Center Concepts on Distance *k*-Dominating Sets

Dr. A. Anto Kinsley Department of Mathematics St.Xavier's (Autonomous) College Palayamkottai-627002, India V. Annie Vetha Joeshi Department of Mathematics St.Xavier's (Autonomous) College Palayamkottai-627002, India

Abstract: A set $D \subseteq V(G)$ is called a *dominating set* of **G** if every vertex in V(G) - D is adjacent to some vertex in **D**. A set $D \subseteq V$ is called a distance *k*-dominating set of *G* if each $x \in V - D$ is within distance *k* from some vertex of *D*. In this paper, we determine the distance-*k* domination number for a given graph using the *k*-center and link vector concepts. Using the *k*-center concept we present some necessary and sufficient condition for distance-*k* dominating set.

Keywords: Distance, radius, domination number, distance k-domination number, k-center, reachable set, link vector.

1. INTRODUCTION

Let G = (V, E) be a simple graph. The distance between u and v, denoted by d(u, v), is the length of a shortest u - v path. For a vertex $v \in V$ and a positive integer k, the k-neighborhood of v in G is defined as $N_k(v) = \{u \in V(G)/d(u, v) = k\}$. For k = 1, $N_1(v)$ is the neighborhood of v and simply denoted by N(v). Let d(x) = |N(x)| be the degree of G and δ and Δ be the minimum and maximum degree of G, respectively. The set $N_k[v] = N_k(v) \cup \{v\}$ is called the closed k neighborhood v in G.

For a connected graph *G*, the eccentricity $e(v) = \max\{d(u, v): \forall u \in V(G)\}$ and the eccentric set $E(v) = \{u \in V: d(u, v) = e(v)\}$. The minimum eccentricity among the vertices of *G* is its radius and the maximum eccentricity is its *diameter*, which is denoted by rad(G) and diam(G), respectively. A vertex *v* in *G* is a central vertex if e(v) = rad(G) and the subgraph induced by the central vertices of *G* is the *center Cen*(*G*) of *G*. In this paper, we present the relation between distance-*k* dominating set and *k*-center of the given graph. We study the binary operations \lor , \land in [1]. Using these operations we construct algorithm to find the distance *k*-dominating set.

Definition 1.1: A set $D \subseteq V(G)$ is called a *dominating set* of *G* if every vertex in V - D is adjacent to some vertex in *D*.

The *domination number* $\gamma(G)$ is the minimum cardinality of a dominating set. We call the set of vertices as a γ -set if it is a dominating set with cardinality $\gamma(G)$.

Definition 1.2: A set $D \subseteq V(G)$ is called a *distance k-dominating set* of G if $N_k[D] = V$. The *distance k-domination number* $\gamma_k(G)$ of G.

2. k-center [1]

Definition 2.1: Let *S* be a subset of *V* with *k* vertices. Let $v \in V$. Then the distance of *S* from *v* is defined as $d(S, v) = min\{d(x, v) | x \in S\}$. If $v \in S$ then d(S, v) = 0. The eccentricity of *S* is the maximum of d(S, v) over all $v \in V$. That is, $e(S) = max\{d(S, v) | v \in V\}$.Consider the family F_k of the subset *S* of *k* vertices $(1 \le k \le n-1)$ of *G*. The *k*-center of the graph *G* is the set S^* of *k* vertices of *G* such that, $e(S^*) = Min\{e(S), S \in F_k\}$. This minimum eccentricity is called the radius of *k*-center and it is denoted by $r_k(G)$.

Theorem 2.2

Every central vertex with radius k forms a distance k-dominating set.

Proof

Let G be a graph with radius k. Let C(G) be the center of the graph G. Let $C(G) = \{v_1, v_2, ..., v_m\}$. If $v_i \in C(G)$, $(1 \le i \le m)$, then $e(v_i) = k$. Hence $d(v_i, v) = k$ for some v in V. Therefore $d(v_i, v) \le k$ for all $v \in V$ i.e, Each v_i is with distance k to all other vertices in G. Hence each v_i can dominate all the vertices of G with distance k. Hence every center vertex with radius k forms a distance k-dominating set.

Theorem 2.3

For any connected graph with radius k, $\gamma_k(G) = 1$.

Proof

Let *G* be any connected graph. Let *k* be the radius of *G*. Let *C*(*G*) be the center of *G*. Then e(v) = k for all $v \in C(G)$. Let $v \in C(G)$ then $max\{d(v, u) = k; u \in V\}$. Also we have $d(v, u) \le k; u \in V$. Hence *v* dominates every vertex within distance k. So $\gamma_k(G) = 1$.

Theorem 2.4

For any connected graph G, $\gamma_k(G) = 1$ if and only if there exists a vertex in G with eccentricity $\leq k$.

Proof

Let G be any connected graph and $V(G) = \{v_1, v_2, \dots, v_n\}$. Suppose that $\gamma_k(G) = 1$. Let D be a minimum distance k-dominating set. Let $x_i \in D$.

Case (i): If $r(G) \le k \le diam(G)$, then there exists a vertex can dominate all the vertices within distance k. So that $d(v_i, v) \le k \forall v \in V - \{v_i\}$. Which implies that $e(v_i) = max\{d(v_i, v), v \in V - \{v_i\}\} = k$.

Case(ii): If k > diam(G), then there exists a vertex v_i can dominate all other vertices of *G* with distance less than *k*. Hence $d(v_i, v) < k \forall v \in V - \{v_i\}$. Which implies that $e(v_i) = max\{d(v_i, v), v \in V - \{v_i\}\} < k$.

 \Box

Conversely, assume that there exists a vertex with eccentricity $\leq k$. Let v_i be a vertex with $e(v_i) \leq k$. Then obviously, $d(v_i, v) \leq k \quad \forall v \in V \cdot \{v_i\}$. Hence $D = \{v_i\}$ can dominate all other vertices of *G*. Then *D* is a minimum distance *k*-dominating set of *G*. Hence $\gamma_k(G) = 1$.

Theorem 2.5

Every k-center of G with radius i is a distance i-dominating set.

Proof

Let *G* be any connected graph with *n* vertices. Let S_k be the *k*-center of *G* with radius *i*. Hence $|S_k| = k$ and $e(S_k) = i$. That is the distance of S_k from the farthest vertex is *i*. Therefore, S_k dominates the farthest vertex with distance *i*. Hence S_k dominates all vertices of V within distance *i* and so S_k is a distance *i*-dominating set.

Definition 2.6: The set of all vertices of the graph *G*, from which the vertex *x* is connected within a minimum distance λ is called as a reachable set of *x* within a distance λ and is denoted as $R_{\lambda}(x) = \{ y \in V/d(y, x) \le \lambda \}$. Call this distance λ as penetration.

Definition 2.7: Characterize each vertex as a *n*-tuple. Each place of *n*-tuple can be represented by a binary zero or one. Call this *n*-tuple as a link vector simply LV of a vertex.

Thus a link vector $(j_1, j_2, ..., j_n)$ represent a vertex x_j where $j_k = 1$ if x_k is reachable within the penetration λ from x_j and zero otherwise. Denote a link vector of the vertex x by x' and denote the set of all link vectors as Ω .

If all the coordinate of a link vector of a vertex are equal to one then the link vector is said to be full and is denoted as (1). If all the coordinates of a link vector of a vertex are equal to zero then the link vector is said to be null and it is denoted by (0).

Definition 2.8: Let G be a graph. Let Ω be the set of LVs of all vertices. Define two binary operations V(cup) and A(cap) as follows:

$$V, \Lambda : \Omega \times \Omega \rightarrow \Omega by$$

$$(a_1, a_2, \dots, a_n) \vee (b_1, b_2, \dots, b_n) = (c_1, c_2, \dots, c_n)$$

where $c_i = max\{a_i, b_i\}$ & *i*= 1 to *n*

$$(a_{1,}a_{2},\ldots,a_{n})\wedge(b_{1,}b_{2},\ldots,b_{n})=(c_{1,}c_{2},\ldots,c_{n})$$

where
$$c_i = min\{a_i, b_i\}$$
 & $i = 1$ to n

Theorem 2.9

Let *G* be a graph with *n* vertices and $r_k(G) = i$. Let $D \subseteq V$ of *k* vertices $(1 \le k \le n-1)$. Then *D* is a distance *i*-dominating set if and only if *D* is a *k*-center.

Proof

Let $D \subseteq V$ be a set of k vertices with $r_k(G) = i$. Suppose that D is a distance *i*-dominating set. Then there exists a vertex v in D such that $d(u, v) \leq i$, for every $u \in V - D$. $\therefore e(D) =$

i = r(D). It implies that *D* is a *k*-center. Conversely, suppose that *D* is a *k*-center with radius *i*. By theorem 2.5, *D* is a distance *i*- dominating set.

Now we take i = 1, then we have the following corollary.

Corollary 2.10 [1]

In any graph G with radius 1, a set D of k vertices $1 \le k \le n-1$ is a dominating set if and only if D is a k-center.

Theorem 2.11

Let G be a graph with n vertices. Then $\bigvee_{j=1}^{k} x_j'$ is full for a least integer k in G for $\lambda = i$ if and only if $D = \{x_1, x_2, ..., x_k\}$ is a minimum distance *i*-dominating set.

Proof

Consider the amount of penetration $\lambda = i$. Suppose that $\bigvee_{j=1}^{k} x_{j'}$ is full where $x_{j'}$ is the LV of x_{j} . Take $x_{j'} = (x_{j_1}, x_{j_2}, \dots, x_{j_n})$ for a least integer k. Now $\bigvee_{j=1}^{k} x_{j'} = (x_{1_1}, x_{1_2}, \dots, x_{1_n}) \lor (x_{2_1}, x_{2_2}, \dots, x_{2_n}) \lor \dots \lor (x_{k_1}, x_{k_2}, \dots, x_{k_n})$. Since $\bigvee_{j=1}^{k} x_j'$ is full, then $(x_{1_1}, x_{1_2}, \dots, x_{1_n}) \lor (x_{2_1}, x_{2_2}, \dots, x_{2_n}) \lor \dots \lor \lor (x_{k_1}, x_{k_2}, \dots, x_{k_n})$. Hence $D = \{x_1, x_2, \dots, x_{k_n}\}$

 $(x_{k_1}, x_{k_2}, ..., x_{k_n}) = (1, 1, ..., 1)$. Hence $D = \{x_1, x_2, ..., x_k\}$ dominates V and it is a minimum distance *i*-dominating set. Since k is minimum.

Conversely, suppose that $D = \{x_1, x_2, ..., x_k\}$ is a minimum distance *i*-dominating set. Then a vertex not in *D* is adjacent to at least one vertex of *D* within distance $\lambda = i$. That is, $d(D, y) \le i \forall y \in V$ -*D*. Thus all coordinates of any one of $x_1', x_2', ..., x_k'$ is 1. Hence $x_1' \lor x_2' \lor ... \lor x_k'$ is full, that is $\bigvee_{j=1}^k x_j'$ is full. It completes the proof.

Theorem 2.12

Let *G* be a graph with *n* vertices. Then there exists a vertex whose link vector is full with $\lambda = k$ if and only if $\gamma_k(G) = 1$.

Proof

Let *G* be a graph with *n* vertices. Suppose that there exists a vertex v_i whose link vector is full with penetration *k*. That is, the *j*th coordinate of v_i ' is 1 for every j $(1 \le j \le n)$. Hence the vertex v_i is reachable to all other vertices of *G* with penetration *k*. Hence this vertex v_i alone forms a distance *k* dominating set. Hence *D* is a minimum distance *k* -dominating set and so $\gamma_k(G) = 1$. Conversely, assume that $\gamma_k(G) = 1$. Let *D* be a γ_k -set of *G*. Take $D = \{v_i\}$. Then the vertex v_i is reachable to all other vertices within distance *k*. Hence v_i is reachable to all other vertices of *G* with $\lambda = k$. Then the LV v_i' of v_i is full.

Theorem 2.13

If $r(G) \le k \le diam(G)$, then there exist a LV x_i' which is full with $\lambda = k$.

Proof

Let *G* be a graph with *n* vertices. Assume that $r(G) \le k \le diam(G)$. Then there exists a vertex x_i of *G* with eccentricity *k*. By theorem 2.4, $\gamma_k(G) = 1$. Then by theorem 2.12, x_i' is full with $\lambda = k$.

Theorem 2.14

Let G be a connected graph with n vertices. Then $\Lambda_{i=1}^n x_i'$ is full with $\lambda = 1$ if and only if G is complete.

Proof

Let *G* be a connected graph with *n* vertices. Suppose that $\bigwedge_{i=1}^{n} x_i'$ is full with $\lambda = 1$.

Then $\bigwedge_{i=1}^{n} x_{i}' = min[(x_{1_{1}}, x_{1_{2}}, \dots, x_{1_{n}}) \land (x_{2_{1}}, x_{2_{2}}, \dots, x_{2_{n}}) \land \dots \land (x_{n_{1}}, x_{n_{2}}, \dots, x_{n_{n}}) = (1, 1, \dots, 1).$ Since the *j*th coordinate of x_{i} is full for all *i*, *j* $(1 \le i, j \le n)$, then the vertex x_{i} is reachable to all other vertices. Hence *G* is complete.

Conversely, Take $\Lambda_{i=1}^n x_i' = min[(x_{1_1}, x_{1_2}, ..., x_{1_n}) \land (x_{2_1}, x_{2_2}, ..., x_{2_n}) \land ... \land (x_{n_1}, x_{n_2}, ..., x_{n_n})]$. Since *G* is complete, link vector of every vertex is full. Hence $\Lambda_{i=1}^n x_i'$ is full. Thus the link vector concept is very useful to prove many results.

Algorithm 2.15

Algorithm to find a minimum distance *i*-dominating set

Input. A graph G = (V, E) with $V(G) = \{x_1, x_2, \dots, x_n\}$ with

distance matrix and diam(G) = d. Find all reachable

sets $R_{\lambda}(x_j)$ of x_j and find the link vector x_j' of x_j

Output. Minimum distance *i*-dominating set. Step 1. i = 1 to d

Step 2.

- 2.1. Take *w*' is the LV of *w*. Initialize *w*' \leftarrow (0) and *D* = Ø
- 2.2. For j = 1 to n $w' = w' \lor x_j'$ $D = D \lor \{x_i\}$
- 2.3. If w' is not full then go to step 3.2
- 2.4. Print D is a minimum distance i -dominating set.

Otherwise go to step 3.2

2.5 Go to step 1.

This algorithm finds *d* number of minimum distance *i*-dominating sets, for i = 1 to *d*. It works with a for loop j = 1 to *n*, for a fixed *i*. To find a minimum distance *i*-dominating set this algorithm works with the operations \vee and \cup in 2n times. Totally it works in 2*nd* times and so it is a polynomial time algorithm.

3. REFERENCES

- A. Anto Kinsley and S. Somasundaram, Domination based algorithm to k-center problem, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 9 (2006), No.3, pp. 403-416.
- [2] F. Buckley and F. Harary, Distance in Graphs, Addison – Wesley Publishing Company, New York, (1990).
- [3] G. Chartrand and P. Zhang, Introduction to Graph Theory, Tata McGrew Hill Education Private Ltd, New Delhi (2006), 327-333.
- [4] T. W. Haynes, S. T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1998).
- [5] P. J. Slater, Maximin facility location, J. Res. Net Burstandards, 79B, (1975), 107-115.
- [6] H. S. Wilf, Algorithm and Complexity, Prentice Hall International, Inc., U.S.A. (1986).