
International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 175-182, 2017, ISSN:-2319–8656

www.ijcat.com 175

 Software Quality Measure

Eke B. O. Musa M. O.

Department of Computer Science Department of Computer Science

University of Port Harcourt University of Port Harcourt

Port Harcourt, Nigeria Port Harcourt, Nigeria

Abstract: Modern gadgets and machines such as medical equipments, mobile phones, cars and even military hardware run on

software. The operational efficiency and accuracy of these machines are critical to life and the well being of modern civilization. When

the software powering these machines fail it exposes life to danger and can cause the failure of businesses. In this paper, software

quality measure is presented with the emphasis on improving standard and controlling damages that may result from badly developed

application. The research shows various software quality standards and quality metrics and how they can be applied. The application

of the metrics in measuring software quality in the research produced results which shows that the code metrics performance is better

than the design metrics performance and points to a new way of improving quality by refactoring application code instead of

developing new designs. This is believed to ensure reusability and reduced failure rate when software is developed.

Keywords: Software, quality, reusability, metrics, measure

1. INTRODUCTION

Software quality measures how well software is designed

(quality of design), and how well the software conforms to

that design (quality of conformance), although there are

several different definitions. It is often described as the

'fitness for use for the purpose' of developing a piece of

software. Whereas quality of conformance is concerned

with implementation, quality of design measures how

valid the design and requirements are in creating a

worthwhile product. But what exactly is software quality?

It’s not an easy question to answer, since the concept

means different things to different people.

Software quality may be defined as the degree of

conformance to explicitly stated functional and

performance requirements, explicitly documented

development standards and implicit characteristics that are

expected of all professionally developed software (Ho-

Won, et al. 2014). In the definition, it is clear that

software requirements are the foundations from which

quality is measured. It is then believed that lack of

conformance to requirement is lack of quality. Specified

standards define a set of development criteria that guide

the management of software engineering. Hence, if

criteria are not followed during software development,

lack of quality will usually result.

A set of implicit requirements often goes unmentioned,

for example ease of use, maintainability, usability and

other software quality concerns. If software confirms to its

explicit (clearly defined and documented) requirement but

fails to meet implicit (not clearly defined and documented,

but indirectly suggested) requirements, software quality is

suspected.

As with any definition, the definition of ‘software quality’

is also varied and debatable. Some even say that ‘quality’

cannot be defined and some say that it can be defined but

only in a particular context. Some even state confidently

that ‘quality is lack of bugs’. Whatever the definition, it is

true that quality is something we all aspire to have when

developing software .

The Institute of Electrical and Electronics Engineers

(IEEE) defines software quality as the degree to which a

system, component, or process meets specified

requirements and the degree to which a system,

component, or process meets customer or user needs or

expectations.

Similarly, International Software Testing Qualifications

Board (ISTQB) defines software quality as the degree to

which a component, system or process meets specified

requirements and/or user/customer needs and

expectations. The totality of functionality and features of

a software product that bear on its ability to satisfy stated

or implied needs (Stephen, 2012).

2. SOFTWARE DEVLOPMET LIFE
CYCLE

When developing software of high quality, it is crucial to

have a good understanding and knowledge of the various

phases or stages of Software Development Life Cycle

(SDLC). Software Development Life Cycle, or Software

Development Process, defines the steps/ stages/ phases in

the building of quality software (McConnell, 2015).

There are various kinds of software development models

like:

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 175-182, 2017, ISSN:-2319–8656

www.ijcat.com 176

i) Waterfall model

ii) Spiral model

iii) Iterative and incremental development (like

‘Unified Process’ and ‘Rational Unified

Process’)

iv) Agile development (like ‘Extreme Programming’

and ‘Scrum’)

Models are evolving with time and the development life

cycle can vary significantly from one model to the other.

However, each model comprises of all or some of the core

phases/ activities/ tasks involved in software development.

2.1 The Basic Model of SDLC
The basic model of the Software development Life Cycle

starts out with the requirement analysis and moves into

the design phase, the implementation phase, testing phase,

the release phase and cycles back to the requirement phase

(Scott, 2005).

Figure 1: SDLC Basic Model

The phases specified in figure 1 is basic and its
arrangement may vary from one methodology to another,
however the activities carried out in the phases are similar.

Activities in the life cycle:

Requirement : In requirement activity, developers work

directly with customer(s) and identifies the problem to be

solved. It focuses on “what” the software is intended to do

and not “how”. It is important to note that often what a

client or customer actually need is often not very clearly

expressed and often vary within the development period.

Analysis and Design: This activities focuses on how the

programme will achieve the software requirements. The

activities start from analysis by making sure that the

problem is broken down into smaller pieces called

components and then the design is carried out when

components are used in synthesizing the system to work

together to make the whole programme work.

Implementation : In this phase the code is written

according to design specifications. The implementation

language may be a barrier to the development of the

system. The developers must select a programming

language that will be able to handle all of the concerns in

requirement captured in the design. This is important due

to the fact that certain compiler restrictions or

implementation may not allow easy development of

certain components according to specification. The

selection of programming language of development is

therefore an important consideration when quality of

application is considered at the implementation stage of

software development life cycle. Some time if a reusable

software component is available it is preferable to reuse it

if it had been previously tested to be working efficiently.

Testing: During the testing activity the code or the

design is verified by using different ways in checking if

the design or the code met certain the design specification

or code functional specification. It is a strong view held

by software engineers that if proper testing is carried out

at the design stage of a software development life cycle

then the coding testing will only be a confirmatory test

that the system is working properly as expected. This

view have been researched upon to even check whether it

is better to carry-out design testing before code testing and

which of the two is capable of revealing development

error. A similar verification was carried out by Jiang in

one of the researches (Jiang et. al., 2007).

Release: When software is released certain concern and

requirement may be omitted by the developer or the

customer. When the requirement is omitted by the

customer it may be released in the next version of the

software and it is often not held as a quality issues rather

it is an upgrade issue. However, when the requirement

omission is from the developer it is a serious quality

concern issue. It is at the release phase that the software is

closely examined by the staff of the customer(s) and

validates that the programme meets the customer’s

expectations.

There may still be many other activities/ tasks which have

not been specifically mentioned above depending on the

software design methodology. But it is essential that the

key activities within a software development life cycle be

understood even if it is at a review level.

2.2 Who Cares About Software Quality?
With software or anything else, assessing quality means

measuring value. Something of higher quality has more

value than something that’s of lower quality (IOS, 2010).

Yet measuring value requires answering another question:

value to whom? In thinking about software quality, it’s

useful to focus on three groups of people who care about

its value, as Figure 2 shows.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 175-182, 2017, ISSN:-2319–8656

www.ijcat.com 177

 Figure 2: Those who care about software quality

As the figure illustrates, a development process converts

an idea into usable software. The three groups of people

who care about the software’s quality during and after this

process are:

1. The software’s users, who apply this software to

 some problem.

2. The development team that creates the software.

3. The sponsors of the project, who are the people paying

for the software’s creation. For software developed by

an organization for its own use, for example, these

sponsors are commonly business people within that

organization.

All three of these groups are stakeholders of software

quality. The aspects of quality that each finds most

important aren’t the same, however. Understanding these

differences requires dissecting software quality to really

see the detail structure.

3. ANALYSIS OF SOFTWARE QUALITY

Analysis involves the decomposition of the system into its

component parts to identify the part that can be combined

in forming a new system. Hence it is useful to think about

the software quality by dividing it into three aspects:

functional quality, structural quality, and process quality.

Doing this helps us see the big picture, and it also helps

clarify the trade-offs that need to be made among

competing goals (Basili, et, al.,1996). . Figure 4

illustrates this idea.

Fig.3: Software quality decomposed into three aspects:

functional quality, structural quality, and process

quality.

The three aspects of software quality are functional

quality, structural quality, and process quality.

3.1 Functional Quality

Functional quality reflects how well the software complies

with or conforms to a given design, based on functional

requirements or specifications. This attribute also ensures

that the software correctly performs the tasks it’s intended

to do for its users. Among the attributes of functional

quality are:

1. Meeting the specified requirements. Whether they

come from the project’s sponsors or the software’s

intended users, meeting requirements is the sine qua

non of functional quality. In some cases, this might

even include compliance with applicable laws and

regulations. Requirements commonly change

throughout the development process, achieving this

goal requires the development team to understand and

implement the correct requirements throughout, not

just those initially defined for the project.

2. Creating software that has few defects. Among these

are bugs that reduce the software’s reliability,

compromise its security, or limit its functionality.

Achieving zero defects is too much to ask from most

projects, but users are rarely happy with software they

perceive as buggy.

3. Good enough performance. Users often perceive slow

system as not been well designed or to be outrightly a

bad software. The thing that may be causing the low

performance might be very simple but that is not

actually what the user sees. It is the end product of the

software that the user interacts with.

4. Ease of learning and ease of use. To its users, the

software’s user interface is the application, and so

these attributes of functional quality are most

commonly provided by an effective interface and a

well-thought-out user workflow. The aesthetics of the

interface—how beautiful it is—can also be important,

especially in consumer applications.

Software testing commonly focuses on functional quality.

All the characteristics just listed can be tested, at least to

some degree, and so a large part of ensuring functional

quality boils down to testing.

3.2 Structural Quality

The second aspect of software quality, structural quality,

means that the code itself is well structured. Unlike

functional quality, structural quality is hard to test for

(although there are tools to help measure it) (Robert,

1992). The attributes of this type of quality include:

1. Code testability. Checking if the developed code is

organized in a way that makes testing easy or whether

testing the code will be fell based on the style of code

development.

http://www.ijcat.com/
https://en.wikipedia.org/wiki/Functional_requirements
https://en.wikipedia.org/wiki/Functional_requirements

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 175-182, 2017, ISSN:-2319–8656

www.ijcat.com 178

2. Code maintainability. High level modularity is also

checked to make sure that it is easy to add new code or

change existing code without introducing bugs in other

part of the program.

3. Code understandability. Is the code readable? Is it

more complex than it needs to be? These have a large

impact on how quickly new developers can begin

working with an existing code base.

4. Code efficiency. It also check if the program consumes

a lot of system resources in execution, and writing

efficient code can be critically important in making the

application to execute in old and newer machines. Users

often do not need to upgrade their hardware or to buy

new system just to be able to run a program, when

similar app can also run in their machine.

5. Code security. Does the software allow common

attacks such as buffer overruns and SQL injection? Is it

insecure in other ways?

3.3 Process Quality

Process quality, is also critically important. The quality of

the development process significantly affects the value

received by users, development teams, and sponsors, and

so all three groups have a stake in improving this aspect of

software quality(Antoniol, et, al.,2002)..

The most obvious attributes of process quality include

these:

1. Meeting delivery dates. Was the software delivered on

time?

2. Meeting budgets. Was the software delivered for the

expected amount of money?

3. A repeatable development process that reliably

delivers quality software. If a process has the first two

attributes—software delivered on time and on

budget—but so stresses the development team that its

best members quit, it isn’t a quality process. True

process quality means being consistent from one

project to the next.

4. SOFTWARE QUALITY ASSURANCE
Software Quality Assurance (SQA) is a set of activities

for ensuring quality in software engineering processes

(that ultimately result in quality in software products).

These activities include:

Process definition and implementation, Auditing, and

Training

Processes could be:

1. Software Development Methodology

2. Project Management

3. Configuration Management

4. Requirements Development/Management

5. Estimation

6. Software Design

7. Testing, etc.

Once the processes have been defined and implemented,

Quality Assurance has the following responsibilities:

1. identify weaknesses in the processes

2. correct weakness to continually improve the process

The quality management system under which the software

system is created is normally based on one or more of the

following models/standards which are the most popular

models:

1. CMMI 2. Six Sigma 3. ISO 9000

There are many other models/standards for quality

management but the ones mentioned above are the most

popular. Software Quality Assurance encompasses the

entire software development life cycle and the goal is to

ensure that the development and/or maintenance processes

are continuously improved to produce products that meet

specifications/requirements. The process of Software

Quality Control (SQC) is also governed by Software

Quality Assurance (SQA). SQA is generally shortened to

just QA.

4.1 Software Quality Control
Software Quality Control (SQC) is a set of activities

carried out to ensure quality in software products

(Antoniol, et, al.,2001).

It includes the following activities:

i) Reviews: The review of the activities carried out must

be done at all stages of the life cycle based on the

methodology selected for the system development. In

the sample model we are using in this paper it may

include:

1. Requirement Review: Review carried out when the

initial requirements have been done, to check if all the

requirements needed in the system are captured.

2. Design Review: When the design of the system is

completed, the review re-examine the design to see if

there are certain omissions that needed to be corrected.

3. Code Review: This involve the checking of the coding

pattern to see if it satisfies the principles required for

quality program.

4. Deployment Plan Review : The review is carried out to

make sure that there are no omissions in the plans for

the deployment of the system.

5. Test Cases and Test Plan Review involve the checking

of the test conditions required to execute the system.

 ii). Testing: Testing varies from one methodology to

another but one issue is common to them all, which is that

testing need to be done. Some methodology reserve a

specific time for testing phase while other encourage

progressive testing throughout the life cycle. Whichever

process that is used some of the testing carried out

include:

1. Unit Testing: This involve the testing of single

modules or program units and to make sure that it is

working according to the expected goal.

2. Integration Testing: Once the units are working

according to the expectation they can be brought

http://www.ijcat.com/
http://softwaretestingfundamentals.com/software-quality-control/
http://softwaretestingfundamentals.com/software-quality-control/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/integration-testing/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 175-182, 2017, ISSN:-2319–8656

www.ijcat.com 179

together and tested to make sure they are working

well as a whole unit.

3. System Testing: once the entire system is ready for

deployment it can still be tested with varying

example data to make sure that various input data

will work up to the expectation of the system.

4. Acceptance Testing: In this stage the customers can

use the real life data set to test the system before it is

finally deployed for usage.

Software Quality Control is limited to the Review/Testing

phases of the Software Development Life Cycle and the

goal is to ensure that the products meet

specifications/requirements. The process of Software

Quality Control (SQC) is governed by Software Quality

Assurance (SQA). While SQA is oriented towards

prevention, SQC is oriented towards detection. Some

people assume that QC means just Testing and fail to

consider Reviews; this should be discouraged (Schröter, et

al., 2006).

Differences between Software Quality Assurance

(SQA) and Software Quality Control (SQC)

5. SOFTWARE TESTING
Software testing is an investigation conducted to provide

stakeholders with information about the quality of the

product or service under test. Statistics had been used over

the year in test (Siegel, 1956) and it is still been used in

certain parameter test even in software metrics. Software

testing can also provide an objective, independent view of

the software to allow the business to appreciate and

understand the risks of software implementation. Test

techniques include the process of executing a program or

application with the intent of finding software bugs (errors

or other defects).

Software testing involves the execution of a software

component or system component to evaluate one or more

properties of interest (Diomidis, 2006).. In general, these

properties indicate the extent to which the component or

system under test:

1. meets the requirements that guided its design and

development,

2. responds correctly to all kinds of inputs,

iii) performs its functions within an acceptable time,

iv) is sufficiently usable,

v) can be installed and run in its intended

environments, and

vi) achieves the general result its stakeholders

desire.

As the number of possible tests for even simple software

components is practically infinite, all software testing uses

some strategy to select tests that are feasible for the

available time and resources. As a result, software testing

typically (but not exclusively) attempts to execute a

program or application with the intent of finding software

bugs (errors or other defects). The job of testing is an

iterative process as when one bug is fixed, it can

illuminate other, deeper bugs, or can even create new

ones.

5.1 Software Testing Levels
There are four levels of software testing: Unit

>>Integration >>System >>Acceptance.

 Fig. 4: A Software Testing level

Criteria
Software Quality

Assurance (SQA)

Software Quality

Control (SQC)

Definition

SQA is a set of

activities for ensuring

quality in software

engineering processes

(that ultimately result

in quality in software

products). The

activities establish and

evaluate the processes

that produce products.

SQC is a set of

activities for

ensuring quality in

software products.

The activities focus

on identifying

defects in the actual

products produced.

Focus Process focused Product focused

Orientation Prevention oriented Detection oriented

Breadth Organization wide
Product/project

specific

Scope

Relates to all products

that will ever be

created by a process

Relates to specific

product

Activities

i) Process

Definition

and

Implementati

on

ii) Audits

iii) Training

i) Reviews

ii) Testing

Acceptance Testing

System Testing

Integration Testing

Unit Testing

http://www.ijcat.com/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/software-development-life-cycle/
http://softwaretestingfundamentals.com/software-quality-assurance/
http://softwaretestingfundamentals.com/software-quality-assurance/
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Operating_environment
https://en.wikipedia.org/wiki/Software_bug
https://en.wikipedia.org/wiki/Software_bug

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 175-182, 2017, ISSN:-2319–8656

www.ijcat.com 180

1. Unit Testing is a level of the software testing process

where individual units/components of a

software/system are tested. The purpose is to validate

that each unit of the software performs as designed.

2. Integration Testing is a level of the software testing

process where individual units are combined and

tested as a group. The purpose of this level of testing

is to expose faults in the interaction between

integrated units.

3. System Testing is a level of the software testing

process where a complete, integrated system/software

is tested. The purpose of this test is to evaluate the

system’s compliance with the specified requirements.

4. Acceptance Testing is a level of the software testing

process where a system is tested for acceptability.

The purpose of this test is to evaluate the system’s

compliance with the business requirements and assess

whether it is acceptable for delivery.

Note: Some tend to include Regression Testing as a

separate level of software testing but that is a

misconception. Regression Testing is, in fact, just a type

of testing that can be performed at any of the four main

levels.

5.2 Techniques of Software Testing
Below are some methods / techniques of software testing:

1. Black Box Testing is a software testing method in

which the internal structure/design/implementation of

the item being tested is not known to the tester. These

tests can be functional or non-functional, though

usually functional. Test design techniques

include: Equivalence partitioning, Boundary Value

Analysis, Cause Effect Graphing.

2. White Box Testing is a software testing method in

which the internal structure/design/implementation of

the item being tested is known to the tester. Test

design techniques include: Control flow testing, Data

flow testing, Branch testing, Path testing.

3. Gray Box Testing is a software testing method which

is a combination of Black Box Testing method and

White box Testing method.

4. Agile Testing is a method of software testing that

follows the principles of agile software development.

5. Ad Hoc Testing is a method of software testing

without any planning and documentation.

6. SOFTWARE ENGINEERING

STANDARDS TEST MEASURE
According to the IEEE Comp. Soc. Software Engineering

Standards Committee, a standard can be: An object or

measure of comparison that defines or represents the

magnitude of a unit. It can also be a characterization that

establishes allowable tolerances or constraints for

categories of items, or a degree or level of required

excellence or attainment.

6.1 Software Standards Legal Implications
Comparatively few software products are forced by law to

comply with specific standards, and most have

comprehensive non-warranty disclaimers. However, for

particularly sensitive applications (e.g. safety critical)

software will have to meet certain standards before

purchase.

1. Adherence to standards is a strong defence against

negligence claims (admissible in court in most US

states).

2. There are instances of faults in products being traced

back to faults in standards, so

3. Standards writers must themselves be vigilant against

malpractice suits.

When standards are released, it is also important to

subject the so call standard to QA testing to make sure

that serious fault will not arise by adhering to those

standards.

6.2 Quality Assurance Standards
Differing views of quality standards: taking a systems

view (that good management systems yield high quality);

and taking an analytical view (that good measurement

frameworks yield high quality). Examples:

1. Quality management: ISO 9000-3 Quality

Management and Quality Assurance Standards - Part

3: Guidelines for the application of 9001 to the

development, supply, installation and maintenance

of computer software

2. Quality measurement: IEEE Std 1061-1992

Standard for Software Quality Metrics Methodology

6.2.1 Product Standards

These focuses on the products of software engineering,

rather than on the processes used to obtain them. Perhaps

surprisingly, product standards seem difficult to obtain.

Examples:

1. Product evaluation: ISO/IEC 14598 Software

product evaluation

2. Packaging: ISO/IEC 12119:1994 Software Packages

- Quality Requirements and Testing

6.2.2 Process Standards

A popular focus of standardization, partly because product

standardization is elusive and partly because much has

been gained by refining process. Much of software

engineering is in fact the study of process. Examples:

1. Life cycle: ISO/IEC 12207:1995 Information

Technology - Software Life Cycle Processes

2. Acquisition: ISO/IEC 15026 System and software

Integrity Levels

3. Maintenance: IEEE Std 1219-1992 Standard for

Software Maintenance

4. Productivity: IEE Std 1045-1992 Standard for

Software Productivity Metrics.

http://www.ijcat.com/
http://softwaretestingfundamentals.com/unit-testing/
http://softwaretestingfundamentals.com/integration-testing/
http://softwaretestingfundamentals.com/system-testing/
http://softwaretestingfundamentals.com/acceptance-testing/
http://softwaretestingfundamentals.com/black-box-testing/
http://softwaretestingfundamentals.com/white-box-testing/
http://softwaretestingfundamentals.com/gray-box-testing/
http://softwaretestingfundamentals.com/agile-testing/
http://softwaretestingfundamentals.com/ad-hoc-testing/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 175-182, 2017, ISSN:-2319–8656

www.ijcat.com 181

7 EXPERIMENTAL USE CASE
In the experimental system a project program was used to

examine the concepts provided in this paper to empirically find

out what will be the result using a given set of data and a varying

metrics.

Condition1 : i) Model development using design metrics

 ii) Model development using design metrics only

Condition 2: i) Testing the models with data set utilizing code

metrics

ii) Testing models with data set utilizing design metrics

Data set: The data set was randomly generated so that various

type of data will be covered and the data that may be considered

none applicable will also be tested. When the data is not within

area that the system should handle the system need to graciously

handle such challenge without an outright crash.

 Metrics Used: The metrics used include selected design

metrics and selected code metrics.

Design Metrics: The design metrics used in the

experimentation (Subramanyam et,al., 2003) include: The

design complexity of a module, Design_Density,

Essential_Complexity Module, Essential_Density and

Maintenance_Severity. All the design metrics were

calculated as a factor of cyclomatic complexity of a

module (e − n + 2) where n could be Number of calls to

other functions in a module and e effort matrics of the

module.

Code Metrics: The design metrics used in the

experimentation include: The halstead length content of a

module μ = μ1 + μ2,

The halstead length metric of a module N = N1 + N2,

The halstead level metric of a module L = (2*μ2) /(μ2*N2)

The halstead difficulty metric of a module D = 1/L

The halstead volume metric of a module V =N * log2(μ1 +

μ2)

The halstead effort metric of a module E = V/L

The halstead programming time metric of a module T =

E/18

The halstead error estimate metric of a module B =

E2/3/1000

Method: In the experimental use case six specific

instruments or programs are selected for quality

examination and the design metrics as well as the code

metrics was used to test the outcome using the various

data set. A fault tool checker was also deployed to

compare the result from the metrics to the result from the

tool checker is statistically obtained via the internal

system of the tool and the percentage fault was also

extracted.

7.1 Results

The result of the quality test is clearly displayed on the

table. The result show a note of the specific intrument of

program module used in the test. It also show the

performance of the metrics using their fault levels. The

instruments are different and that variation is also

reflected in the data sets used in testing the system table 1

clearly illustrate all these values.

 Table 1: Result of percentage fault from the tests

Data

set

Test

No

 % Fault Note

 Design

metrics

Code

metrics

Specific

Instrument

DT1 0001 2.1 0.7 Simple number

computation

DT2 0002 5.4 1.2 Input and output

processing

DT3 0003 2.5 0.9 A database system

RD1 0004 14.2 7.3 A combustion

experiment

RD2 0005 7.8 3.2 Multimedia

system

RD3 0006 16.3 2.8 A Recursive

procedure

In figure 5 it is clear from the graph the percentage fault

of each of the metrics used. The design metrics

performance of the code metrics appears to be better than

the performance of the design metric groups. In the 6

data sets, the instruments where clearly varied from

simple input-output processing which is a very simple

program that can be easily tested for performance to

recursive procedures which if not controlled could result

to a forever executing system that can exhaust the

processing resources and memory of the system if

continuous output is generated.

 Fig. 5: A plot of the testing result

The fault was lowest on simple number computation

which is understandable but on the contrary instead of

recursive procedure showing the highest fault level on the

code metrics it was the combustion engine classical

program that was not written in a highly modular format

that showed the highest fault level for the code metrics. It

is clear therefore that it is not only the metrics that are

contributing to the fault that the process type used in the

development of the system that also contribute a great part

to the system efficiency.

http://www.ijcat.com/

International Journal of Computer Applications Technology and Research

Volume 6–Issue 4, 175-182, 2017, ISSN:-2319–8656

www.ijcat.com 182

8.CONCLUSION

Organizations that develop low-quality software, whether

for internal use or for sale, are always looking backward,

spending time and money on fixing defects in "finished"

products. In contrast, an organization that builds in

product quality from the beginning can be forward-

looking and innovative; it can spend its resources on

pursuing new innovations instead of spending the time on

maintenance.

In the use case test it is clear that the instrument (type of

problem solved by a program) alone does not determine

the performance of the system. The process or

methodologies used clearly contribute much in the

performance; a poor process can result to bad program

both at design and implementation. The benefits of

including quality-oriented activities in all phases of a

software development lifecycle are both broad and deep.

These measures not only facilitate innovation and lower

costs by increasing predictability, reducing risk, and

eliminating rework, but they can also help to differentiate

an quality product from its competitors. Most important,

continuously ensuring quality will always cost less than

ignoring quality considerations.

9.RECOMMENDATION

In most of the instruments, it is clear that those that have
very bad fault at design also had corresponding higher
fault at implementation. The paper did not correlate the
two but from the plot of the result the relationship of the
two plot is obvious. It is therefore recommended the a
combined effort at improving both design fault and coding
fault can be a target that can be easily realizable if good
process and programming practice is imbibed. Further
research is also recommended to find out correlation
between the metrics to see the effect or level of fault
relationship. This will enable a valuable discuss on the
regression test of the design fault with the coding fault.
This work is recommended as launch pad to such research
so that the quality issues raised and discussed in this work
will be used in handling such cases.

ACKNOWLEDGEMENT

Oyol Computer Consult Inc Port Harcourt, Nigeria is
acknowledged for providing the facility and tool used in
carrying out the experimental tests. We also thank them for
offering some of the instruments used.

REFERENCES

Ho-Won J., Seung-Gweon K., and Chang-Sin C. (2014).

 Measuring software product quality: A survey of

 ISO/IEC 9126. IEEE Software, 21(5):10–13,

 September/October 2014.

Stephen H. K (2012). Metrics and Models in Software

 Quality Engineering. Addison-Wesley, Boston,

 MA, second edition.

McConnell, S. (2015), Code Complete (Fifth ed.),

 Microsoft Press Pressman,

Scott M. (2005), Software Engineering: A Practitioner's

 Approach (Sixth, International ed.), McGraw-Hill

 Education

Jiang Y., Cukic, B. and Menzies T. (2007) Fault

 prediction using early lifecycle data. pages 237–246.

 Software Reliability. ISSRE ’07. The 18th IEEE

 International Symposium on, Nov. 2007.

International Organization for Standardization.(2010)

Software Engineering—Product Quality—

Part 1: Quality Model. ISO, Geneva,

Switzerland, 2010. ISO/IEC 9126-1:2010(E).

Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and

 E. Merlo.(2002) Recovering tracebility links between

 code and documentation. IEEE Transactions on

 Software Engineering, 28(10):970–983.

 Antoniol, G., Casazza, G., Penta, M. and Fiutem, R.

 (2001) Object-oriented design patterns recovery.

 Journal of Systems and Software, 59(2):181–196.

 Basili, V. R., Briand L. C. and Melo W. L. (1996). A

 validation of object-oriented design metrics as

 quality indicators, 1996.

Breiman. L (2001) Random forests. Machine Learning,

 45:5– 32, 2001.

Diomidis S.(2006). Code Quality: The Open Source

Perspective. Addison Wesley, Boston, MA,

2006.

Robert L. Glass.(1992) Building Quality Software.

Prentice Hall, Upper Saddle River, NJ, 1992.

Roland Petrasch, (1999) "The Definition of‚ Software

Quality’: A Practical Approach", ISSRE,

1999

Schröter, A, Zimmermann, T and Zeller A. (2006)

 Predicting component failures at design time. In

 ISESE ’06: Proceedings of the 2006 ACM/IEEE

 international symposium on International

 symposium on empirical software engineering,

 pages 18–27, New York, NY, USA, 2006. ACM

 Press.

Siegel. S. (1956) Nonparametric Satistics. New York:

 McGraw- Hill Book Company, Inc., 1956.

Subramanyam R. and M. S. Krishnan. M S. (2003)

 Empirical analysis of ck metrics for object-oriented

 design complexity: Implications for software

 defects. IEEE Trans. Softw. Eng., 29(4):297–310,

http://www.ijcat.com/
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309
http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309
http://www.spinellis.gr/codequality
http://www.spinellis.gr/codequality
http://web.archive.org/web/20040719134818/http:/www.chillarege.com/fastabstracts/issre99/99124.pdf
http://web.archive.org/web/20040719134818/http:/www.chillarege.com/fastabstracts/issre99/99124.pdf

