
International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 19-22, 2017, ISSN:-2319–8656

www.ijcat.com 19

Performance Lifecycle in Banking Domain

Vijay Datla

Abstract: Performance assurance and testing plays a key role in complex applications and is an essential element of the application

development life cycle. This case study is about integrating performance at a large national bank. Learn how custom monitoring, Six

Sigma techniques, performance testing, and daily production reports played an important role in identifying production issues. This

paper illustrates and examines the challenges and successes of performance planning, testing, analysis, and optimization after the

release of X Bank’s CRM application.

Keywords: Performance, Lifecycle, Banking, Vijay Datla, Vijay, Datla

1. INTRODUCTION
Software Performance Lifecycle (SPL) is an approach that can

be applied to all types of technologies and industries. This

solution allows the true possibilities of the system and

software under test to be examined. It allows for precise

planning and budgeting. The SPL approach can begin at any

stage of the Software Development Life Cycle (SDLC) and

will mature as the wheel turns (or the life cycle progresses).

However, the earlier performance is evaluated, the sooner

design and architectural flaws can be addressed and the faster

and cheaper the software development life cycle becomes.

The wheel in this case is the development life cycle as a

whole, not just one application release but all releases from

the start of the application. The SPL steps include planning,

testing, monitoring, analysis, tuning and optimization. These

steps will be discussed in conjunction with this case study.

The idea is to begin the SPL approach at any point on the

wheel (or development life cycle). As the wheel turns the SPL

approach will position itself to start earlier and earlier in the

development life cycle for future release levels. In the

example explained below, SPL started at the end of the first

release of the application to be tested. Due to the late

introduction, we ran into different issues and problems, but

we jumped on and started the performance lifecycle. The

introduction of the SPL approach will save significant time

and money, while ensuring end user satisfaction. Our

organization used these set of techniques and procedures and

called it Software Performance Lifecycle (SPL)

2. CASE STUDY
This performance case study involves a major national bank

with over 2,000 branches, fictionally named X Bank for this

study. The bank was facing performance issues with various

portions of their CRIVI application. They were experiencing

high response times, degraded throughput, poor scaling

properties, and other issues. This caused un-acceptance from

their end users and customer base.

During the first round of implementing performance at X

Bank, our responsibilities as consultants was to help elevate

their performance issues. We were in charge of managing and

executing the Software Performance Life Cycle, which

included items such as planning, scripting, testing, analyzing,

tuning, and managing the performance lab. As the application

grew in size, so did the team. lt started with two Senior

Performance Engineers and evolved to a Senior Performance

Engineer, a Senior Application Developer, two Scripting

Resources, Environment Team Resource, and a part-time

Database Admin.

The production environment consisted of five ACS

(Application Combined Servers) and one NT database server.

The rollout plan for X Bank called for 500 branches every 6

months until reaching the goal of 2,000 branches.

The CRM application technologies consisted of an ASP front

end on IIS Web servers, C++ middle tier on MO Series and an

Oracle database.

2.1 Planning & Setup Phase
The first step in the SPL process is planning, this entails

planning for the entire process, creating a performance test

plan, and setting up the performance environment. The initial

responsibilities of the two Performance Engineers was to

interact with the bank resources, business analysts,

developers, system administrators, database administrators,

application engineers, and others to gather enough

information to devise a performance test plan. To help create

the performance test plan, we needed to fully understand the

application behavior at X Bank. First, we sat down with

business analysts to understand the major pain points and

learn the application usage at the bank. We also made trips out

to different branches and spoke to actual end users of the

application to analyze their user experience and performance

concerns.

Next, we needed to get a better understanding of the database

volumes in production to allow us to properly populate the

perfom1ance test lab database. To do this we received

database row counts from the production database

administrator for the previous three months, and we used that

information in conjunction with the growth projections to

appropriately populate the performance test lab database.

All the information gathered during the planning phase

enabled us to get a better understanding and positioned us to

create a performance test plan. The test plan included actual

use case! business process steps, SLA goals, database sizing

information, performance lab specifications, and exit criteria

for this round.

Next we set out to create an onsite performance test lab. The

test lab included load testing servers, application servers, a

database server, an Integrated Architecture (IA) server, and a

host system. The perfom1ance lab environment mimicked

production in terms of the application servers but lacked in

terms of number of CPUs on the IA Server. The load testing

software of choice was LoadRunner and Win Runner. We

utilized one load testing controller, two load generators, and

two end user workstations. The workstations were used in

conjunction with WinRunner to truly understand end user

experience under load. Lastly a custom dashboard application

was written to monitor application transaction response times

at the web and application tiers and to provide server statistics

information

The last step was to install the application on the servers and

load the appropriate data volumes into the performance

database server. We used Perl scripts to generate the

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 19-22, 2017, ISSN:-2319–8656

www.ijcat.com 20

appropriate volumes of test data, which gave us the flexibility

to increase volume as needed.

Above picture shows Performance Setup

2.2 Performance Testing & Monitoring

Phase
At this point, we had devised a performance test plan, had an

understanding of the performance concerns, and created a

performance test lab. Now the next step was to begin

performance testing and application system monitoring.

The first step was to create test scripts for all the outlined

business process in our test plan using

LoadRunner. The scripting process included recording the

script, enhancing the script and running configuration

audits. Enhancing the scripts included items such as

parameterization, correlation, verification, logic, extra

coding, and anything else that was required to mimic a real

end user. Recording, enhancing, and single playbacks were all

performed under the LoadRunner Vugen utility. The Vugen

utility is LoadRunner's scripting engine. The next step was to

run configuration audits, with multiple users, using the

LoadRunner Controller for all defined test scripts. The

LoadRunner Controller is the utility utilized to generate

virtual user traffic. The reason for running configuration

audits was to make sure issues, such as data dependencies and

concurrency problems, did not arise in multiple user mode.

After we completed the configuration audits, we executed

load tests separately against each of the five AC8 servers. The

separate tests were conducted to make sure all servers were

behaving exactly the same in terms of response times,

throughput, and utilization. Next we ramped up to two servers

where we calculated BP (Business Process) throughput and

compared them to our goals. Other testing goals, used for

comparison, included concurrent virtual user mark, business

process throughput for other business processes, and

transaction response times. After the two AC5 server tests, we

scaled up to five AC8 servers, and were not able to meet all

our throughput goals.

The logs showed us which application transaction was being

executed, along with specific information of each transaction.

lt showed the back-end response time which is depicted as a

solid line in the diagram below. The next entry in the log file

was the front-end time which does not include GUI rendering

time (shown as dotted line below). As the front end time

includes the back-end times, the difference provided us with

just the web server response time, giving us another data point

for our analysis. The last two entries provided the exact

request size and response size of each transaction, thus

allowing us to verify the correct data sizes for the appropriate

business processes.

2.3 Tuning & Optimization Phase
The next steps in the SPL include tuning and optimization of

the application. Through an iterative testing cycle, which

included testing, database resets, monitoring, and analysis we

made significant changes to the application. These changes

included items such as the login cache mechanism, which

originally cached unnecessary content, and changes to a third-

party party DLL that was affecting database queries. We also

changed the application configuration file to start the correct

number of application server instances, which in turn

maximized the server resources.

2.4 Results
We measured the round trip application response times a

several different ways. As we ran our tests we utilized

LoadRunner to give us end-to-end response time, which did

not include GUI rendering. So we utilized WinRunner to get

true end-to-end response times which included GUI rendering

time. The way we approached this was by running a full load

with LoadRunner and placing two workstations on a emulated

branch circuit running WinRunner. The WinRunner statistics

provided response times that included the WAN emulation

Of a remote branch circuit, as well as GUI rendering. This in

tum provided us with a true user experience and end-to-end

response times. Also to allow the business users to understand

the feel of the application under load we had them walk

through the application while we were running a full load test.

The business users performed the business process steps from

a lab that emulated remote branches. Lastly the business users

provided response times from the branch circuit lab when no

load was emulated on the system. This provided a true picture,

meaning the best we can expect from our end user response

times on system. The changes made allowed us to drastically

reduce response times for most transactions while increasing

the throughput of the application

Before we started SPL process at bank, they are facing

performance issues at hundreds of branches.

Response times were high for key transactions, and marketing

days were not acceptable by end users. X Bank did not truly

understand the application scaling properties, capacity

planning, hardware sizing, nor was the bank able to identify

the performance issues they were having. But after the first

pass through of the SPL process of planning, testing,

monitoring, analysis, tuning, and optimization the bank was

meeting SLAs, had proper hardware sizing in place, decreased

costs, and gain confidence on marketing days.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 19-22, 2017, ISSN:-2319–8656

www.ijcat.com 21

3. PRODUCTION MONITORING
After we rolled all the changes into production and completed

the first iteration of SPL at X Bank, we began monitoring

production on a daily basis. The application production team

provided daily server statistics for all of production. We used

six sigma techniques such as regression analysis, processor

capabilities charts, Xbar-S charts and boxplots to aid in our

production monitoring. First, we performed daily regression

analysis on server processes to isolate any top consuming

processes. The regression analysis consists of gathering

process information from all servers, which was supplemented

by Perfmon, Minitab, and Perl. Perform is a windows

monitoring solution, Minitab is a statistical computing system,

and Perl, a scripting language, was used to parse and format

Perfmon data to fit Minitab. Next, the formatted data was

imported into Minitab and a Minitab worksheet was created.

After the Minitab worksheet was created, a regression

analysis was performed to find the top consuming processes

[M|Nll]3]. For this analysis, Processor Total was the ‘Resp ‘

processes, to be analyzed, were the ‘Predictors’ (x variable).

See picture below.

After indicating the response and predictors in Figure 1 the

next step was to execute the regression analysis. The Output

created from the regression analysis is shown in Figure 2.

Figure 2 provides a value called R-Sq, the Higher the value of

R-Sq the more relevant this data set is to our analysis. ln our

example the R-Sq value was 9i'.2%, indicating our data

having a really good fit to the model.

Below Picture shows Regression output, Processor vs

Processes

After performing the above steps for all the production

servers, the analysis provided us with a list of top processes of

each production server. Below picture shows the high

consuming processes. The higher T value the higher

controlling factor the predictor, or the process.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 1, 19-22, 2017, ISSN:-2319–8656

www.ijcat.com 22

Below table shows list of top CPU consuming processes :

The CPU and memory graphs below displays a control chart

for subgroup means (an X chart) and a control chart for

subgroup standard deviations (an S chart) in the same graph

window. The X chart is drawn in the upper half of the screen;

the S chart in the lower half. Seeing both charts together

allows you to track both the process level and process

variation at the same time [M|Nll]3]. The x-axis of the graphs

represents duration (time) while the y-axis represents sample

mean or sample standard deviation. We primarily used this

information to detect trends overtime. Minitab draws the

average (center line), the upper control limit (UCL), and the

lower control limit (LCL) lines by default.

CPU Processor control chart:

Memory Usage during peak

The processor capability graph [MINI03] below shows the

processor distribution model around the CPU utilization

for the server on a given day. We used this information to see

how many times (or parts per million, PPM) the data exceed

our upper specifications limit (USL). ln our case any data

point outside the 80% USL mark is considered defective

because the application degraded after the CPU utilization hit

80%. In this graph there are a few things to keep in mind, Left

Boundary (LB), Upper Specification limit (USL), and parts

per million (PPM). Ln Graph 1, PPM > USL is 2274,

indicating that for every 1 million data points of CPU

utilization we are following outside our acceptable range 2274

times.

Below Picture shows Processor capability:

We used the above tables and graphs to create daily

production reports. From the daily reports we created weekly

and monthly trends to isolate any long-term problems.

Specifically, it helped us isolate a few high processes that

were behaving differently in production than in our test lab.

The reason some the processes were behaving differently in

production was due the fact that we could not test all business

processes during this round of testing and only limited our

testing to the business processes that produced 80% of the

volume. The 80% was used based on the rule of thumb

that20% of the transactions produce 80% of the volume. This

allowed us to get a good indication of production volume

without spending months scripting many different business

processes. It seemed that transactions that were a part of the

untested business processes were the top consuming processes

to show up in production, and not in the performance lab. Due

to our daily monitoring and reports, we were able to resolve

these types of issues prior to any production downtime. ln

conjunction, we utilized a custom dashboard application that

provided response time information at the web and application

layer for every transaction. It also provided real-time server

and network statistics for all production servers. The

dashboard alerted the application support team if any

transaction or server network statistics breached the SLA

thresholds.

3.1 Conclusion
Start the SPL approach at any stage of the SDLC. The bank

faced performance issues in production, which caused un-

acceptance from end users, bank personal, and the possible

loss of future product upgrades. This could have cost millions

of dollars in product revenue and maintenance licenses. But it

did not, even though we started the SPL process of planning,

testing, monitoring, analysis, tuning, and optimization after

release l was in production. Since we were already on the

wheel, we were able to include SPL earlier and earlier in the

Software Development Life Cycle as the product grew, or as

the wheel turned. The SPL approach saved significant time

and money, ensured production readiness, improved

performance and scalability, and built confidence.

4. REFERENCES
[1] MINITAB Statistical Software

http://www.ijcat.com/

