
International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 13-18, 2017, ISSN:-2319–8656

www.ijcat.com 13

Software Performance Workload Modelling

Vijay Datla

Abstract: The debate between performance engineers and business stakeholders over non-functional requirements is probably as old

as the performance discipline itself. ‘What set of transactions is enough to represent my system?’, ‘Why do we not load test every

transaction?’ , ‘Our volumes are much higher than what the targets show’ are some of the common questions that need to be answered.

From a technical perspective, benefits from load testing every transaction are not enough to justify the effort involved in the exercise.

However, for a business, even a small risk of one untested low volume transaction affecting the others or bringing down the entire

system is high enough to raise a flag. This paper is an attempt to balance these concerns by discussing how to create workload models

that are closer representations of the real world enterprise applications. It answers common requirement gathering questions like where

to look for information, on what basis to include and exclude use cases from workloads and how to derive a complete and convincing

workload model. This paper highlights the risks associated with selective modelling and the possible mitigations. It also brings to the

table tips and tricks of the trade, some lessons learnt the hard way.

Keywords: Performance, Modelling, Vijay Datla, Vijay, Datla

1. REQUIREMENT ANALYSIS:
Just like any Software Development Lifecycle (SDLC),

a Performance lifecycle also begins with Requirements

Analysis with the difference that the requirements are

purely non-functional in nature. Non-functional

requirement is a requirement that specifies the criteria

that can be used to judge the operation of a system

rather than a functional behavior. There are several

kinds of non-functional requirements like Security,

Maintainability, Usability and so on but the specifics

that we are interested in are Performance, Scalability

and to a certain extent Availability. Requirements

gathering forms the foundation for all future

performance engineering activities on a project.

Mistakes made in understanding the business

requirements translate into setting of wrong goals and

takes all the performance efforts into the wrong

direction. Requirements gathering is therefore the key

to a successful Performance Engineering project. But

even before getting into requirements, it is important to

understand the objectives. It is a common

misconception that performance can only be done to

measure the response time of the system. In literal

terms, measuring performance of a system is purely

Performance Testing which is part of a larger discipline

called Performance Engineering. Performance testing is

a means; an enabler in achieving the Performance

engineering objectives. So what are these objectives?

•Measuring and improving Performance of an

application

•Meeting the non-functional requirement targets

•Improving user experience

•Benchmarking the application and hardware

•Validating Hardware Sizing Once the objectives are

clear, the next step is to define the scope at a high level,

meaning which modules or what part of the solution

will need to be tested as part of the performance

exercise. To go deeper into the objectives and scope of

performance, it is essential to have a thorough

understanding of the system. This understanding can

come not just by studying the application but also by

studying the business.

1.1. Asking the right questions:
- Customer base

- Growth rate

- Concurrency

- Volume centircs vs user centrics

- Most common transactions

- Response time requirements

- User arrival pattern

Gathering requirements for performance testing is the

most challenging task given that there is no one place

with consolidated information and most sources are

external. Readily available non-functional performance

requirements and statistics is a rare occurrence.

However, it not the lack of availability that adds to the

challenge, it is the process of gathering and

consolidating data from various sources that’s a

cumbersome task. More than getting the right answers,

it is about asking the right questions. Since the process

involves dealing with business, its important to frame

questions more comprehendible to a business mind.

Instead of asking what is the concurrency or throughput

target, try asking what is the customer base of the

business? How many of these customers will be

accessing the system at any given time? The following

should give an idea:

• What is the expected business growth rate?

• Is the system volume centric or user centric?

• What response time is the system required to serve in

case of web based OLTP transactions?

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 13-18, 2017, ISSN:-2319–8656

www.ijcat.com 14

• What are the most common use cases? or transactions

that happen on the system most frequently?

• Do all users arrive into the system over a small

window or are they spread across the day?

• What are the peak periods of access to the system?

• Are there periodic tasks that the system is designed to

accomplish?

E.g.

• End of Month/Quarter reports?

• Close of business?

• Seasonal sales?

• Year End closing? And so on

1.2. Picking the right resources:
Common sources like Business Analytics, RFP,

Business volume reports, Audit reports, Inputs from

legacy system, Capacity sizing document, Webserver

access logs, Data ware house, google analytics.On

enterprise level projects there can be several sources of

information when gathering the non-functional

requirements.

•Business Analysts (BAs)

•BAs are always the first source of information for non-

functional requirements. They may or may not have all

the information required, but they will be able to make

the connection to the right business contacts.

•RFPs

•RFPs usually contain a non-functional requirements

section. The requirements specific to Performance may

be few and non-elaborated but will still contain

response times, customer base, transaction volumes etc.

•Business Reports

•There are several reports that the business maintains

like Volume reports, Accounting, auditing reports that

can provide insight into business statistics

•Legacy Systems

•In case of legacy modernization projects, there already

is a system, maybe a mainframe that is still serving the

business. Running simple select queries on this system

can help in studying the real world transaction volumes

and load patterns

•Hardware Sizing Documents

•In the initial stages of SDLC, enterprise projects go

through the process of determining the hardware

required to support the solution. This sizing is based on

the throughput that the system is expected to achieve.

So either on a high level or in detail, some study is

already done at this stage that can often be used as

opposed to reinventing the wheel.

•Google Analytics

•For enterprise applications with already existing

websites, Google Analytics is a web-analytics solution

that provides detailed insights into the website traffic. It

reports traffic patterns, sources of incoming load,

navigation patterns, detailed load patterns over a period

of time and much more.

•Data Warehouse

•Most enterprise projects maintain data warehouses for

storing archived information that can be accessed to

obtain non-functional details

•Domain Research

•In most cases there is existing research in the market

that has been done on various kind of applications

catering to several domains. If there is absolutely no

information available in house then these researches can

be a good place to start from.

•Log Parsers

•In case of implementations with an existing system in

place, server access logs are excellent sources of real

time information. There are several tools in the market

that parse access logs into comprehendible, meaningful

information. There are several log parsing tools in the

market that can produce meaningful data from Web

Server logs. AWStats is one such open source log

parsing tool that is being used here as an example. This

parser extracts data from a web server access log and

converts it into meaningful server statistics. It is much

like a web analytics tool, only that it works offline. It

produces graphs that provide insight into load patterns

in terms of user visits, page visits bandwidth etc.

The tool lists the most commonly accessed pages which

helps in determining the high volume transactions. It

also indicates the browser most commonly used to

access the application website. With the advancement

of browsers features and variety in the market, this

information is useful in deciding what browser to use

when simulating load on the application.

The most important use of the tool is in studying the

user arrival and load pattern. The hourly graphs outline

the user arrival pattern and the

weekly, monthly and yearly graphs help in determining

the peak periods.

The below charts show the website usage patterns in

terms of top accessed URLs, top downloads, average

user visit durations and distribution of browsers for

incoming requests.

The below graph shows the hourly distribution of load.

This kind of information helps determine the peak hours

of the day and the % increase in load during the peak

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 13-18, 2017, ISSN:-2319–8656

www.ijcat.com 15

hour. Having access to this information also helps in

deciding off peak windows for scheduling batch and

cron jobs during the day.

The below graph shows the distribution of load over a

year. This information helps in understanding seasonal

workloads if any experienced by the business and in

turn the application.

2. DEFINING SCOPE:
Consider high volume, Complex design, Business

Impact, Resource Intensive, Seasonal peaks. With this

gathered Information define the categorization and

target for combined use case volumes in each category

and test the high volume use case in each category.

1.3. Categorization

•One other premise that can go a long way in

maximizing the code coverage of performance testing

efforts and de-risking the system is categorization.

•Several enterprise transactions can be classified as

variations or flavors of one base transaction. Even

though there will be slight variation in input parameters,

the backend tables and the data access objects will be

the same. For instance, a customer updating his phone

number vs. updating his address in the profile. Even

though both transactions start out differently, they

essentially perform an UPDATE on the profile table,

and one can be termed as a flavor of the other.

•Along similar lines, the transaction could be the same

but coming in from different sources. E.g. a request for

account creation could come in from the web, from an

agency or from customer service agents over the phone.

However different the sources, the execution flow in all

cases would involve a call to the same WebService and

would end in an INSERT in the accounts and related

reference tables.

•Once you have identified sets of similar transactions,

combine the volumes of each; select the transaction

with the highest volume to represent the set; and load

test it to the combined volume.

•This approach covers wider grounds while limiting the

effort involved in preparing and maintaining test

frameworks for each transaction.

Most complex enterprise applications today are heavily

data dependent. A simple example of such a transaction

would be funds transfer in a bank account. To complete

this transaction, there is a pre-requisite of having

enough funds in a source account. If we keep executing

this transaction over a set of accounts, the data will

need to be refreshed either by using a different set of

accounts or by changing the available balance on

existing accounts.

To make it more complex, there are systems like

Service Request Management Systems that are designed

around flow of data from one stage to the other.

Performance testing such systems becomes a nightmare

because one successful execution of tests requires

useful data to be created at each stage and the entire

cycle repeated for the next run.

This added complexity introduces another factor which

is the Return on Investment i.e. whether the effort

involved in preparing for and maintaining a test case

from one run to the other is worth the benefit from

testing it.

In essence, it cannot be just one factor that can

sufficiently determine the transaction set but it has to be

a combination of all. Whatever the selection process,

the choices are influenced by aggressive delivery

schedules and there is always a trade-off.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 13-18, 2017, ISSN:-2319–8656

www.ijcat.com 16

3. CREATING WORKLOAD MODEL:
Factors to be considered are growth rates, transactional

distribution, complex transactions.

When defining targets it is important to account for

growth rate. Non-functional requirements are usually

defined in the initial stages of the project. By the time

the solution goes to production business volumes grow

considerably. The targets defined for performance

testing should be raised by the growth rate factor up to

the roll out dates.

For a simple system where most transactions take the

same amount of time to complete, the conversion from

throughput to concurrency and vice-versa can be

generalized to a simple formula:

T=C/(tt+rt)

Where T is the throughput (tps) in page views per

second

C is the concurrency

tt is the think time between pages in seconds

And rt is the Response time of each page in seconds

However, in case of complex longer transactions the

workload model has to be worked out differently.

Let us take an example of a generic Core Banking

Application. A core banking solution will comprise of

several modules that cater to Teller Banking,

Online/Net Banking, Tele Banking, Mobile Banking,

Customer Service etc.

All these modules function as different entry points into

the system. Despite the different interfaces and web

layers, they will all access the same backend services,

data objects and database tables. So if we were to define

scope and create a workload model for this application,

we will have to look at the architecture on a whole by

considering requirements of individual modules and

how they interact with each other and the external

interfaces.

Unlike functional testing, performance testing efforts

have to be limited to only a select number of

transactions. Before deriving a workload model, we

have to first select transactions that form the scope of

performance testing within each module.

For simplicity, let us work with three modules of our

core banking application- Teller Banking, Online

Banking and Phone Banking.

Functionally, there are a total of 22 use cases arising

from these modules as listed in the table above. For a

business, the ideal risk-free scenario is to performance

test all 22 use cases. However, the effort involved in

creating a load test framework for 22 Use cases and

maintaining it across builds and releases can be a very

challenging and time consuming activity. Projects

seldom have the resources and the time to support the

ask. Moreover, the benefit from load testing every use

case is usually not worth the effort involved.

So we need to draw a line at a certain throughput, i.e.

define a threshold below which a use case will not be

considered for load testing. Use cases highlighted with

green in the table above are transactions chosen on

account of their high volumes.

Now that we have defined the scope, we will derive a

workload using the requirements and data available. In

most enterprise applications, the requirements are a

combination of volume-centric and user-centric targets,

i.e. module level concurrency and business volumes

targets for every use case. For instance, in our example

of the Banking application, its easy to know how many

bank tellers will be using the core banking application,

how many customer service agents will be working on

the customer service module and so on. Assuming that

we have statistics on transaction volumes from say the

previous year, using simple mathematical logics, we

can derive a workload model. But first lets define some

variables:

Total application concurrency – C

Concurrency of a module y – Cy

Total number of modules in the application – m

Therefore, C = C1 + C2 + ….. + Cm. For sake of

simplicity, lets represent it by SUM[C1:Cm]

Now lets get into distribution within a module. Lets say

the total number of transactions in the module y is n.

Consider a transaction x in the module y. Lets say the

target volume of x is Vx per hour and the length of x is

Lx.

Its important to note that the target transaction volumes

should be of the time of the rollout. So, if the

requirements were defined in 2016, the application goes

live in 2017 and the growth rate is 10% then the target

volumes for performance testing should be 120% of the

2016 volumes.

Since each transaction has its own length, i.e. a different

number of pages, it is important to first translate

business volumes into page views and then go over

distribution. Hence, the target page views per second,

i.e. Tx = Vx * Lx

User distribution i.e. the distribution of the module level

concurrency amongst its transactions or use cases will

be a function of the target page views Tx.

Therefore, concurrency of a transaction x in a module y

i.e.

Cx = ROUND (Tx / SUM[T1:Tn]) * Cy

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 13-18, 2017, ISSN:-2319–8656

www.ijcat.com 17

The excel above is a sample workload model for our

example. Please note that the values are mere

assumptions and in no way represent the actual volumes

of bank.

The information at hand was the distribution of a

concurrency of 604 users across the three modules,

Teller Banking, Online Banking and Phone Banking.

Also known were the target volumes for each of the

shortlisted use cases. A study of the use case navigation

and call flow helped determine the length (number of

pages) of each use case. Applying the above formulae

over the given information, targeted throughout (Page

Views per second) per use case and a concurrency

distribution within each module was calculated.

Once created, it is important to get a sign-off on a

workload model before starting execution. This ensures

that the requirements set forth for the Performance

testing exercise are correct and validates the

assumptions made.

Since a workload model relates more to the business, it

is important to represent the information well. A

pictorial representation of information is more likely to

be well noticed and understood when compared to an

excel containing a whole lot of numbers.

4. WORKLOAD VALIDATION:
In order to redesign the complete workload model it is

recommended to do an early validation such as reverse

calculation, Think time between pages(TT), Avg

response time for each page(RT), time to complete

execution x-, Achieved throughput

Requirement analysis, market research and solution

design are based on a series of assumptions and it is

important to ensure that the assumptions are correct by

validating that the goals are achievable. This validation

can be done without having to execute the load tests,

just by doing some reverse calculations.

For example, lets assume that the average Think time

between pages i.e. TT is set at an average of 10Secs and

the Response Time target for each web page i.e. RT is

4Secs.

Hence the throughput of a business transaction x that

can be achieved by the derived Concurrency Cx is

Vx = Cx * 3600 / (Lx * (TT+RT))

where Lx is the length of x i.e. number of pages. If the

achieved Vx is in line with the targeted business

transaction volumes then it is safe to say that the

assumption of think times and the response time

requirements are correct.

Validation can also be done post-execution at either the

front-end or the back-end. At the front end, there are

load generation tools that report counts of execution of

transactions under test. Lets take the example of the

IBM Rational Performance Tester load test tool. In the

test report as one of the metrics, you can see the number

of hits made to each page in the test suite. This number

is a count of how many transactions were successfully

completed on the system.

From the back end, post every test run a simple query

on the database can give a count of volumes achieved

during a test run.

5. THE BIRDS EYE VIEW:
For Performance Testing to reveal accurate

characteristics of a system, the workload model should

be a close representation of real world production load

pattern. For complex enterprise applications user

interface is just one entry point into the system. There

are several other interfaces, WebServices scheduled

jobs etc that share the system resources. To simulate a

real world production load pattern it is essential to look

at the complete picture and account for at least

incoming load from all possible sources.

With the increasing complexity of business models and

interdependence on business partners and service

providers, interaction with external subsystems through

interfaces and exposed WebServices and messaging

interfaces is one primary source of incoming load.

Other sources are inter-module communications

between modules under test and those that are out of

scope of the Performance test exercise.

Another activity to account for is the daily Batch jobs

and schedulers that run during the regular business

hours. For those that run during off-peak hours, its

important to test and ensure that the execution of all

scheduled batch jobs complete during the designated

window and do not overflow into the regular business

hours. Along similar lines, there are regular backup and

archival activities that need to be allocated resources.

One other consideration that needs to go into a

completing a workload is the recurring business

activities that take place over and above the regular

tasks. For example Close-of-Business, End-of-Month

reporting, Quarterly reports etc.

 6. SEASONAL WORKLOAD MODELS:

These models are business critical.There are a few

domains that every so often, experience a substantial

variation in their load pattern. These are called seasonal

workloads. For applications that cater to these domains,

ensuring performance and stability during such seasonal

workloads also becomes the responsibility of the

performance test exercise. Some examples of such

seasonal workloads are:

•eCommerce Applications for Retailers: End of Season

Sales, Holidays like Christmas and Thanksgiving

•Banking and Financial Applications: End of Year

Closing

•Job Portals: Graduation Period

•Human Resource Management Systems: Appraisals

etc

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 13-18, 2017, ISSN:-2319–8656

www.ijcat.com 18

7. SELECTIVE MODELLING – RISK

ANALYSIS:

There is always some amount of risk involved with

selective modeling. Some transaction, some piece of

code, SQL, stored procedure etc always rolls out

without being performance tested.

An untested transaction can consume excessive system

resources, starving other transactions of computational

resources and causing a delay in overall system

responses, or in the worst case scenario, crash the

system.

However small, this risk associated with selective

modeling can raise several flags if it has the potential to

cause loss of revenue for the business. Because it is

highly impractical to load test every transaction, a

mitigation strategy needs to be defined.

There is no one thing that can be done to ensure that the

system is risk free from performance problems. Several

efforts have to run in parallel to cover maximum

ground.

•Use Functional tests, UAT and System tests to detect

bad transactions

•Monitor servers during UAT and Functional tests

•Load the test environments with near-production

volume data

•Analyze offline reports from test servers for any

abnormal system usage

•Plan one round of Performance testing with UAT or

Functional tests running in parallel on the same

environment

Tips:

These tips are some lessons that have been learnt from

requirement gathering processes with several customer

and hence are generic and applicable to all domains like

banking, insurance, retail, telecommunication etc:

•Make sure you have a complete understanding of how

the business that is being served by the application.

What major functionalities does it cater to and what

external systems does it interact with. Try to relate that

to the solution design

•If and when possible, visit the business on-site to

understand the system usage and study the load patterns

•Always set targets at peaks and not the average

volumes

•Account for growth rates by targeting the volumes

projected for the rollout timeline

•For a new system with no existing data, derive the data

volumes. During execution, load test with databases

holding at least near-production volume of data

•Ensure that there is room for server maintenance

activities at average loads

•Last but the most important, get a sign-off on the

requirements set forth for performance before starting

execution

CONCLUSION:

In this session we have gone over the process of

gathering and defining requirements for performance

testing of enterprise applications. We have seen how

workload models can be derived for simple as well as

complex use cases using the data available from various

sources on projects.

We listed some factors that can help in defining the

scope of performance testing activities, the risks

involved and possible mitigations for addressing

business concerns arising from not performance testing

all transactions.

In conclusion, there is no one defined method for

creating a comprehensive workload model. The

selection process has to be a factor of business

priorities, application complexity and project timelines.

While there is always some amount of risk involved

with performance testing over selective modeling, a lot

can be done to mitigate or minimize the possible impact

on business.

REFERENCES:
 AWStats

 Google Analytics

http://www.ijcat.com/

