for the identification of activity. 

This proposed method prioritized the simplified approach (based on 

only two features) despite the need for subject specific calibration. 

Different aspects of a signal, and generally of an acceleration signal 

both in time and frequency domains have been explored to detect 

activities [31], [32], some of which requiring computationally intense 

algorithms. MDF discriminatory ability was proposed before for the 

analysis of acceleration data [33]. MDF alone would not suffice for 

discrimination between activities using the proposed sensor output; 

thereby, in this study, it was used in conjunction to the total power of 

the spectrum. These two features were chosen as they incorporate 

significant discrimination capability. Good activity discrimination 

was achieved: data formed defined classes accordingly to the activity 

performed (Fig.5). This was particularly evident when the 

participants were analyzed separately, on a subject-by-subject basis. 

Net separation between activity classes was not achieved when data 

for all subjects were treated together, as a group, indicating the need 

for subject specific calibration (Fig. 7). Although sensors could be 

calibrated for each subject, this may represent a limitation for future 

clinical adoption, as an additional step is required before actual use, 

implying extra economic and time costs. This was resolved by 

successfully employing a random forest algorithm to automatically 

detect activities in a generalised fashion. This method was 

mathematically more complex but has the advantage that can be 

applied without the need for subject specific calibrations. 

Machine learning techniques, among which random forests, have 

been recently used to classify activities from acceleration data 

acquired via a number of 3-axis accelerometers or smartphone 

positioned on different parts of the body [31],[32], [34]-[39]. Most of 

the studies involved the simultaneous use of two or more devices in 

different positions to increase the accuracy of the classification 

methods proposed. This leads to a bulkiness of the system not 

compatible with patients’ preferences [40]. On the other hand, the use 

of one sensor alone implied specific positioning on areas that could 

interfere with activities of daily living (e.g.: chest, bulky phone in the 

pocket) or more visible to the other (e.g: ear) against patients’ 

discreetness. The classification method proposed showed high 

accuracy (93%) utilising 9 features from a single sensor alone while 

allowing discrete data monitoring. The accuracy achieved compares 

well with the accuracy reported in previously conducted studies 

(range 80-99%) using more conventional acceleration signals to 

detect activity. Further improvements in the accuracy may be 

achieved via investigating a larger set of subjects that covers the 

pathological case as well. 

The feature that played the greatest role in the activity 

classification was the MDF. All the features utilised allow for an easy 

implementation. The random forest demonstrated good 

discrimination ability in correctly identifying activities performed as 

seen in the performance metrics table (Table III). Among the testing 

set values none of the data referred to stair ascent thereby explaining 

the low F score and sensitivity values. A larger data set will be 

collected to further test the method proposed having demonstrated the 

viability of the system for activity classification through this study. 

Also, once the random forest is trained, the identification of activities 

for future subjects can be achieved in real time. The features utilized 

will be calculated to allow real-time feedback in an automated 

fashion by using a moving window method as the data are collected 

and, not over whole trial as conducted for this study. Visual feedback 

of the data for patients and clinicians will complement the wireless 

system to allow an easy and fast interpretation of the data for clinical 

use. Data will be made available via smartphone/tablet application or 

in the form of a one-page report on patient progress. Although 

accelerometers are established systems for activity recognition or 

activity level quantification in their simplest form, the sensor 

proposed allows also for range of movement estimation not 

achievable with one accelerometer. This dual functionality represents 

an advantage of our system over existing technology. Although the 

smart leggings utilised for this study still shows visible electronics, 

these will be integrated into clothing in the next prototype to comply 

with patients’ needs and maximise acceptance [40]. Moreover, the 

system proposed requires minimum training for the end user to 

permit independent utilization. 

5. CONCLUSION 

Findings from this study demonstrate the feasibility of the novel 

sensing system in monitoring knee movement and classifying 

activities of daily living. Being able to monitor knee functional status 

outside laboratory environments will bring great advantage to the 

rehabilitation of patients with knee OA. Objective measures of knee 

health can both inform treatment and motivate patients to comply 

with prescribed rehabilitation regimes to enhance clinical benefit.  

Additional activities will be included in further testing to have a 

more comprehensive classification of activity of daily living and to 

explore the possibility to express the output in degrees. System 

design together with a visual feedback tool will be improved to 

reflect end users preferences, both patients and health professionals, 

and ultimately progress into clinical adoption. The use of the sensor 

can also be expanded to the monitoring of clinically used 

performance tests to assess patients’ physical function. A study 

conducted within our group showed the ability of the sensor to 

monitor performance during exercises extrapolated from a knee OA 

rehabilitation class [41]. Assessment of performance-based tests as 

suggested by OA guidelines could be included as additional 

processed outcome of the sensor increasing the clinical usefulness of 

the information obtained from the novel system.  
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